Altered Effective Connectivity within an Oculomotor Control Network in Unaffected Relatives of Individuals with Schizophrenia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment 1
2.1.1. Participants
2.1.2. Apparatus and Stimuli
2.1.3. Stop-Signal Task
2.1.4. Task Performance
2.1.5. Statistical Analyses
2.2. Experiment 2
2.2.1. Participants
2.2.2. Search-Step Task
2.2.3. Apparatus and Stimuli
Stimulus Display
Eye Tracking Data Analysis
2.2.4. Task Performance
2.2.5. Statistical Analyses
2.2.6. fMRI Data Acquisition and Analysis
Data Acquisition
Preprocessing
Statistical Analyses: First-Level General Linear Models
Statistical Analyses: Second-Level General Linear Models
Dynamic Causal Modeling
3. Results
3.1. Experiment 1
3.1.1. Behavioral Data
Probability of Stop-Signal Trial Inhibition
Speed of Response Execution
SSRT
3.2. Experiment 2
3.2.1. Behavioral Data
Percent Compensated
Speed of Response Execution
TSRT
3.2.2. fMRI Data
General Linear Modelling
Dynamic Causal Modeling
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Aron, A.R. From Reactive to Proactive and Selective Control: Developing a Richer Model for Stopping Inappropriate Responses. Biol. Psychiatry 2011, 69, e55–e68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braver, T.S. The variable nature of cognitive control: A dual mechanisms framework. Trends Cogn. Sci. 2012, 16, 106–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirabella, G. Inhibitory control and impulsive responses in neurodevelopmental disorders. Dev. Med. Child Neurol. 2020, 63, 520–526. [Google Scholar] [CrossRef] [PubMed]
- Lipszyc, J.; Schachar, R. Inhibitory control and psychopathology: A meta-analysis of studies using the stop signal task. J. Int. Neuropsychol. Soc. 2010, 16, 1064–1076. [Google Scholar] [CrossRef] [PubMed]
- Ethridge, L.E.; Soilleux, M.; Nakonezny, P.A.; Reilly, J.L.; Hill, S.K.; Keefe, R.S.; Gershon, E.S.; Pearlson, G.D.; Tamminga, C.A.; Keshavan, M.S.; et al. Behavioral response inhibition in psychotic disorders: Diagnostic specificity, familiality and relation to generalized cognitive deficit. Schizophr. Res. 2014, 159, 491–498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hill, S.K.; Reilly, J.L.; Harris, M.S.; Rosen, C.; Marvin, R.W.; DeLeon, O.; Sweeney, J.A. A comparison of neuropsychological dysfunction in first-episode psychosis patients with unipolar depression, bipolar disorder, and schizophrenia. Schizophr. Res. 2009, 113, 167–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hill, S.K.; Reilly, J.L.; Keefe, R.S.; Gold, J.M.; Bishop, J.R.; Gershon, E.S.; Tamminga, C.A.; Pearlson, G.D.; Keshavan, M.S.; Sweeney, J.A. Neuropsychological impairments in schizophrenia and psychotic bipolar disorder: Findings from the Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP) study. Am. J. Psychiatry 2013, 170, 1275–1284. [Google Scholar] [CrossRef] [Green Version]
- Harris, M.S.; Reilly, J.L.; Thase, M.E.; Keshavan, M.S.; Sweeney, J.A. Response suppression deficits in treatment-naive first-episode patients with schizophrenia, psychotic bipolar disorder and psychotic major depression. Psychiatry Res. 2009, 170, 150–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zandbelt, B.B.; van Buuren, M.; Kahn, R.S.; Vink, M. Reduced proactive inhibition in schizophrenia is related to corticostriatal dysfunction and poor working memory. Biol. Psychiatry 2011, 70, 1151–1158. [Google Scholar] [CrossRef]
- Thakkar, K.N.; Schall, J.D.; Logan, G.D.; Park, S. Cognitive control of gaze in bipolar disorder and schizophrenia. Psychiatry Res. 2015, 225, 254–262. [Google Scholar] [CrossRef] [Green Version]
- Chambers, C.D.; Garavan, H.; Bellgrove, M.A. Insights into the neural basis of response inhibition from cognitive and clinical neuroscience. Neurosci. Biobehav. Rev. 2009, 33, 631–646. [Google Scholar] [CrossRef]
- Patel, K.R.; Cherian, J.; Gohil, K.; Atkinson, D. Schizophrenia: Overview and treatment options. Pharm. Ther. 2014, 39, 638. [Google Scholar]
- Schultz, S.H.; North, S.W.; Shields, C.G. Schizophrenia: A review. Am. Fam. Physician 2007, 75, 1821–1829. [Google Scholar]
- González-Ortega, I.; Mozos, V.D.L.; Echeburúa, E.; Mezo, M.; Besga, A.; de Azúa, S.R.; González-Pinto, A.; Gutierrez, M.; Zorrilla, I.; González-Pinto, A.M. Working memory as a predictor of negative symptoms and functional outcome in first episode psychosis. Psychiatry Res. 2013, 206, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Bilder, R.; Goldman, R.S.; Robinson, D.; Reiter, G.; Bell, L.; Bates, J.A.; Pappadopulos, E.; Willson, D.F.; Alvir, J.M.J.; Woerner, M.G.; et al. Neuropsychology of First-Episode Schizophrenia: Initial Characterization and Clinical Correlates. Am. J. Psychiatry 2000, 157, 549–559. [Google Scholar] [CrossRef]
