Olfaction-Related Factors Affecting Chemosensory Dream Content in a Sleep Laboratory
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Questionnaires
2.2.1. Health- and Sleep-Related Screening Inventory
2.2.2. Questionnaire of Olfactory Disorders—Negative Statements
2.2.3. Beck Depression Inventory II
2.2.4. Odor Awareness Scale
2.2.5. Dream Inventory
2.2.6. Olfactory Assessment
2.3. Olfactory Stimulation
2.3.1. Olfactory Stimuli
2.3.2. Odour Presentation
2.4. Video-Polysomnography
2.5. Procedure
2.6. Statistical Analysis
2.7. Data Availability
3. Results
3.1. Descriptive and Exploratory Statistics
3.1.1. Ratings of Olfactory Stimuli
3.1.2. Variations between Randomisation Groups
3.2. Occurrence of Chemosensory Content in Sleep Mentation and Contributing Factors
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kryger, M.H.; Roth, T.; Dement, W.C. Principles and Practice of Sleep Medicine, 5th ed.; Saunders/Elsevier: Philadelphia, PA, USA, 2011. [Google Scholar]
- Fagioli, I. Mental activity during sleep. Sleep Med. Rev. 2002, 6, 307–320. [Google Scholar] [CrossRef]
- Aserinsky, E.; Kleitman, N. Regularly occurring periods of eye motility, and concomitant phenomena, during sleep. Science 1953, 118, 273–274. [Google Scholar] [CrossRef] [Green Version]
- Cipolli, C.; Ferrara, M.; de Gennaro, L.; Plazzi, G. Beyond the neuropsychology of dreaming: Insights into the neural basis of dreaming with new techniques of sleep recording and analysis. Sleep Med. Rev. 2017, 35, 8–20. [Google Scholar] [CrossRef]
- Hobson, J.A.; Pace-Schott, E.F.; Stickgold, R. Dreaming and the brain: Toward a cognitive neuroscience of conscious states. Behav. Brain Sci. 2000, 23, 793–842. [Google Scholar] [CrossRef]
- Foulkes, D. Nonrapid eye movement mentation. Exp. Neurol. 1967, 19, 28–38. [Google Scholar] [CrossRef]
- Solms, M. Dreaming and REM sleep are controlled by different brain mechanisms. Behav. Brain Sci. 2000, 23, 843–850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McNamara, P.; Johnson, P.; McLaren, D.; Harris, E.; Beauharnais, C.; Auerbach, S. REM and NREM sleep mentation. In International Review of Neurobiology. Dreams and Dreaming; Clow, A., McNamara, P., Eds.; Academic Press: New York, NY, USA, 2010; Volume 92, pp. 69–86. [Google Scholar]
- Foulkes, D. Dream reports from different stages of sleep. J. Abnorm. Psychol. 1962, 65, 14–25. [Google Scholar] [CrossRef] [PubMed]
- Wittmann, L.; Palmy, C.; Schredl, M. NREM sleep dream recall, dream report length and cortical activation. Sleep Hypn. 2004, 6, 43–47. [Google Scholar]
- Kahan, T.L.; Claudatos, S. Phenomenological features of dreams: Results from dream log studies using the Subjective Experiences Rating Scale (SERS). Conscious. Cogn. 2016, 41, 159–176. [Google Scholar] [CrossRef] [PubMed]
- Kahan, T.L.; LaBerge, S.P. Dreaming and waking: Similarities and differences revisited. Conscious. Cogn. 2011, 20, 494–514. [Google Scholar] [CrossRef]
- Strauch, L.; Meier, B.; Foulkes, D. In Search of Dreams: Results of Experimental Dream Research; State University of New York Press: Albany, NY, USA, 1996. [Google Scholar]
