Association between Hypothyroidism Onset and Alzheimer Disease Onset in Adults with Down Syndrome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical Assessments
2.2. Statistical Analyses
3. Results
3.1. Demographics
3.2. Association between the Age of Onset of AD and Age of Onset of Hypothyroidism
3.3. Thyroid Autoantibodies
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lai, F.; Williams, R.S. A Prospective Study of Alzheimer Disease in Down Syndrome. Arch. Neurol. 1989, 46, 849–853. [Google Scholar] [CrossRef] [PubMed]
- McCarron, M.; McCallion, P.; Reilly, E.; Dunne, P.; Carroll, R.; Mulryan, N. A prospective 20-year longitudinal follow-up of dementia in persons with Down syndrome. J. Intellect. Disabil. Res. 2017, 61, 843–852. [Google Scholar] [CrossRef]
- Davidson, Y.S.; Robinson, A.; Prasher, V.P.; Mann, D.M.A. The age of onset and evolution of Braak tangle stage and Thal amyloid pathology of Alzheimer’s disease in in-dividuals with Down syndrome. Acta Neuropathol. Commun. 2018, 6, 56. [Google Scholar] [CrossRef] [PubMed]
- Schupf, N.; Lee, J.H.; Pang, D.; Zigman, W.; Tycko, B.; Krinsky-McHale, S.; Silverman, W. Epidemiology of estrogen and dementia in women with Down syndrome. Free Radic. Biol. Med. 2018, 114, 62–68. [Google Scholar] [CrossRef]
- Mann, D.M. The pathological association between down syndrome and Alzheimer disease. Mech. Ageing Dev. 1988, 43, 99–136. [Google Scholar] [CrossRef]
- Amr, N.H. Thyroid disorders in subjects with Down syndrome: An update. Acta Biomed. 2018, 89, 132–139. [Google Scholar] [CrossRef]
- Chicoine, B.; Rivelli, A.; Fitzpatrick, V.; Chicoine, L.; Jia, G.; Rzhetsky, A. Prevalence of Common Disease Conditions in a Large Cohort of Individuals With Down Syndrome in the United States. J. Patient-Cent. Res. Rev. 2021, 8, 86–97. [Google Scholar] [CrossRef]
- Bayen, E.; Possin, K.L.; Chen, Y.; de Langavant, L.C.; Yaffe, K. Prevalence of Aging, Dementia, and Multimorbidity in Older Adults with Down Syndrome. JAMA Neurol. 2018, 75, 1399–1406. [Google Scholar] [CrossRef]
- Kariyawasam, D.; Luton, D.; Polak, M. Down Syndrome and Nonautoimmune Hypothyroidisms in Neonates and Infants. Horm. Res. Paediatr. 2015, 83, 126–131. [Google Scholar] [CrossRef]
- Ayşe, N.C.; Ayla, G.; Metin, Y.; Cebeci, A.N.; Güven, A.; Yıldız, M. Profile of Hypothyroidism in Down’s Syndrome. J. Clin. Res. Pediatr. Endocrinol. 2013, 5, 116–120. [Google Scholar] [CrossRef] [PubMed]
- King, K.; O’Gorman, C.; Gallagher, S. Thyroid dysfunction in children with Down syndrome: A literature review. Ir. J. Med. Sci. 2014, 183, 1–6. [Google Scholar] [CrossRef]
- Nada, A.; Ashraf, T.S.; Maya, I.; Ahmed, K.; Vincenzo, D.S.; Alaaraj, N.; Soliman, A.T.; Itani, M.; Khalil, A.; De Sanctis, V. Prevalence of thyroid dysfunctions in infants and children with Down Syndrome (DS) and the effect of thyroxine treatment on linear growth and weight gain in treated subjects versus DS subjects with normal thyroid function: A controlled study. Acta Biomed. 2019, 90, 36–42. [Google Scholar]