- Green, M.F.; Kern, R.S.; Braff, D.L.; Mintz, J. Neurocognitive deficits and functional outcome in schizophrenia: Are we measuring the “right stuff”? Schizophr. Bull. 2000, 26, 119–136. [Google Scholar] [CrossRef] [Green Version]
- Nuechterlein, K.H.; Barch, D.M.; Gold, J.M.; Goldberg, T.E.; Green, M.F.; Heaton, R.K. Identification of separable cognitive factors in schizophrenia. Schizophr. Res. 2004, 72, 29–39. [Google Scholar] [CrossRef]
- Barch, D.M.; Sheffield, J.M. Cognitive control in schizophrenia: Psychological and neural mechanisms. In The Wiley Handbook of Cognitive Control; Wiley Blackwell: Hoboken, NJ, USA, 2017; pp. 556–580. [Google Scholar]
- Shin, Y.S.; Kim, S.N.; Shin, N.Y.; Jung, W.H.; Hur, J.W.; Byun, M.S.; Jang, J.H.; An, S.K.; Kwon, J.S. Increased intra-individual variability of cognitive processing in subjects at risk mental state and schizophrenia patients. PLoS ONE 2013, 8, e78354. [Google Scholar] [CrossRef] [Green Version]
- Myles, J.B.; Rossell, S.L.; Phillipou, A.; Thomas, E.; Gurvich, C. Insights to the schizophrenia continuum: A systematic review of saccadic eye movements in schizotypy and biological relatives of schizophrenia patients. Neurosci. Biobehav. Rev. 2017, 72, 278–300. [Google Scholar] [CrossRef]
- Reilly, J.L.; Frankovich, K.; Hill, S.; Gershon, E.S.; Keefe, R.S.E.; Keshavan, M.S.; Pearlson, G.D.; Tamminga, C.A.; Sweeney, J.A. Elevated Antisaccade Error Rate as an Intermediate Phenotype for Psychosis Across Diagnostic Categories. Schizophr. Bull. 2014, 40, 1011–1021. [Google Scholar] [CrossRef] [Green Version]
- Radant, A.D.; Millard, S.P.; Braff, D.L.; Calkins, M.E.; Dobie, D.J.; Freedman, R.; Green, M.F.; Greenwood, T.; Gur, R.E.; Gur, R.C.; et al. Robust differences in antisaccade performance exist between COGS schizophrenia cases and controls regardless of recruitment strategies. Schizophr. Res. 2015, 163, 47–52. [Google Scholar] [CrossRef] [Green Version]
- Light, G.A.; Swerdlow, N.R.; Rissling, A.J.; Radant, A.; Sugar, C.A.; Sprock, J.; Pela, M.; Geyer, M.A.; Braff, D.L. Characterization of Neurophysiologic and Neurocognitive Biomarkers for Use in Genomic and Clinical Outcome Studies of Schizophrenia. PLoS ONE 2012, 7, e39434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radant, A.D.; Dobie, D.J.; Calkins, M.E.; Olincy, A.; Braff, D.L.; Cadenhead, K.S.; Freedman, R.; Green, M.F.; Greenwood, T.A.; Gur, R.E.; et al. Antisaccade performance in schizophrenia patients, their first-degree biological relatives, and community comparison subjects: Data from the COGS study. Psychophysiology 2010, 47, 846–856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hallett, P. Primary and secondary saccades to goals defined by instructions. Vis. Res. 1978, 18, 1279–1296. [Google Scholar] [CrossRef]
- Gooding, D.C.; Basso, M.A. The tell-tale tasks: A review of saccadic research in psychiatric patient populations. Brain Cogn. 2008, 68, 371–390. [Google Scholar] [CrossRef] [Green Version]
- Calkins, M.E.; Iacono, W.G.; Curtis, C.E. Smooth pursuit and antisaccade performance evidence trait stability in schizophrenia patients and their relatives. Int. J. Psychophysiol. 2003, 49, 139–146. [Google Scholar] [CrossRef]
- Mazhari, S.; Price, G.; Dragović, M.; Waters, F.A.; Clissa, P.; Jablensky, A. Revisiting the suitability of antisaccade performance as an endophenotype in schizophrenia. Brain Cogn. 2011, 77, 223–230. [Google Scholar] [CrossRef]
- Calkins, M.E. Antisaccade performance is impaired in medically and psychiatrically healthy biological relatives of schizophrenia patients. Schizophr. Res. 2004, 71, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Clementz, B.A.; McDowell, J.E.; Zisook, S. Saccadic system functioning among schizophrenia patients and their first-degree biological relatives. J. Abnorm. Psychol. 1994, 103, 277. [Google Scholar] [CrossRef]
- Curtis, C.E.; Calkins, M.E.; Grove, W.M.; Feil, K.J.; Iacono, W.G. Saccadic Disinhibition in Patients with Acute and Remitted Schizophrenia and Their First-Degree Biological Relatives. Am. J. Psychiatry 2001, 158, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Karoumi, B.; Saoud, M.; D’Amato, T.; Rosenfeld, F.; Denise, P.; Gutknecht, C.; Gaveau, V.; Beaulieu, F.-E.; Daléry, J.; Rochet, T. Poor performance in smooth pursuit and antisaccadic eye-movement tasks in healthy siblings of patients with schizophrenia. Psychiatry Res. 2001, 101, 209–219. [Google Scholar] [CrossRef]
- Katsanis, J.; Kortenkamp, S.; Iacono, W.G.; Grove, W.M. Antisaccade performance in patients with schizophrenia and affective disorder. J. Abnorm. Psychol. 1997, 106, 468. [Google Scholar] [CrossRef]
