Neuronal Dynamics of Pain in Parkinson’s Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Clinical Data
2.2. EEG Analysis
2.3. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lim, S.Y.; Lang, A.E. The nonmotor symptoms of Parkinson’s disease--an overview. Mov. Disord. 2010, 25 (Suppl. 1), S123–S130. [Google Scholar] [CrossRef]
- Dickson, D.W. Neuropathology of Parkinson disease. Parkinsonism Relat. Disord. 2018, 46 (Suppl. 1), S30–S33. [Google Scholar] [CrossRef] [PubMed]
- Ford, B. Pain in Parkinson’s disease. Mov. Disord. 2010, 25 (Suppl. 1), S98–S103. [Google Scholar] [CrossRef]
- Kass-Iliyya, L.; Kobylecki, C.; McDonald, K.R.; Gerhard, A.; Silverdale, M.A. Pain in multiple system atrophy and progressive supranuclear palsy compared to Parkinson’s disease. Brain Behav. 2015, 5, e00320. [Google Scholar] [CrossRef] [PubMed]
- Polli, A.; Weis, L.; Biundo, R.; Thacker, M.; Turolla, A.; Koutsikos, K.; Chaudhuri, K.R.; Antonini, A. Anatomical and functional correlates of persistent pain in Parkinson’s disease. Mov. Disord. 2016, 31, 1854–1864. [Google Scholar] [CrossRef]
- Berardelli, A.; Conte, A.; Fabbrini, G.; Bologna, M.; Latorre, A.; Rocchi, L.; Suppa, A. Pathophysiology of pain and fatigue in Parkinson’s disease. Parkinsonism Relat. Disord. 2012, 18 (Suppl. 1), S226–S228. [Google Scholar] [CrossRef]
- Engels, G.; McCoy, B.; Vlaar, A.; Theeuwes, J.; Weinstein, H.; Scherder, E.; Douw, L. Clinical pain and functional network topology in Parkinson’s disease: A resting-state fMRI study. J. Neural Transm. (Vienna) 2018, 125, 1449–1459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srinivasan, R.; Winter, W.R.; Ding, J.; Nunez, P.L. EEG and MEG coherence: Measures of functional connectivity at distinct spatial scales of neocortical dynamics. J. Neurosci. Methods 2007, 166, 41–52. [Google Scholar] [CrossRef] [Green Version]
- Yuvaraj, R.; Murugappan, M.; Ibrahim, N.M.; Sundaraj, K.; Omar, M.I.; Mohamad, K.; Palaniappan, R.; Satiyan, M. Inter-hemispheric EEG coherence analysis in Parkinson’s disease: Assessing brain activity during emotion processing. J. Neural Transm. (Vienna) 2015, 122, 237–252. [Google Scholar] [CrossRef]
- Daniel, S.E.; Lees, A.J. Parkinson’s Disease Society Brain Bank, London: Overview and research. J. Neural Transm. Suppl. 1993, 39, 165–172. [Google Scholar]
- Goetz, C.G.; Tilley, B.C.; Shaftman, S.R.; Stebbins, G.T.; Fahn, S.; Martinez-Martin, P.; Poewe, W.; Sampaio, C.; Stern, M.B.; Dodel, R.; et al. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Scale presentation and clinimetric testing results. Mov. Disord. 2008, 23, 2129–2170. [Google Scholar] [CrossRef] [PubMed]
- Delorme, A.; Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, W.; Jin, S.H.; Kim, M.; Kim, J.S.; Chung, C.K. Abnormal functional brain network in epilepsy patients with focal cortical dysplasia. Epilepsy Res. 2014, 108, 1618–1626. [Google Scholar] [CrossRef] [PubMed]
- Leon-Carrion, J.; Leon-Dominguez, U.; Pollonini, L.; Wu, M.H.; Frye, R.E.; Dominguez-Morales, M.R.; Zouridakis, G. Synchronization between the anterior and posterior cortex determines consciousness level in patients with traumatic brain injury (TBI). Brain Res. 2012, 1476, 22–30. [Google Scholar] [CrossRef]