- Aspy, D.J.; Delfabbro, P.; Proeve, M. Is dream recall underestimated by retrospective measures and enhanced by keeping a logbook? A review. Conscious. Cogn. 2015, 33, 364–374. [Google Scholar] [CrossRef]
- McCormick, L.; Nielsen, T.; Ptito, M.; Hassainia, F.; Ptito, A.; Villemure, J.G.; Vera, C.; Montplaisir, J. REM sleep dream mentation in right hemispherectomized patients. Neuropsychologia 1997, 35, 695–701. [Google Scholar] [CrossRef]
- Okabe, S.; Fukuda, K.; Mochizuki-Kawai, H.; Yamada, K. Favorite odor induces negative dream emotion during rapid eye movement sleep. Sleep Med. 2018, 47, 72–76. [Google Scholar] [CrossRef]
- Okabe, S.; Hayashi, M.; Abe, T.; Fukuda, K. Presentation of familiar odor induces negative dream emotions during rapid eye movement (REM) sleep in healthy adolescents. Sleep Med. 2020, 66, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Schredl, M.; Atanasova, D.; Hoermann, K.; Maurer, J.T.; Hummel, T.; Stuck, B.A. Information processing during sleep: The effect of olfactory stimuli on dream content and dream emotions. J. Sleep Res. 2009, 18, 285–290. [Google Scholar] [CrossRef]
- Schredl, M.; Hoffmann, L.; Sommer, J.U.; Stuck, B.A. Olfactory stimulation during sleep can reactivate odor-associated images. Chemosens. Percept. 2014, 7, 140–146. [Google Scholar] [CrossRef]
- Solms, M. Nine patients with recurring nightmares. In The Neuropsychology of Dreams: A Clinico-Anatomical Study; Psychology Press: London, UK, 2014; pp. 202–209. [Google Scholar]
- Solms, M. Other abnormalities of dreaming described in the literature. In The Neuropsychology of Dreams: A Clinico-Anatomical Study; Psychology Press: London, UK, 2014; pp. 58–70. [Google Scholar]
- Giani, L.; Casazza, R.; Mariani, C.; Lovati, C. Sensory modalities during dreams in migraine: Case-control study using a daily questionnaire. Dreaming 2017, 27, 260–268. [Google Scholar] [CrossRef]
- Lovati, C.; DeAngeli, F.; D’Amico, D.; Giani, L.; D’Alessandro, C.M.; Zardoni, M.; Scaglione, V.; Castoldi, D.; Capiluppi, E.; Curone, M.; et al. Is the brain of migraineurs “different” even in dreams? Neurol. Sci. 2014, 35, 167–169. [Google Scholar] [CrossRef] [PubMed]
- Epstein, A.W. Effect of certain cerebral hemispheric diseases on dreaming. Biol. Psychiatry 1979, 14, 77–93. [Google Scholar]
- Epstein, A.W.; Freeman, N.R. The uncinate focus and dreaming. Epilepsia 1981, 22, 603–605. [Google Scholar] [CrossRef] [PubMed]
- Mehta, K.; Vankar, G.; Patel, V. Validity of the construct of post-traumatic stress disorder in a low-income country—Interview study of women in Gujarat, India. Br. J. Psychiatry 2005, 187, 585–586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Saint-Denys, L.H. Dreams and How to Guide Them; Gerald Duckworth: London, UK, 1867. [Google Scholar]
- Schäfer, L.; Schellong, J.; Hähner, A.; Weidner, K.; Hüttenbrink, K.-B.; Trautmann, S.; Hummel, T.; Croy, I. Nocturnal olfactory stimulation for improvement of sleep quality in patients with posttraumatic stress disorder: A randomized exploratory intervention trial. J. Trauma. Stress 2019, 32, 130–140. [Google Scholar] [CrossRef] [PubMed]