- McDowell, J.E.; Myles-Worsley, M.; Coon, H.; Byerley, W.; Clementz, B.A. Measuring Liability for Schizophrenia Using Optimized Antisaccade Stimulus Parameters. Psychophysiology 1999, 36, 138–141. [Google Scholar] [CrossRef]
- Brownstein, J.; Krastoshevsky, O.; McCollum, C.; Kundamal, S.; Matthysse, S.; Holzman, P.S.; Mendell, N.R.; Levy, D.L. Antisaccade performance is abnormal in schizophrenia patients but not in their biological relatives. Schizophr. Res. 2003, 63, 13–25. [Google Scholar] [CrossRef]
- de Wilde, O.M.; Bour, L.; Dingemans, P.; Boerée, T.; Linszen, D. Antisaccade deficit is present in young first-episode patients with schizophrenia but not in their healthy young siblings. Psychol. Med. 2008, 38, 871–875. [Google Scholar] [CrossRef]
- Boudet, C.; Bocca, M.L.; Chabot, B.; Delamillieure, P.; Brazo, P.; Denise, P.; Dollfus, S. Are eye movement abnormalities indicators of genetic vulnerability to schizophrenia? Eur. Psychiatry 2005, 20, 339–345. [Google Scholar] [CrossRef]
- Crawford, T.; Sharma, T.; Puri, B.; Murray, R.; Berridge, D.; Lewis, S. Saccadic Eye Movements in Families Multiply Affected With Schizophrenia: The Maudsley Family Study. Am. J. Psychiatry 1998, 155, 1703–1710. [Google Scholar] [CrossRef]
- Ettinger, U.; Kumari, V.; Crawford, T.J.; Corr, P.J.; Das, M.; Zachariah, E.; Hughes, C.; Sumich, A.L.; Rabe-Hesketh, S.; Sharma, T. Smooth pursuit and antisaccade eye movements in siblings discordant for schizophrenia. J. Psychiatr. Res. 2004, 38, 177–184. [Google Scholar] [CrossRef]
- Ettinger, U.; Picchioni, M.; Hall, M.-H.; Schulze, K.; Toulopoulou, T.; Landau, S.; Crawford, T.J.; Murray, R.M. Antisaccade Performance in Monozygotic Twins Discordant for Schizophrenia: The Maudsley Twin Study. Am. J. Psychiatry 2006, 163, 543–545. [Google Scholar] [CrossRef]
- Louchart-de la Chapelle, S.; Nkam, I.; Houy, E.; Belmont, A.; Ménard, J.F.; Roussignol, A.C.; Siwek, O.; Mezerai, M.; Guillermou, M.; Fouldrin, G.; et al. A concordance study of three electrophysiological measures in schizophrenia. Am. J. Psychiatry 2005, 162, 466–474. [Google Scholar] [CrossRef] [PubMed]
- MacCABE, J.H.; Simon, H.; Zanelli, J.W.; Walwyn, R.; McDONALD, C.D.; Murray, R. Saccadic distractibility is elevated in schizophrenia patients, but not in their unaffected relatives. Psychol. Med. 2005, 35, 1727–1736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Price, G.W.; Michie, P.T.; Johnston, J.; Innes-Brown, H.; Kent, A.; Clissa, P.; Jablensky, A.V. A Multivariate Electrophysiological Endophenotype, from a Unitary Cohort, Shows Greater Research Utility than Any Single Feature in the Western Australian Family Study of Schizophrenia. Biol. Psychiatry 2006, 60, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Thaker, G.K.; Cassady, S.; Adami, H.; Moran, M.; Ross, D.E. Eye movements in spectrum personality disorders: Comparison of community subjects and relatives of schizophrenic patients. Am. J. Psychiatry 1996, 153, 362–368. [Google Scholar] [PubMed]
- Thaker, G.K.; Ross, D.E.; Cassady, S.L.; Adami, H.M.; Medoff, D.R.; Sherr, J. Saccadic eye movement abnormalities in relatives of patients with schizophrenia. Schizophr. Res. 2000, 45, 235–244. [Google Scholar] [CrossRef]
- Levy, D.L.; O’Driscoll, G.; Matthysse, S.; Cook, S.R.; Holzman, P.S.; Mendell, N.R. Antisaccade performance in biological relatives of schizophrenia patients: A meta-analysis. Schizophr. Res. 2004, 71, 113–125. [Google Scholar] [CrossRef]
- Logan, G.D.; Cowan, W.B. On the ability to inhibit thought and action: A theory of an act of control. Psychol. Rev. 1984, 91, 295–327. [Google Scholar]
- Verbruggen, F.; Logan, G.D. Proactive adjustments of response strategies in the stop-signal paradigm. J. Exp. Psychol. Hum. Percept. Perform. 2009, 35, 835–854. [Google Scholar] [CrossRef] [Green Version]
- Federico, P.; Mirabella, G. Effects of probability bias in response readiness and response inhibition on reaching movements. Exp. Brain Res. 2014, 232, 1293–1307. [Google Scholar] [CrossRef]
- Bissett, P.G.; Logan, G.D. Post-stop-signal slowing: Strategies dominate reflexes and implicit learning. J. Exp. Psychol. Hum. Percept. Perform. 2012, 38, 746–757. [Google Scholar]
- Mirabella, G.; Mancini, C.; Valente, F.; Cardona, F. Children with primary complex motor stereotypies show impaired reactive but not proactive inhibition. Cortex 2020, 124, 250–259. [Google Scholar] [CrossRef]
- Mirabella, G.; Pani, P.; Ferraina, S. Context influences on the preparation and execution of reaching movements. Cogn. Neuropsychol. 2008, 25, 996–1010. [Google Scholar] [CrossRef]