- Kalmijn, S.; Mehta, K.M.; Pols, H.A.P.; Hofman, A.; Drexhage, H.A.; Breteler, M.M. Subclinical hyperthyroidism and the risk of dementia. The Rotterdam study. Clin. Endocrinol. 2000, 53, 733–737. [Google Scholar] [CrossRef]
- Tan, Z.S.; Vasan, R.S. Thyroid function and Alzheimer’s disease. J. Alzheimers Dis. 2009, 16, 503–507. [Google Scholar] [CrossRef] [Green Version]
- Chaker, L.; Wolters, F.J.; Bos, D.; Korevaar, T.I.; Hofman, A.; van der Lugt, A.; Koudstaal, P.J.; Franco, O.H.; Dehghan, A.; Vernooij, M.W.; et al. Thyroid function and the risk of dementia: The Rotterdam Study. Neurology 2016, 87, 1688–1695. [Google Scholar] [CrossRef]
- Bavarsad, K.; Hosseini, M.; Hadjzadeh, M.A.; Sahebkar, A. The effects of thyroid hormones on memory impairment and Alzheimer’s disease. J. Cell. Physiol. 2019, 234, 14633–14640. [Google Scholar] [CrossRef]
- Cordes, J.; Cano, J.; Haupt, M. Reversible dementia in hypothyroidism. Nervenarzt 2000, 71, 588–590. [Google Scholar] [CrossRef] [PubMed]
- Trevisan, K.; Cristina-Pereira, R.; Silva-Amaral, D.; Aversi-Ferreira, T.A. Theories of Aging and the Prevalence of Alzheimer’s Disease. BioMed Res. Int. 2019, 2019, 9171424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canaris, G.J.; Manowitz, N.R.; Mayor, G.; Ridgway, E.C. The Colorado Thyroid Disease Prevalence Study. Arch. Intern. Med. 2000, 160, 526–534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganguli, M.; Burmeister, L.; Seaberg, E.C.; Belle, S.; DeKosky, S. Association between dementia and elevated TSH: A community-based study. Biol. Psychiatry 1996, 40, 714–725. [Google Scholar] [CrossRef]
- Thvilum, M.; Brandt, F.; LillevangJohansen, M.; Folkestad, L.; Brix, T.H.; Hegedüs, L. Increased risk of dementia in hypothyroidism: A Danish nationwide registerbased study. Clin. Endocrinol. 2021, 94, 1017–1024. [Google Scholar] [CrossRef] [PubMed]
- Figueroa, P.B.S.; Ferreira, A.F.F.; Britto, L.R.; Doussoulin, A.P.; da Silva Torrão, A. Association between thyroid function and Alzheimer’s disease: A systematic review. Metab. Brain Dis. 2021, 36, 1523–1543. [Google Scholar] [CrossRef] [PubMed]
- Percy, M.E.; Potyomkina, Z.; Dalton, A.J.; Fedor, B.; Mehta, P.; Andrews, D.F.; Mazzulli, T.; Murk, L.; Warren, A.C.; Wallace, R.A.; et al. Relation between apolipoprotein E genotype, hepatitis b virus status, and thyroid status in a sample of older persons with down syndrome. Am. J. Med. Genet. 2003, 120A, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Lott, I.T.; Dierssen, M. Cognitive deficits and associated neurological complications in individuals with Down’s syndrome. Lancet Neurol. 2010, 9, 623–633. [Google Scholar] [CrossRef]