- Ackerley, R.; Croy, I.; Olausson, H.; Badre, G. Investigating the putative impact of odors purported to have beneficial effects on sleep: Neural and perceptual processes. Chemosens. Percept. 2019. [Google Scholar] [CrossRef] [Green Version]
- Cometto-Muñiz, J.E.; Cain, W.S. Olfactory adaptation. In Handbook of Olfaction and Gustation, 1st ed.; Doty, R.L., Ed.; Marcel Dekker: New York, NY, USA, 1995; pp. 257–281. [Google Scholar]
- Johnson, A.J. Cognitive facilitation following intentional odor exposure. Sensors 2011, 11, 5469–5488. [Google Scholar] [CrossRef] [Green Version]
- Jellinek, J.S. Psychodynamic odor effects and their mechanisms: Failure to identify the mechanism can lead to faulty conclusions in odor studies. Cosmet. Toilet. 1997, 112, 61–72. [Google Scholar]
- Knasko, S.C.; Gilbert, A.N.; Sabini, J. Emotional state, physical well-being, and performance in the presence of feigned ambient odor. J. Appl. Soc. Psychol. 1990, 20, 1345–1357. [Google Scholar] [CrossRef]
- Hudson, R.; Distel, H. The individuality of odor perception. In Olfaction, Taste and Cognition; Rouby, C., Schaal, B., Dubois, D., Gervais, R., Holley, A., Eds.; Cambridge University Press: Cambridge, UK, 2002; pp. 408–420. [Google Scholar]
- De Araujo, I.E.; Rolls, E.T.; Velazco, M.I.; Margot, C.; Cayeux, I. Cognitive modulation of olfactory processing. Neuron 2005, 46, 671–679. [Google Scholar] [CrossRef] [Green Version]
- Pacharra, M.; Schaper, M.; Kleinbeck, S.; Blaszkewicz, M.; van Thriel, C. Olfactory acuity and automatic associations to odor words modulate adverse effects of ammonia. Chemosens. Percept. 2016, 9, 27–36. [Google Scholar] [CrossRef]
- Österberg, K.; Ørbæk, P.; Karlson, B.; Åkesson, B.; Bergendorf, U. Annoyance and performance during the experimental chemical challenge of subjects with multiple chemical sensitivity. Scand. J. Work. Environ. Health 2003, 29, 40–50. [Google Scholar] [CrossRef] [Green Version]
- Österberg, K.; Persson, R.; Karlson, B.; Eek, F.C.; Ørbæk, P. Personality, mental distress, and subjective health complaints among persons with environmental annoyance. Hum. Exp. Toxicol. 2007, 26, 231–241. [Google Scholar] [CrossRef]
- Österberg, K.; Persson, R.; Karlson, B.; Orbaek, P. Annoyance and performance of three environmentally intolerant groups during experimental challenge with chemical odors. Scand. J. Work Environ. Health 2004, 30, 486–496. [Google Scholar] [CrossRef]
- Stevenson, R.J.; Case, T.I. Olfactory dreams: Phenomenology, relationship to volitional imagery and odor identification. Imagin. Cogn. Personal. 2004, 24, 69–90. [Google Scholar] [CrossRef]
- Weitz, H.; Croy, I.; Seo, H.S.; Negoias, S.; Hummel, T. Studies on olfactory dreaming. Chemosens. Percept. 2010, 3, 129–134. [Google Scholar] [CrossRef]
- Smeets, M.A.M.; Schifferstein, H.N.J.; Boelema, S.R.; Lensvelt-Mulders, G. The Odor Awareness Scale: A new scale for measuring positive and negative odor awareness. Chem. Senses 2008, 33, 725–734. [Google Scholar] [CrossRef] [Green Version]
- Arshamian, A.; Willander, J.; Larsson, M. Olfactory awareness is positively associated to odour memory. J. Cogn. Psychol. 2011, 23, 220–226. [Google Scholar] [CrossRef]