- Di Caprio, V.; Modugno, N.; Mancini, C.; Olivola, E.; Mirabella, G. Early-stage Parkinson’s patients show selective impairment in reactive but not proactive inhibition. Mov. Disord. 2020, 35, 409–418. [Google Scholar] [CrossRef]
- Mirabella, G.; Fragola, M.; Giannini, G.; Modugno, N.; Lakens, D. Inhibitory control is not lateralized in Parkinson’s patients. Neuropsychologia 2017, 102, 177–189. [Google Scholar] [CrossRef] [PubMed]
- Mirabella, G.; Iaconelli, S.; Modugno, N.; Giannini, G.; Lena, F.; Cantore, G. Stimulation of Subthalamic Nuclei Restores a Near Normal Planning Strategy in Parkinson’s Patients. PLoS ONE 2013, 8, e62793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mancini, C.; Modugno, N.; Santilli, M.; Pavone, L.; Grillea, G.; Morace, R.; Mirabella, G. Unilateral Stimulation of Subthalamic Nucleus Does Not Affect Inhibitory Control. Front. Neurol. 2019, 9, 1149. [Google Scholar] [CrossRef]
- Huddy, V.; Aron, A.R.; Harrison, M.; Barnes, T.R.E.; Robbins, T.W.; Joyce, E.M. Impaired conscious and preserved unconscious inhibitory processing in recent onset schizophrenia. Psychol. Med. 2009, 39, 907–916. [Google Scholar] [CrossRef] [PubMed]
- Hughes, M.E.; Fulham, R.; Johnston, P.J.; Michie, P.T. Stop-signal response inhibition in schizophrenia: Behavioural, event-related potential and functional neuroimaging data. Biol. Psychol. 2012, 89, 220–231. [Google Scholar] [CrossRef]
- Nolan, K.A.; D’Angelo, D.; Hoptman, M.J. Self-report and laboratory measures of impulsivity in patients with schizophrenia or schizoaffective disorder and healthy controls. Psychiatry Res. 2011, 187, 301–303. [Google Scholar] [CrossRef] [Green Version]
- van Voorhis, A.C.; Kent, J.S.; Kang, S.S.; Goghari, V.M.; Iii, A.W.M.; Sponheim, S.R. Abnormal neural functions associated with motor inhibition deficits in schizophrenia and bipolar disorder. Hum. Brain Mapp. 2019, 40, 5397–5411. [Google Scholar] [CrossRef]
- Enticott, P.G.; Ogloff, J.; Bradshaw, J.L. Response inhibition and impulsivity in schizophrenia. Psychiatry Res. 2008, 157, 251–254. [Google Scholar] [CrossRef]
- Yang, H.; Di, X.; Gong, Q.; Sweeney, J.; Biswal, B. Investigating inhibition deficit in schizophrenia using task-modulated brain networks. Brain Struct. Funct. 2020, 225, 1601–1613. [Google Scholar] [CrossRef] [PubMed]
- Tsujii, N.; Mikawa, W.; Adachi, T.; Hirose, T.; Shirakawa, O. Shared and differential cortical functional abnormalities associated with inhibitory control in patients with schizophrenia and bipolar disorder. Sci. Rep. 2018, 8, 4686. [Google Scholar] [CrossRef] [PubMed]
- Hoptman, M.J.; Parker, E.M.; Nair-Collins, S.; Dias, E.C.; Ross, M.E.; DiCostanzo, J.N.; Sehatpour, P.; Javitt, D.C. Sensory and cross-network contributions to response inhibition in patients with schizophrenia. NeuroImage Clin. 2018, 18, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Chen, X.; Zhang, L.; Bai, T.; Gao, Y.; Dong, Y.; Luo, Y.; Zhu, C.; Wang, K. Shared Response Inhibition Deficits but Distinct Error Processing Capacities Between Schizophrenia and Obsessive-Compulsive Disorder Patients Revealed by Event-Related Potentials and Oscillations During a Stop Signal Task. Front. Psychiatry 2019, 10, 853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fortgang, R.G.; Hultman, C.M.; Van Erp, T.G.; Cannon, T.D. Multidimensional assessment of impulsivity in schizophrenia, bipolar disorder, and major depressive disorder: Testing for shared endophenotypes. Psychol. Med. 2016, 46, 1497–1507. [Google Scholar] [CrossRef]
- Thakkar, K.N.; Schall, J.D.; Boucher, L.; Logan, G.D.; Park, S. Response inhibition and response monitoring in a saccadic countermanding task in schizophrenia. Biol. Psychiatry 2011, 69, 55–62. [Google Scholar] [CrossRef] [Green Version]
- Thakkar, K.N.; Schall, J.D.; Logan, G.D.; Park, S. Response inhibition and response monitoring in a saccadic double-step task in schizophrenia. Brain Cogn. 2015, 95, 90–98. [Google Scholar] [CrossRef] [Green Version]
- Lehet, M.; Tso, I.F.; Neggers, S.F.; Thompson, I.A.; Yao, B.; Kahn, R.S.; Thakkar, K.N. Altered effective connectivity within an oculomotor control network in individuals with schizophrenia. NeuroImage Clin. 2021, 31, 102764. [Google Scholar] [CrossRef]
- Ettinger, U.; Aichert, D.S.; Wöstmann, N.; Dehning, S.; Riedel, M.; Kumari, V. Response inhibition and interference control: Effects of schizophrenia, genetic risk, and schizotypy. J. Neuropsychol. 2017, 12, 484–510. [Google Scholar] [CrossRef]
- Lindberg, P.G.; Térémetz, M.; Charron, S.; Kebir, O.; Saby, A.; Bendjemaa, N.; Lion, S.; Crépon, B.; Gaillard, R.; Oppenheim, C.; et al. Altered cortical processing of motor inhibition in schizophrenia. Cortex 2016, 85, 1–12. [Google Scholar] [CrossRef]