- Laptinskaya, D.; Fissler, P.; Kuster, O.C.; Wischniowski, J.; Thurm, F.; Elbert, T.; von Arnim, C.A.F.; Kolassa, I.T. Global EEG coherence as a marker for cognition in older adults at risk for dementia. Psychophysiology 2020, 57, e13515. [Google Scholar] [CrossRef] [Green Version]
- Tomlinson, C.L.; Stowe, R.; Patel, S.; Rick, C.; Gray, R.; Clarke, C.E. Systematic review of levodopa dose equivalency reporting in Parkinson’s disease. Mov. Disord. 2010, 25, 2649–2653. [Google Scholar] [CrossRef]
- Cauda, F.; Palermo, S.; Costa, T.; Torta, R.; Duca, S.; Vercelli, U.; Geminiani, G.; Torta, D.M. Gray matter alterations in chronic pain: A network-oriented meta-analytic approach. Neuroimage Clin. 2014, 4, 676–686. [Google Scholar] [CrossRef] [Green Version]
- Latremoliere, A.; Woolf, C.J. Central sensitization: A generator of pain hypersensitivity by central neural plasticity. J. Pain 2009, 10, 895–926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Tommaso, M.; Kunz, M.; Valeriani, M. Therapeutic approach to pain in neurodegenerative diseases: Current evidence and perspectives. Expert Rev. Neurother 2017, 17, 143–153. [Google Scholar] [CrossRef]
- Abuhasira, R.; Zlotnik, Y.; Horev, A.; Ifergane, G. Fibromyalgia-Like Syndrome Associated with Parkinson’s Disease-A Cohort Study. J. Clin. Med. 2019, 8, 1118. [Google Scholar] [CrossRef] [Green Version]
- Barone, P.; Antonini, A.; Colosimo, C.; Marconi, R.; Morgante, L.; Avarello, T.P.; Bottacchi, E.; Cannas, A.; Ceravolo, G.; Ceravolo, R.; et al. The PRIAMO study: A multicenter assessment of nonmotor symptoms and their impact on quality of life in Parkinson’s disease. Mov. Disord. 2009, 24, 1641–1649. [Google Scholar] [CrossRef]
- Broetz, D.; Eichner, M.; Gasser, T.; Weller, M.; Steinbach, J.P. Radicular and nonradicular back pain in Parkinson’s disease: A controlled study. Mov. Disord. 2007, 22, 853–856. [Google Scholar] [CrossRef]
- Chauviere, L. Update on temporal lobe-dependent information processing, in health and disease. Eur. J. Neurosci. 2020, 51, 2159–2204. [Google Scholar] [CrossRef] [PubMed]
- Niddam, D.M.; Chan, R.C.; Lee, S.H.; Yeh, T.C.; Hsieh, J.C. Central representation of hyperalgesia from myofascial trigger point. Neuroimage 2008, 39, 1299–1306. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Oathes, D.; Hush, J.; Darnall, B.; Charvat, M.; Mackey, S.; Etkin, A. Perturbed connectivity of the amygdala and its subregions with the central executive and default mode networks in chronic pain. Pain 2016, 157, 1970–1978. [Google Scholar] [CrossRef] [PubMed]
- Ayoub, L.J.; Barnett, A.; Leboucher, A.; Golosky, M.; McAndrews, M.P.; Seminowicz, D.A.; Moayedi, M. The medial temporal lobe in nociception: A meta-analytic and functional connectivity study. Pain 2019, 160, 1245–1260. [Google Scholar] [CrossRef]
- Beiske, A.G.; Loge, J.H.; Ronningen, A.; Svensson, E. Pain in Parkinson’s disease: Prevalence and characteristics. Pain 2009, 141, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Rana, A.Q.; Qureshi, A.R.M.; Rahman, N.; Mohammed, A.; Sarfraz, Z.; Rana, R. Disability from pain directly correlated with depression in Parkinson’s disease. Clin. Neurol. Neurosurg. 2017, 160, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Brakowski, J.; Spinelli, S.; Dorig, N.; Bosch, O.G.; Manoliu, A.; Holtforth, M.G.; Seifritz, E. Resting state brain network function in major depression—Depression symptomatology, antidepressant treatment effects, future research. J. Psychiatr. Res. 2017, 92, 147–159. [Google Scholar] [CrossRef]