- Doty, R.L. Clinical disorders of olfaction. In Handbook of Olfaction and Gustation, 3rd ed.; Doty, R.L., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2015; pp. 375–401. [Google Scholar]
- Jones, S.; Benca, R.M. Psychiatric disorders associated with circadian rhythm disturbances. In Sleep: A Comprehensive Handbook; Lee-Chiong, T., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006; pp. 409–414. [Google Scholar]
- Gourineni, R.; Zee, P.C. Neurological and medical disorders associated with circadian rhythm disturbances. In Sleep: A Comprehensive Handbook; Lee-Chiong, T., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006; pp. 401–407. [Google Scholar]
- Neuland, C.; Bitter, T.; Marschner, H.; Gudziol, H.; Guntinas-Lichius, O. Health-related and specific olfaction-related quality of life in patients with chronic functional anosmia or severe hyposmia. Laryngoscope 2011, 121, 867–872. [Google Scholar] [CrossRef] [PubMed]
- Frasnelli, J.; Hummel, T. Olfactory dysfunction and daily life. Eur. Arch. Otorhinolaryngol. 2005, 262, 231–235. [Google Scholar] [CrossRef] [PubMed]
- Preiss, M.; Vacíř, K. BDI-II. Beckova sebeposuzovací škála pro dospělé; Psychodiagnostika: Brno, Czech Republic, 1999. [Google Scholar]
- Husten, C.G. How should we define light or intermittent smoking? Does it matter? Nicotine Tob. Res. 2009, 11, 111–121. [Google Scholar] [CrossRef]
- Dufour, M.C. What is moderate drinking? Defining “drinks” and drinking levels. Alcohol Res. Health 1999, 23, 5–14. [Google Scholar]
- Mattos, J.L.; Schlosser, R.J.; Storck, K.A.; Soler, Z.M. Understanding the relationship between olfactory-specific quality of life, objective olfactory loss, and patient factors in chronic rhinosinusitis. Int. Forum Allergy Rhinol. 2017, 7, 734–740. [Google Scholar] [CrossRef]
- Beck, A.T.; Steer, R.A.; Brown, G.K. Manual for the Beck Depression Inventory-II; Psychological Corp.: San Antonio, TX, USA, 1996. [Google Scholar]
- Smarr, K.L.; Keefer, A.L. Measures of depression and depressive symptoms: Beck Depression Inventory-II (BDI-II), Center for Epidemiologic Studies Depression Scale (CES-D), Geriatric Depression Scale (GDS), Hospital Anxiety and Depression Scale (HADS), and Patient Health Questionnaire-9 (PHQ-9). Arthritis Care Res. 2011, 63, S454–S466. [Google Scholar] [CrossRef]
- Simopoulos, E.; Katotomichelakis, M.; Gouveris, H.; Tripsianis, G.; Livaditis, M.; Danielides, V. Olfaction-associated quality of life in chronic rhinosinusitis: Adaptation and validation of an olfaction-specific questionnaire. Laryngoscope 2012, 122, 1450–1454. [Google Scholar] [CrossRef]
- Nováková, L.; Valentova, J.V.; Havlíček, J. Engagement in olfaction-related activities is associated with the ability of odor identification and odor awareness. Chemosens. Percept. 2014, 7, 56–67. [Google Scholar] [CrossRef]
- Martinec Nováková, L.; Fialová, J.; Havlíček, J. Effects of diversity in olfactory environment on children’s sense of smell. Sci. Rep. 2018, 8, 2937. [Google Scholar] [CrossRef] [Green Version]
- Martinec Nováková, L.; Miletínová, E.; Kliková, M.; Bušková, J. Effects of all-night exposure to ambient odour on dreams and affective state upon waking. Physiol. Behav. 2021, 230, 113265. [Google Scholar] [CrossRef] [PubMed]