- Badcock, J.C.; Michie, P.T.; Johnson, L.; Combrinck, J. Acts of control in schizophrenia: Dissociating the components of inhibition. Psychol. Med. 2002, 32, 287–297. [Google Scholar] [CrossRef] [PubMed]
- Jepsen, J.R.M.; Rydkjaer, J.; Fagerlund, B.; Pagsberg, A.K.; Jespersen, R.A.F.; Glenthøj, B.; Oranje, B. Overlapping and disease specific trait, response, and reflection impulsivity in adolescents with first-episode schizophrenia spectrum disorders or attention-deficit/hyperactivity disorder. Psychol. Med. 2018, 48, 604–616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vink, M.; De Leeuw, M.; Luykx, J.J.; Van Eijk, K.R.; Munkhof, H.E.V.D.; van Buuren, M.; Kahn, R.S. DRD2 Schizophrenia-Risk Allele Is Associated with Impaired Striatal Functioning in Unaffected Siblings of Schizophrenia Patients. Schizophr. Bull. 2015, 42, 843–850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gulberti, A.; Arndt, P.A.; Colonius, H. Stopping eyes and hands: Evidence for non-independence of stop and go processes and for a separation of central and peripheral inhibition. Front. Hum. Neurosci. 2014, 8, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Izawa, Y.; Suzuki, H.; Shinoda, Y. Response Properties of Fixation Neurons and Their Location in the Frontal Eye Field in the Monkey. J. Neurophysiol. 2009, 102, 2410–2422. [Google Scholar] [CrossRef]
- Schall, J.D. Neuronal activity related to visually guided saccades in the frontal eye fields of rhesus monkeys: Comparison with supplementary eye fields. J. Neurophysiol. 1991, 66, 559–579. [Google Scholar] [CrossRef]
- Purcell, B.A.; Heitz, R.P.; Cohen, J.Y.; Logan, G.D.; Schall, J.D.; Palmeri, T.J. Modeling interactions between visually-responsive and movement-related neurons in FEF during saccade visual search. J. Vis. 2008, 8, 1080. [Google Scholar] [CrossRef]
- Hanes, D.P.; Patterson, W.F.; Schall, J.D. Role of Frontal Eye Fields in Countermanding Saccades: Visual, Movement, and Fixation Activity. J. Neurophysiol. 1998, 79, 817–834. [Google Scholar] [CrossRef]
- Paré, M.; Hanes, D.P. Controlled Movement Processing: Superior Colliculus Activity Associated with Countermanded Saccades. J. Neurosci. 2003, 23, 6480–6489. [Google Scholar] [CrossRef]
- Brown, J.W.; Hanes, D.P.; Schall, J.D.; Stuphorn, V. Relation of frontal eye field activity to saccade initiation during a countermanding task. Exp. Brain Res. 2008, 190, 135–151. [Google Scholar] [CrossRef] [Green Version]
- Xu, K.Z.; Anderson, B.A.; Emeric, E.E.; Sali, A.W.; Stuphorn, V.; Yantis, S.; Courtney, S.M. Neural Basis of Cognitive Control over Movement Inhibition: Human fMRI and Primate Electrophysiology Evidence. Neuron 2017, 96, 1447–1458.e6. [Google Scholar] [CrossRef] [Green Version]
- Hanes, D.P.; Schall, J.D. Countermanding saccades in macaque. Vis. Neurosci. 1995, 12, 929–937. [Google Scholar] [CrossRef]
- Hikosaka, O.; Takikawa, Y.; Kawagoe, R. Role of the Basal Ganglia in the Control of Purposive Saccadic Eye Movements. Physiol. Rev. 2000, 80, 953–978. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, M.; Munoz, D.P. Saccade Suppression by Electrical Microstimulation in Monkey Caudate Nucleus. J. Neurosci. 2010, 30, 2700–2709. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, R.; Leventhal, D.; Mallet, N.; Chen, F.; Berke, J.D. Canceling actions involves a race between basal ganglia pathways. Nat. Neurosci. 2013, 16, 1118–1124. [Google Scholar] [CrossRef] [Green Version]
- Stuphorn, V.; Brown, J.W.; Schall, J.D. Role of Supplementary Eye Field in Saccade Initiation: Executive, Not Direct, Control. J. Neurophysiol. 2010, 103, 801–816. [Google Scholar] [CrossRef] [PubMed]
- Stuphorn, V.; Emeric, E. Proactive and reactive control by the medial frontal cortex. Front. Neuroeng. 2012, 5, 9. [Google Scholar] [PubMed] [Green Version]
- Pouget, P.; Murthy, A.; Stuphorn, V. Cortical control and performance monitoring of interrupting and redirecting movements. Philos. Trans. R. Soc. B Biol. Sci. 2017, 372, 20160201. [Google Scholar]
- Stuphorn, V.; Schall, J.D. Executive control of countermanding saccades by the supplementary eye field. Nat. Neurosci. 2006, 9, 925–931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stuphorn, V.; Taylor, T.L.; Schall, J.D. Performance monitoring by the supplementary eye field. Nature 2000, 408, 857–860. [Google Scholar] [CrossRef]
- Duann, J.-R.; Ide, J.; Luo, X.; Li, C.-S.R. Functional Connectivity Delineates Distinct Roles of the Inferior Frontal Cortex and Presupplementary Motor Area in Stop Signal Inhibition. J. Neurosci. 2009, 29, 10171–10179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zandbelt, B.B.; Bloemendaal, M.; Neggers, S.F.; Kahn, R.S.; Vink, M. Expectations and violations: Delineating the neural network of proactive inhibitory control. Hum. Brain Mapp. 2012, 34, 2015–2024. [Google Scholar] [CrossRef] [PubMed]