- Gao, L.L.; Wu, T. The study of brain functional connectivity in Parkinson’s disease. Transl. Neurodegener. 2016, 5, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franke, C.; Storch, A. Nonmotor Fluctuations in Parkinson’s Disease. Int. Rev. Neurobiol. 2017, 134, 947–971. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, A.A.; Kupsch, A.; Schneider, G.H.; Brown, P. Reduction in subthalamic 8-35 Hz oscillatory activity correlates with clinical improvement in Parkinson’s disease. Eur. J. Neurosci. 2006, 23, 1956–1960. [Google Scholar] [CrossRef] [PubMed]
PD | PD with Pain | PD without Pain | p Value | |
---|---|---|---|---|
Number | 24 | 12 | 12 | |
Age | 72.29 ± 8.70 | 72.58 ± 10.80 | 72.0 ± 6.42 | 0.87 |
Sex | 14 Male/10 Female | 7 Male/5 Female | 7 Male/5 Female | 1.00 |
Disease Duration, years | 7.25 ± 4.40 | 8.08 ± 5.28 | 6.5 ± 3.66 | 0.40 |
Pain Duration, years | 4.0 ± 2.61 | NA | NA | |
H–Y stages | ||||
H–Y II | 7 (29.2%) | 3 (25.0%) | 4 (33.3%) | 0.69 |
H–Y III | 9 (37.5%) | 4 (33.3%) | 5 (41.7%) | |
H–Y IV | 8 (33.3%) | 5 (41.7%) | 3 (25.0%) | |
LEDD, mg | 598.86 ± 364.99 | 621.60 ± 368.89 | 576.13 ± 375.96 | 0.77 |
L-dopa | 23 (95.8%) | 12 (100%) | 11 (91.7%) | 0.31 |
D-Agonist | 12 (50%) | 7 (58.3%) | 5 (41.7%) | 0.41 |
MAOBI | 3 (16.7%) | 1 (8.3%) | 2 (16.7%) | 0.54 |
MDS-UPDRS | ||||
Total | 61.13 ± 27.92 | 71.25 ± 34.21 | 51.0 ± 15.4 | 0.075 |
Part I | 12.92 ± 6.95 | 13.92 ± 8.17 | 11.92 ± 5.66 | 0.49 |
Pain and other sensations score | ||||
1 (Slight) | 1 (8.3%) | NA | NA | |
2 (Mild) | 8 (55.7%) | NA | NA | |
3 (Moderate) | 2 (16.7%) | NA | NA | |
4 (Severe) | 1 (8.3%) | NA | NA | |
Part II | 16.13 ± 9.76 | 19.58 ± 11.57 | 12.67 ± 6.27 | 0.082 |
Part III | 26.83 ± 13.00 | 31.58 ± 15.22 | 22.08 ± 8.5 | 0.072 |
Part IV | 5.25 ± 3.71 | 6.17 ± 4.09 | 4.33 ± 3.20 | 0.23 |
MMSE score | 24.58 ± 4.14 | 25.0 ± 3.95 | 24.17 ± 4.45 | 0.63 |
FAB score | 12.96 ± 2.56 | 13.08 ± 3.06 | 12.83 ± 2.08 | 0.82 |
PD with Pain | PD without Pain | p Value | |
---|---|---|---|
Whole brain | 0.46 ± 0.12 | 0.42 ± 0.07 | 0.39 |
FF | 0.63 ± 0.11 | 0.59 ± 0.08 | 0.40 |
FP | 0.45 ± 0.15 | 0.42 ± 0.07 | 0.49 |
FT | 0.37 ± 0.12 | 0.32 ± 0.07 | 0.16 |
FO | 0.31 ± 0.13 | 0.27 ± 0.12 | 0.35 |
PP | 0.58 ± 0.13 | 0.58 ± 0.08 | 0.96 |
PT | 0.46 ± 0.12 | 0.45 ± 0.08 | 0.77 |
PO | 0.52 ± 0.11 | 0.52 ± 0.11 | 0.91 |
TT | 0.44 ± 0.10 | 0.35 ± 0.08 | <0.05 |
TO | 0.44 ± 0.11 | 0.44 ± 0.11 | 0.92 |
OO | 0.64 ± 0.10 | 0.60 ± 0.10 | 0.35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kinugawa, K.; Mano, T.; Sugie, K. Neuronal Dynamics of Pain in Parkinson’s Disease. Brain Sci. 2021, 11, 1224. https://doi.org/10.3390/brainsci11091224
Kinugawa K, Mano T, Sugie K. Neuronal Dynamics of Pain in Parkinson’s Disease. Brain Sciences. 2021; 11(9):1224. https://doi.org/10.3390/brainsci11091224
Chicago/Turabian StyleKinugawa, Kaoru, Tomoo Mano, and Kazuma Sugie. 2021. "Neuronal Dynamics of Pain in Parkinson’s Disease" Brain Sciences 11, no. 9: 1224. https://doi.org/10.3390/brainsci11091224
APA StyleKinugawa, K., Mano, T., & Sugie, K. (2021). Neuronal Dynamics of Pain in Parkinson’s Disease. Brain Sciences, 11(9), 1224. https://doi.org/10.3390/brainsci11091224