- Doty, R.L.; Shaman, P.; Applebaum, S.L.; Giberson, R.; Siksorski, L.; Rosenberg, L. Smell identification ability: Changes with age. Science 1984, 226, 1441–1443. [Google Scholar] [CrossRef]
- Doty, R.L.; Shaman, P.; Dann, M. Development of the University of Pennsylvania smell identification test: A standardized microencapsulated test of olfactory function. Physiol. Behav. 1984, 32, 489–502. [Google Scholar] [CrossRef]
- Doty, R.L.; McKeown, D.A.; Lee, W.W.; Shaman, P. A study of the test-retest reliability of ten olfactory tests. Chem. Senses 1995, 20, 645–656. [Google Scholar] [CrossRef] [PubMed]
- Stevens, J.C.; Cain, W.S.; Burke, R.J. Variability of olfactory thresholds. Chem. Senses 1988, 13, 643–653. [Google Scholar] [CrossRef]
- Mazzatenta, A.; Cellerino, A.; Origlia, N.; Barloscio, D.; Sartucci, F.; Di Giulio, C.; Domenici, L. Olfactory phenotypic expression unveils human aging. Oncotarget 2016, 7, 19193–19200. [Google Scholar] [CrossRef] [Green Version]
- Arctander, S. Perfume and Flavor Chemicals: Aroma Chemicals; The Author: Montclair, NJ, USA, 1969. [Google Scholar]
- Dravnieks, A. Atlas of Odor Character Profiles; American Society for Testing and Materials: Philadelphia, PA, USA, 1985. [Google Scholar]
- Doty, R.L.; Brugger, W.E.; Jurs, P.C.; Orndorff, M.A.; Snyder, P.I.; Lowry, L.D. Intranasal trigeminal stimulation from odorous volatiles: Psychometric responses from anosmic and normal humans. Physiol. Behav. 1978, 20, 175–185. [Google Scholar] [CrossRef]
- Billot, P.-E.; Andrieu, P.; Biondi, A.; Vieillard, S.; Moulin, T.; Millot, J.-L. Cerebral bases of emotion regulation toward odours: A first approach. Behav. Brain Res. 2017, 317, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Berry, R.B.; Brooks, R.; Gamaldo, C.E.; Harding, S.M.; Lloyd, R.M.; Quan, S.F.; Troester, M.M.; Vaughn, B.V. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications. Version 2.4; American Academy of Sleep Medicine: Darien, IL, USA, 2017. [Google Scholar]
- IBM Corporation. IBM SPSS Statistics for Windows, 24; IBM Corp.: Armonk, NY, USA, 2016. [Google Scholar]
- SAS. SAS University Edition; SAS Institute Inc.: Cary, NC, USA, 2017. [Google Scholar]
- Fagerland, M.W.; Lydersen, S.; Laake, P. The McNemar test for binary matched-pairs data: Mid-p and asymptotic are better than exact conditional. BMC Med. Res. Methodol. 2013, 13, 91. [Google Scholar] [CrossRef] [Green Version]
- Dean, A.G.; Sullivan, K.M.; Soe, M.M. OpenEpi: Open Source Epidemiologic Statistics for Public Health. Available online: https://www.openepi.com (accessed on 3 May 2020).
- Freeman, G.H.; Halton, J.H. Note on an exact treatment of contingency, goodness of fit and other problems of significance. Biometrika 1951, 38, 141–149. [Google Scholar] [CrossRef]
- Rosenthal, R. Meta-Analytical Procedures for Social Research; Sage: London, UK, 1991. [Google Scholar]
- Liang, K.-Y.; Zeger, S.L. Longitudinal data analysis using generalized linear models. Biometrika 1986, 73, 13–22. [Google Scholar] [CrossRef]
- Zeger, S.L.; Liang, K.-Y. Longitudinal data analysis for discrete and continuous outcomes. Biometrics 1986, 42, 121–130. [Google Scholar] [CrossRef] [Green Version]