- Aron, A.R.; Robbins, T.; Poldrack, R.A. Inhibition and the right inferior frontal cortex: One decade on. Trends Cogn. Sci. 2014, 18, 177–185. [Google Scholar] [CrossRef]
- Cai, W.; Ryali, S.; Chen, T.; Li, C.-S.R.; Menon, V. Dissociable Roles of Right Inferior Frontal Cortex and Anterior Insula in Inhibitory Control: Evidence from Intrinsic and Task-Related Functional Parcellation, Connectivity, and Response Profile Analyses across Multiple Datasets. J. Neurosci. 2014, 34, 14652–14667. [Google Scholar] [CrossRef] [Green Version]
- Wessel, J.R.; Aron, A.R. On the Globality of Motor Suppression: Unexpected Events and Their Influence on Behavior and Cognition. Neuron 2017, 93, 259–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cieslik, E.C.; Mueller, V.I.; Eickhoff, C.R.; Langner, R.; Eickhoff, S.B. Three key regions for supervisory attentional control: Evidence from neuroimaging meta-analyses. Neurosci. Biobehav. Rev. 2014, 48, 22–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, R.; Geng, X.; Lee, T.M.C. Large-scale functional neural network correlates of response inhibition: An fMRI meta-analysis. Brain Struct. Funct. 2017, 222, 3973–3990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thakkar, K.N.; van den Heiligenberg, F.M.; Kahn, R.S.; Neggers, S.F. Frontal-subcortical circuits involved in reactive control and monitoring of gaze. J. Neurosci. Off. J. Soc. Neurosci. 2014, 34, 8918–8929. [Google Scholar] [CrossRef] [Green Version]
- Jahfari, S.; Waldorp, L.; van den Wildenberg, W.P.; Scholte, H.S.; Ridderinkhof, K.R.; Forstmann, B.U. Effective connectivity reveals important roles for both the hyperdirect (fronto-subthalamic) and the indirect (fronto-striatal-pallidal) fronto-basal ganglia pathways during response inhibition. J. Neurosci. 2011, 31, 6891–6899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiecki, T.V.; Frank, M.J. A computational model of inhibitory control in frontal cortex and basal ganglia. Psychol. Rev. 2013, 120, 329–355. [Google Scholar] [CrossRef] [Green Version]
- Utter, A.A.; Basso, M.A. The basal ganglia: An overview of circuits and function. Neurosci. Biobehav. Rev. 2008, 32, 333–342. [Google Scholar] [CrossRef]
- Aron, A.R.; Herz, D.M.; Brown, P.; Forstmann, B.U.; Zaghloul, K. Frontosubthalamic Circuits for Control of Action and Cognition. J. Neurosci. 2016, 36, 11489–11495. [Google Scholar] [CrossRef] [Green Version]
- Mallet, N.; Schmidt, R.; Leventhal, D.; Chen, F.; Amer, N.; Boraud, T.; Berke, J.D. Arkypallidal Cells Send a Stop Signal to Striatum. Neuron 2016, 89, 308–316. [Google Scholar] [CrossRef] [Green Version]
- Parthasarathy, H.; Schall, J.; Graybiel, A. Distributed but convergent ordering of corticostriatal projections: Analysis of the frontal eye field and the supplementary eye field in the macaque monkey. J. Neurosci. 1992, 12, 4468–4488. [Google Scholar] [CrossRef]
- Huerta, M.F.; Krubitzer, L.A.; Kaas, J.H. Frontal eye field as defined by intracortical microstimulation in squirrel monkeys, owl monkeys, and macaque monkeys II. cortical connections. J. Comp. Neurol. 1987, 265, 332–361. [Google Scholar] [CrossRef] [PubMed]
- Huerta, M.F.; Kaas, J.H. Supplementary eye field as defined by intracortical microstimulation: Connections in macaques. J. Comp. Neurol. 1990, 293, 299–330. [Google Scholar] [CrossRef] [PubMed]
- Collins, C.E.; Lyon, D.C.; Kaas, J.H. Distribution across cortical areas of neurons projecting to the superior colliculus in new world monkeys. Anat. Rec. Part A Discov. Mol. Cell. Evol. Biol. 2005, 285, 619–627. [Google Scholar] [CrossRef] [PubMed]
- Shook, B.; Schlag-Rey, M.; Schlag, J. Primate supplementary eye field: I. Comparative aspects of mesencephalic and pontine connections. J. Comp. Neurol. 1990, 301, 618–642. [Google Scholar] [CrossRef]
- Meredith, M.A. The frontal eye fields target multisensory neurons in cat superior colliculus. Exp. Brain Res. 1999, 128, 460–470. [Google Scholar] [CrossRef]
- Cui, D.-M.; Yan, Y.-J.; Lynch, J.C. Pursuit Subregion of the Frontal Eye Field Projects to the Caudate Nucleus in Monkeys. J. Neurophysiol. 2003, 89, 2678–2684. [Google Scholar] [CrossRef] [Green Version]
- Griggs, W.S.; Kim, H.F.; Ghazizadeh, A.; Costello, M.G.; Wall, K.M.; Hikosaka, O. Flexible and Stable Value Coding Areas in Caudate Head and Tail Receive Anatomically Distinct Cortical and Subcortical Inputs. Front. Neuroanat. 2017, 11, 106. [Google Scholar] [CrossRef] [Green Version]