- Percy, M.E.; Dalton, A.J.; Markovic, V.D.; McLachlan, D.R.C.; Gera, E.; Hummel, J.T.; Rusk, A.C.M.; Somerville, M.J.; Andrews, D.F.; Walfish, P.G. Autoimmune thyroiditis associated with mild “subclinical” hypothyroidism in adults with down syndrome: A comparison of patients with and without manifestations of Alzheimer disease. Am. J. Med. Genet. 1990, 36, 148–154. [Google Scholar] [CrossRef]
- Eurlings, H.A. Dementia Questionnaire for Persons with Learning Disabilities (DLD); Pearson Assessment: London, UK, 2006. [Google Scholar]
- Albert, M.S. Parallels between Down syndrome dementia and Alzheimer’s disease. Prog. Clin. Biol. Res. 1992, 379, 77–102. [Google Scholar]
- McCarthy, D. The McCarthy Scales of Children’s Abilities; The Psychological Corporation: New York, NY, USA, 1972. [Google Scholar]
- Winkler, A.; Weimar, C.; Jöckel, K.-H.; Erbel, R.; Dragano, N.; Broecker-Preuss, M.; Moebus, S.; Führer-Sakel, D.; Dlugaj, M. Thyroid-Stimulating Hormone and Mild Cognitive Impairment: Results of the Heinz Nixdorf Recall Study. J. Alzheimer’s Dis. 2015, 49, 797–807. [Google Scholar] [CrossRef]
- O’Barr, S.A.; Oh, J.S.; Ma, C.; Brent, G.A.; Schultz, J.J. Thyroid hormone regulates endogenous amyloid-beta precursor protein gene expression and processing in both in vitro and in vivo models. Thyroid 2006, 16, 1207–1213. [Google Scholar] [CrossRef]
- Schupf, N.; Kapell, D.; Roudrigez, A.; Tycko, B.; Mayeux, R. Earlier onset of Alzheimer’s disease in men with Down syndrome. Neurology 1998, 50, 991–995. [Google Scholar] [CrossRef]
- Ivarsson, S.-A.; Ericsson, U.-B.; Gustafsson, J.; Forslund, M.; Vegfors, P.; Annerén, G. The impact of thyroid autoimmunity in children and adolescents with Down syndrome. Acta Paediatr. 1997, 86, 1065–1067. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; Moon, S.W. Association between Thyroid Hormones, Apolipoprotein E, and Cognitive Function among Cognitive-ly-Normal Elderly Dwellers. Psychiatry Investig. 2020, 17, 1006–1012. [Google Scholar] [CrossRef] [PubMed]
Early | Typical | Late | p | |
---|---|---|---|---|
N = 36 | N = 160 | N = 36 | ||
AD onset (years) | <0.001 | |||
Mean (SD) | 43.81 (1.92) | 52.92 (3.72) | 62.19 (2.30) | |
Sex, % (n) | 0.776 | |||
Male | 61.1 (22) | 55.0 (88) | 58.3 (21) | |
Female | 38.9 (14) | 45.0 (72) | 41.7 (15) | |
Level of Intellectual Disability, % (n) | 0.265 | |||
Mild/Moderate | 72.2 (26) | 62.8 (98) | 53.1 (17) | |
Profound/Severe | 27.8 (10) | 37.2 (58) | 46.9 (15) | |
APOE Ɛ4 allele, % (n) | 0.04 | |||
Absent | 62.1 (18) | 77.0 (107) | 90.0 (27) | |
Present (3/4,4/4) | 37.9 (11) | 23.0 (32) | 10.0 (3) | |
BMI (kg/m2) | 0.97 | |||
Mean (SD); n | 30.19 (5.06); 26 | 29.93 (6.34); 123 | 30.14 (4.67); 28 | |
History of hypothyroidism, % (n) | 0.463 | |||
No | 41.7 (15) | 34.4 (55) | 27.8 (10) | |
Yes | 58.3 (21) | 65.6 (105) | 72.2 (26) | |