- Ramezani, N. Analyzing non-normal binomial and categorical response variables under varying data conditions. In Proceedings of the SAS Global Forum Conference, Las Vegas, NV, USA, 18–21 April 2016. [Google Scholar]
- Agresti, A. Categorical Data Analysis, 2nd ed.; John Wiley & Sons Inc.: New York, NY, USA, 2002. [Google Scholar]
- Pan, W. Akaike’s Information Criterion in Generalized Estimating Equations. Biometrics 2001, 57, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Hanley, J.A.; Negassa, A.; Forrester, J.E. Statistical analysis of correlated data using generalized estimating equations: An orientation. Am. J. Epidemiol. 2003, 157, 364–375. [Google Scholar] [CrossRef]
- Zheng, B. Summarizing the goodness of fit of generalized linear models for longitudinal data. Stat. Med. 2000, 19, 1265–1275. [Google Scholar] [CrossRef]
- Tan, T.K.; Kang, T.; Hogan, D. Using GEE to model student’s satisfaction: A SAS macro approach. In Proceedings of the SAS Global Forum 2009, Washington, DC, USA, 22–25 March 2009; pp. 1–12. [Google Scholar]
- Firth, D. Bias reduction of Maximum Likelihood Estimates. Biometrika 1993, 80, 27–38. [Google Scholar] [CrossRef]
- Borenstein, M.; Hedges, L.V.; Higgins, J.P.; Rothstein, H.R. Converting among effect sizes. In Introduction to Meta-Analysis; Borenstein, M., Hedges, L.V., Higgins, J.P., Rothstein, H.R., Eds.; John Wiley & Sons: Chichester, UK, 2009. [Google Scholar]
- Ferguson, C.J. An effect size primer: A Guide for clinicians and researchers. Prof. Psychol.—Res. Pract. 2009, 40, 532–538. [Google Scholar] [CrossRef] [Green Version]
- Lorig, T.S.; Huffman, E.; DeMartino, A.; DeMarco, J. The effects of low concentration odors on EEG activity and behavior. J. Psychophysiol. 1991, 5, 69–77. [Google Scholar]
- Kuroda, K.; Inoue, N.; Ito, Y.; Kubota, K.; Sugimoto, A.; Kakuda, T.; Fushiki, T. Sedative effects of the jasmine tea odor and (R)-(-)-linalool, one of its major odor components, on autonomic nerve activity and mood states. Eur. J. Appl. Physiol. 2005, 95, 107–114. [Google Scholar] [CrossRef]
- Howard, S.; Hughes, B.M. Expectancies, not aroma, explain impact of lavender aromatherapy on psychophysiological indices of relaxation in young healthy women. Br. J. Health Psychol. 2008, 13, 603–617. [Google Scholar] [CrossRef] [Green Version]
- Pellegrino, R.; Sinding, C.; de Wijk, R.A.; Hummel, T. Habituation and adaptation to odors in humans. Physiol. Behav. 2017, 177, 13–19. [Google Scholar] [CrossRef]
- Sinding, C.; Valadier, F.; Al-Hassani, V.; Feron, G.; Tromelin, A.; Kontaris, I.; Hummel, T. New determinants of olfactory habituation. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wrzesniewski, A.; McCauley, C.; Rozin, P. Odor and affect: Individual differences in the impact of odor on liking for places, things and people. Chem. Senses 1999, 24, 713–721. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J.E. Statistical Power Analysis for the Behavioral Sciences; Lawrence Erlbaum Associates, Inc.: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Homewood, J.; Stevenson, R.J. Differences in naming accuracy of odors presented to the left and right nostrils. Biol. Psychol. 2001, 58, 65–73. [Google Scholar] [CrossRef]