- Shook, B.L.; Schlag-Rey, M.; Schlag, J. Primate supplementary eye field. II. Comparative aspects of connections with the thalamus, corpus striatum, and related forebrain nuclei. J. Comp. Neurol. 1991, 307, 562–583. [Google Scholar] [CrossRef]
- Orem, J.; Schlag, J. Direct projections from cat frontal eye field to internal medullary lamina of the thalamus. Exp. Neurol. 1971, 33, 509–517. [Google Scholar] [CrossRef]
- May, P.J. The mammalian superior colliculus: Laminar structure and connections. Prog. Brain Res. 2006, 151, 321–378. [Google Scholar] [PubMed]
- Lynch, J.C.; Hoover, J.E.; Strick, P.L. Input to the primate frontal eye field from the substantia nigra, superior colliculus, and dentate nucleus demonstrated by transneuronal transport. Exp. Brain Res. 1994, 100, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Kunimatsu, J. Contribution of the central thalamus to the generation of volitional saccades. Eur. J. Neurosci. 2011, 33, 2046–2057. [Google Scholar] [CrossRef]
- McHaffie, J.; Jiang, H.; May, P.; Coizet, V.; Overton, P.; Stein, B.; Redgrave, P. A direct projection from superior colliculus to substantia nigra pars compacta in the cat. Neuroscience 2006, 138, 221–234. [Google Scholar] [CrossRef] [PubMed]
- Comoli, E.; Coizet, V.; Boyes, J.; Bolam, J.P.; Canteras, N.S.; Quirk, R.H.; Overton, P.G.; Redgrave, P. A direct projection from superior colliculus to substantia nigra for detecting salient visual events. Nat. Neurosci. 2003, 6, 974–980. [Google Scholar] [CrossRef] [PubMed]
- Redgrave, P.; Coizet, V.; Comoli, E.; McHaffie, J.G.; Vazquez, M.L.; Vautrelle, N.; Hayes, L.M.; Overton, P.G. Interactions between the midbrain superior colliculus and the basal ganglia. Front. Neuroanat. 2010, 4, 132. [Google Scholar] [CrossRef] [Green Version]
- Petrides, M.; Pandya, D.N. Comparative cytoarchitectonic analysis of the human and the macaque ventrolateral prefrontal cortex and corticocortical connection patterns in the monkey. Eur. J. Neurosci. 2002, 16, 291–310. [Google Scholar] [CrossRef]
- Kievit, J.; Kuypers, H.G.J.M. Organization of the thalamo-cortical connexions to the frontal lobe in the rhesus monkey. Exp. Brain Res. 1977, 29, 299–322. [Google Scholar] [CrossRef]
- Raemaekers, M.; Ramsey, N.F.; Vink, M.; Heuvel, M.P.V.D.; Kahn, R.S. Brain Activation during Antisaccades in Unaffected Relatives of Schizophrenic Patients. Biol. Psychiatry 2006, 59, 530–535. [Google Scholar] [CrossRef] [PubMed]
- Camchong, J.; Dyckman, K.A.; Austin, B.P.; Clementz, B.A.; McDowell, J.E. Common Neural Circuitry Supporting Volitional Saccades and Its Disruption in Schizophrenia Patients and Relatives. Biol. Psychiatry 2008, 64, 1042–1050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vink, M.; Ramsey, N.F.; Raemaekers, M.; Kahn, R.S. Striatal Dysfunction in Schizophrenia and Unaffected Relatives. Biol. Psychiatry 2006, 60, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Camalier, C.; Gotler, A.; Murthy, A.; Thompson, K.; Logan, G.; Palmeri, T.; Schall, J. Dynamics of saccade target selection: Race model analysis of double step and search step saccade production in human and macaque. Vis. Res. 2007, 47, 2187–2211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murthy, A.; Ray, S.; Shorter, S.M.; Priddy, E.G.; Schall, J.D.; Thompson, K.G. Frontal Eye Field Contributions to Rapid Corrective Saccades. J. Neurophysiol. 2007, 97, 1457–1469. [Google Scholar] [CrossRef]
- Zeidman, P.; Jafarian, A.; Corbin, N.; Seghier, M.L.; Razi, A.; Price, C.J.; Friston, K.J. A guide to group effective connectivity analysis, part 1: First level analysis with DCM for fMRI. NeuroImage 2019, 200, 174–190. [Google Scholar] [CrossRef]
- Zeidman, P.; Jafarian, A.; Seghier, M.L.; Litvak, V.; Cagnan, H.; Price, C.; Friston, K. A guide to group effective connectivity analysis, part 2: Second level analysis with PEB. NeuroImage 2019, 200, 12–25. [Google Scholar] [CrossRef]
- Friston, K.; Litvak, V.; Oswal, A.; Razi, A.; Stephan, K.E.; van Wijk, B.; Ziegler, G.; Zeidman, P. Bayesian model reduction and empirical Bayes for group (DCM) studies. NeuroImage 2016, 128, 413–431. [Google Scholar] [CrossRef] [Green Version]
- Spitzer, R.L.; Williams, J.B.; Gibbon, M.; First, M. Structured Clinical Interview for DSM-IV Axis I Disorders (SCID); Biometrics Research; New York State Psychiatric Institute: New York, NY, USA, 1995. [Google Scholar]
- Blair, J.R.; Spreen, O. Predicting premorbid IQ: A revision of the national adult reading test. Clin. Neuropsychol. 1989, 3, 129–136. [Google Scholar] [CrossRef]
- O’Carroll, R.; Walker, M.; Dunan, J.; Murray, C.; Blackwood, D.; Ebmeier, K.P.; Goodwin, G.M. Selecting controls for schizophrenia research studies: The use of the national adult reading test (NART) is a measure of pre-morbid ability. Schizophr. Res. 1992, 8, 137–141. [Google Scholar] [CrossRef]