Hypothyroidism onset (years) | 0.003 | |||
Mean (SD); n | 34.1 (10.86); 17 | 42.2 (9.57); 78 | 45.7 (11.40); 16 | |
History of obstructive sleep apnea, % (n) | 0.048 | |||
Absent | 61.1 (22) | 75.4 (120) | 86.1 (31) | |
Present | 38.9 (14) | 24.5 (39) | 13.9 (5) | |
History of vitamin B12 deficiency, % (n) | 0.993 | |||
Absent | 80.6 (29) | 79.9 (127) | 80.6 (29) | |
Present | 19.4 (7) | 20.1 (32) | 19.4 (7) |
Early | Typical | Late | p | |
---|---|---|---|---|
N = 36 | N = 160 | N = 36 | ||
TSH (ulU/mL, continuous) | 0.616 | |||
Median (IQR); n | 2.46 (1.78, 3.04); 33 | 2.04 (1.23, 3.63); 148 | 2.10 (1.18, 3.37); 34 | |
TSH (ulU/mL, categorical), % (n) | 0.31 | |||
0.00–0.33 | 3.0 (1) | 6.8 (10) | 8.8 (3) | |
0.34–5.00 | 93.9 (31) | 78.4 (116) | 76.5 (26) | |
>5.00 | 3.0 (1) | 14.9 (22) | 14.7 (5) | |
Free T4 (ng/dL, continuous) | 0.277 | |||
Median (IQR); n | 0.90 (0.83, 1.08); 18 | 1.00 (0.90, 1.20); 95 | 0.95 (0.90, 1.30); 28 | |
Free T4 (ng/dL, categorical), % (n) | 0.832 | |||
0.00–0.89 | 27.8 (5) | 20.0 (19) | 21.4 (6) | |
0.90–1.90 | 72.2 (13) | 77.9 (74) | 78.6 (22) | |
>1.90 | 0.0 (0) | 2.1 (2) | 0.0 (0) |
Early | Typical | Late | p | |
---|---|---|---|---|
N = 36 | N = 160 | N = 36 | ||
TPO (IU/mL, continuous) | 0.591 | |||
Median (IQR); n | 1.30 (1.10, 16.50); 9 | 3.75 (1.40, 24.62); 64 | 4.01 (1.53, 10.30); 22 | |
TPO (IU/mL, categorical), % (n) | 0.731 | |||
0.00–9.00 | 66.7 (6) | 59.4 (38) | 68.2 (15) | |
>9.00 | 33.3 (3) | 40.6 (26) | 31.8 (7) | |
Tg (IU/mL, continuous) | 0.533 | |||
Median (IQR); n | 2.65 (1.80, 3.88); 8 | 1.80 (1.80, 2.45); 50 | 1.80 (1.80, 1.80); 16 | |
Tg (IU/mL, categorical), % (n) | 0.701 | |||
0.00–4.00 | 75.0 (6) | 86.0 (43) | 81.2 (13) | |
>4.00 | 25.0 (2) | 14.0 (7) | 18.8 (3) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, F.; Mercaldo, N.D.; Wang, C.M.; Hersch, M.S.; Hersch, G.G.; Rosas, H.D. Association between Hypothyroidism Onset and Alzheimer Disease Onset in Adults with Down Syndrome. Brain Sci. 2021, 11, 1223. https://doi.org/10.3390/brainsci11091223
Lai F, Mercaldo ND, Wang CM, Hersch MS, Hersch GG, Rosas HD. Association between Hypothyroidism Onset and Alzheimer Disease Onset in Adults with Down Syndrome. Brain Sciences. 2021; 11(9):1223. https://doi.org/10.3390/brainsci11091223
Chicago/Turabian StyleLai, Florence, Nathaniel D. Mercaldo, Cassandra M. Wang, Micaela S. Hersch, Giovi G. Hersch, and Herminia Diana Rosas. 2021. "Association between Hypothyroidism Onset and Alzheimer Disease Onset in Adults with Down Syndrome" Brain Sciences 11, no. 9: 1223. https://doi.org/10.3390/brainsci11091223
APA StyleLai, F., Mercaldo, N. D., Wang, C. M., Hersch, M. S., Hersch, G. G., & Rosas, H. D. (2021). Association between Hypothyroidism Onset and Alzheimer Disease Onset in Adults with Down Syndrome. Brain Sciences, 11(9), 1223. https://doi.org/10.3390/brainsci11091223