- Hummel, T.; Sekinger, B.; Wolf, S.R.; Pauli, E.; Kobal, G. ‘Sniffin’ Sticks’: Olfactory performance assessed by the combined testing of odor identification, odor discrimination and olfactory threshold. Chem. Senses 1997, 22, 39–52. [Google Scholar] [CrossRef] [PubMed]
- Wayne, G.G.; Clinco, A.A. Psychoanalytic observations on olfaction with special reference to olfactory dreams. Psychoanal. Rev. 1959, 46, 64–74. [Google Scholar]
- Ohayon, M.M. Prevalence of hallucinations and their pathological associations in the general population. Psychiatry Res. 2000, 97, 153–164. [Google Scholar] [CrossRef]
- Lewandowski, K.E.; DePaola, J.; Camsari, G.B.; Cohen, B.M.; Ongur, D. Tactile, olfactory, and gustatory hallucinations in psychotic disorders: A descriptive study. Ann. Acad. Med. Singap. 2009, 38, 383–387. [Google Scholar] [PubMed]
- Xue, X.; Kim, M.Y.; Wang, T.; Kuniholm, M.H.; Strickler, H.D. A statistical method for studying correlated rare events and their risk factors. Stat. Methods Med. Res. 2017, 26, 1416–1428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lipsitz, S.R.; Fitzmaurice, G.M.; Orav, E.J.; Laird, N.M. Performance of Generalized Estimating Equations in practical situations. Biometrics 1994, 50, 270–278. [Google Scholar] [CrossRef]
Men (n = 37) | Women (n = 23) | Total (n = 60) | Gender Difference | ||||
---|---|---|---|---|---|---|---|
U | p | χ2(df) | p | ||||
Age | 23.43 ± 4.24 | 23.43 ± 3.06 | 23.43 ± 3.80 | 387.0 | 0.556 | ||
Education | 3.21(2) | 0.201 * | |||||
Elementary | 1 (2.7%) | 0 | 1 (1.7%) | ||||
Secondary | 25 (67.6%) | 11 (47.8%) | 36 (60%) | ||||
Bachelor’s Degree | 4 (10.8%) | 6 (26.1%) | 10 (16.7%) | ||||
Master’s Degree | 7 (18.9%) | 6 (26.1%) | 13 (21.7%) | ||||
Beck Depression Inventory-II | 3.92 ± 3.51 (0–11) | 3.57 ± 3.16 (0–13) | 3.78 ± 3.36 (0–13) | 440.5 | 0.818 | ||
Odor Awareness Scale | 104.12 ± 14.59 (63–127) | 113.30 ± 15.32 (83–143) | 107.82 ± 15.43 (63–143) | 275.5 | 0.060 | ||
Odour identification | 31.09 ± 4.11 (21–40) | 31.30 ± 2.87 (25–37) | 31.17 ± 3.64 (21–40) | 396.5 | 0.924 | ||
Alcohol (units/month) | |||||||
Low-alcoholic drinks | 7.15 ± 6.06 (0–22) | 4.39 ± 3.53 (0–16) | 6.09 ± 5.38 (0–22) | 536.5 | 0.091 | ||
Liquor | 1.92 ± 2.25 (0–10) | 1.15 ± 1.95 (0–8) | 1.63 ± 2.16 (0–10) | 525.0 | 0.111 | ||
Stimulants (units/month) | |||||||
Coffee | 17.92 ± 25.35 (0–90) | 16.74 ± 22.00 (0–60) | 17.47 ± 23.94 (0–90) | 400.0 | 0.695 | ||
Tea | 41.32 ± 46.11 (0–240) | 61.57 ± 60.69 (0–240) | 49.08 ± 52.62 (0–240) | 334.5 | 0.164 | ||
Energy drinks | 1.32 ± 3.82 (0–20) | 0.15 ± 0.46 (0–2) | 0.88 ± 3.05 (0–20) | 504.0 | 0.107 | ||
Cigarettes | 5.08 ± 16.20 (0–90) | 0.57 ± 2.50 (0–12) | 3.35 ± 12.93 (0–90) | 495.5 | 0.115 | ||
Time of going to bed on weekdays | 0.01(1) | 0.920 | |||||
Before midnight | 23 (62.16%) | 14 (60.87%) | 37 (61.67%) | ||||
At midnight or later | 14 (37.84%) | 9 (39.13%) | 23 (38.33%) | ||||
Sleep duration (hours) | |||||||
Weekdays | 7.33 ± 0.79 (6–9) | 7.23 ± 0.70 (6–9) | 7.30 ± 0.75 (6–9) | 440.5 | 0.671 | ||
Weekends | 8.97 ± 0.91 (8–12) | 8.75 ± 0.77 (7–10) | 8.87 ± 0.86 (7–12) | 459.0 | 0.461 | ||
Dream recall | 0.12(1) | 0.729 | |||||
Once a week | 21 (56.76%) | 12 (52.17%) | 33 (55.00%) | ||||
More than once a week | 16 (43.24%) | 11 (47.83%) | 27 (45.00%) | ||||
Emotional intensity of dreams | 0.95(1) | 0.329 | |||||
Somewhat intense | 24 (64.86%) | 12 (52.17%) | 36 (60.00%) | ||||
Quite or very intense | 13 (35.14%) | 11 (47.83%) | 24 (40.00%) |
O1 | C1 | O2 | C2 | O1 vs. C1 | O2 vs. C2 | O1 vs. O2 | C1 vs. C2 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
p | OR [95% CI] | n | p | OR [95% CI] | n | p | OR [95% CI] | n | p | OR [95% CI] | n | |||||
MSE recall | 50/60 (83.3%) | 49/60 (81.7%) | 44/60 (77.2%) | 43/60 (71.7%) | >0.900 | 1 [0.34, 2.98] | 59 | 0.815 | 1.13 [0.42, 3.04] | 55 | 0.302 | 1.8 [0.60, 5.93] | 57 | 0.144 | 2.2 [0.78, 7.03] | 57 |
Smell content | 3/48 (6.3%) | 3/47 (6.4%) | 4/42 (9.5%) | 2/41 (4.9%) | 0.625 | 0.5 [0.02, 6.57] | 40 | 0.625 | 2 [0.15, 58.99] | 31 | >0.900 | 1 [0.10, 9.61] | 37 | N/A | N/A | 35 |
Taste content | 6/48 (12.5%) | 3/47 (6.4%) | 4/42 (9.5%) | 4/41 (9.8%) | N/A | N/A | 40 | 0.688 | 0.67 [0.08, 4.48] | 31 | 0.219 | 4 [0.50, 98.98] | 37 | 0.625 | 0.5 [0.02, 6.57] | 35 |
Sleep stage | 0.727 | 1.33 [0.28, 7.15] | 51 | 0.701 | 0.86 [0.39, 1.87] | 57 | <0.001 | 31 [5.92, 638.8] | 53 | <0.001 | 6.8 [2.82, 19.61] | 58 | ||||
N1 | 0 | 1/58 (1.7%) | 2/58 (3.4%) | 1/59 (1.7%) | ||||||||||||
N2 | 5/53 (9.4%) | 5/58 (8.6%) | 32/58 (55.2%) | 32/59 (54.2%) | ||||||||||||
N3 | 0 | 0 | 3/58 (5.2%) | 2/59 (3.4%) | ||||||||||||
REM | 48/53 (90.6%) | 52/58 (89.7%) | 21/58 (36.2%) | 24/59 (40.7%) | ||||||||||||
Belief about odour | 28/58 (48.3%) | 13/56 (23.2%) | 18/57 (31.6%) | 11/58 (19%) | <0.001 | 14 [2.48, 298.9] | 54 | 0.049 | 3 [1.00, 10.78] | 55 | 0.011 | 9 [1.48, 198.9] | 55 | 0.545 | 1.5 [0.41, 6.03] | 55 |
OR | 95% CL | χ2 | p | |
---|---|---|---|---|
Condition | 1.86 | [0.69; 5.00] | 1.50 | 0.22 |
Participants’ assessment | 1.67 | [0.61; 4.56] | 1.01 | 0.31 |
Odour awareness | 1.05 | [1.02; 1.08] | 13.38 | <0.001 |
Odour identification | 0.91 | [0.78; 1.06] | 1.55 | 0.21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinec Nováková, L.; Kliková, M.; Miletínová, E.; Bušková, J. Olfaction-Related Factors Affecting Chemosensory Dream Content in a Sleep Laboratory. Brain Sci. 2021, 11, 1225. https://doi.org/10.3390/brainsci11091225
Martinec Nováková L, Kliková M, Miletínová E, Bušková J. Olfaction-Related Factors Affecting Chemosensory Dream Content in a Sleep Laboratory. Brain Sciences. 2021; 11(9):1225. https://doi.org/10.3390/brainsci11091225
Chicago/Turabian StyleMartinec Nováková, Lenka, Monika Kliková, Eva Miletínová, and Jitka Bušková. 2021. "Olfaction-Related Factors Affecting Chemosensory Dream Content in a Sleep Laboratory" Brain Sciences 11, no. 9: 1225. https://doi.org/10.3390/brainsci11091225
APA StyleMartinec Nováková, L., Kliková, M., Miletínová, E., & Bušková, J. (2021). Olfaction-Related Factors Affecting Chemosensory Dream Content in a Sleep Laboratory. Brain Sciences, 11(9), 1225. https://doi.org/10.3390/brainsci11091225