- Wechsler, D. Abbreviated Scale of Intelligence; Psychological Corporation: San Antonio, TX, USA, 1999. [Google Scholar]
- Oldfield, R. The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 1971, 9, 97–113. [Google Scholar] [CrossRef]
- Osman, A.; Kornblum, S.; Meyer, D.E. The point of no return in choice reaction time: Controlled and ballistic stages of response preparation. J. Exp. Psychol. Hum. Percept. Perform. 1986, 12, 243. [Google Scholar] [CrossRef]
- Congdon, E.; Mumford, J.A.; Cohen, J.R.; Galvan, A.; Canli, T.; Poldrack, R.A. Measurement and Reliability of Response Inhibition. Front. Psychol. 2012, 3, 37. [Google Scholar] [CrossRef] [Green Version]
- Verbruggen, F.; Chambers, C.D.; Logan, G.D. Fictitious inhibitory differences: How skewness and slowing distort the estimation of stopping latencies. Psychol. Sci. 2013, 24, 352–362. [Google Scholar] [CrossRef] [Green Version]
- Verbruggen, F.; Aron, A.R.; Band, G.P.; Beste, C.; Bissett, P.G.; Brockett, A.T.; Brown, J.W.; Chamberlain, S.R.; Chambers, C.D.; Colonius, H.; et al. A consensus guide to capturing the ability to inhibit actions and impulsive behaviors in the stop-signal task. eLife 2019, 8, e46323. [Google Scholar] [CrossRef]
- Risk, G. Evidence that familial liability for psychosis is expressed as differential sensitivity to cannabis: An analysis of patient-sibling and sibling-control pairs. Arch. Gen. Psychiatry 2011, 68, 138–147. [Google Scholar]
- Andreasen, N.C.; Flaum, M.; Arndt, S. The Comprehensive Assessment of Symptoms and History (CASH): An instrument for assessing diagnosis and psychopathology. Arch. Gen. Psychiatry 1992, 49, 615–623. [Google Scholar] [CrossRef]
- Wing, J.K.; Babor, T.; Brugha, T.S.; Burke, J.; Cooper, J.E.; Giel, R.; Jablenski, A.; Regier, D.; Sartorius, N. SCAN: Schedules fonr clinical assessment in neuropsychiatry. Arch. Gen. Psychiatry 1990, 47, 589–593. [Google Scholar] [CrossRef]
- van der Stigchel, S.; Nijboer, T.C. The global effect: What determines where the eyes land? J. Eye Mov. Res. 2011, 4, 1–13. [Google Scholar]
- Ashburner, J.; Friston, K.J. Unified segmentation. Neuroimage 2005, 26, 839–851. [Google Scholar] [CrossRef]
- Glover, G.H.; Li, T.Q.; Ress, D. Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magn. Reson. Med. Off. J. Int. Soc. Magn. Reson. Med. 2000, 44, 162–167. [Google Scholar] [CrossRef]
- Curtis, C.E.; Cole, M.W.; Rao, V.Y.; D’Esposito, M. Canceling planned action: An FMRI study of countermanding saccades. Cereb. Cortex 2005, 15, 1281–1289. [Google Scholar] [CrossRef] [Green Version]
- Friston, K.J.; Harrison, L.; Penny, W. Dynamic causal modelling. Neuroimage 2003, 19, 1273–1302. [Google Scholar] [CrossRef]
- Friston, K.; Mechelli, A.; Turner, R.; Price, C. Nonlinear Responses in fMRI: The Balloon Model, Volterra Kernels, and Other Hemodynamics. NeuroImage 2000, 12, 466–477. [Google Scholar] [CrossRef] [Green Version]
- Matzke, D.; Love, J.; Heathcote, A. A Bayesian approach for estimating the probability of trigger failures in the stop-signal paradigm. Behav. Res. Methods 2017, 49, 267–281. [Google Scholar] [CrossRef] [Green Version]
- Mirabella, G. Should I stay or should I go? Conceptual underpinnings of goal-directed actions. Front. Syst. Neurosci. 2014, 8, 206. [Google Scholar] [CrossRef] [Green Version]
- Calkins, M.E.; Iacono, W.G.; Ones, D.S. Eye movement dysfunction in first-degree relatives of patients with schizophrenia: A meta-analytic evaluation of candidate endophenotypes. Brain Cogn. 2008, 68, 436–461. [Google Scholar] [CrossRef] [Green Version]
- Cai, W.; George, J.S.; Verbruggen, F.; Chambers, C.; Aron, A.R. The role of the right presupplementary motor area in stopping action: Two studies with event-related transcranial magnetic stimulation. J. Neurophysiol. 2012, 108, 380–389. [Google Scholar] [CrossRef]
- Zandbelt, B.B.; Vink, M. On the Role of the Striatum in Response Inhibition. PLoS ONE 2010, 5, e13848. [Google Scholar] [CrossRef]
- Swann, N.C.; Cai, W.; Conner, C.R.; Pieters, T.A.; Claffey, M.P.; George, J.S.; Aron, A.R.; Tandon, N. Roles for the pre-supplementary motor area and the right inferior frontal gyrus in stopping action: Electrophysiological responses and functional and structural connectivity. NeuroImage 2012, 59, 2860–2870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, F.; Iwaki, S. Common Neural Network for Different Functions: An Investigation of Proactive and Reactive Inhibition. Front. Behav. Neurosci. 2019, 13, 124. [Google Scholar] [CrossRef] [Green Version]
- So, N.; Stuphorn, V. Supplementary Eye Field Encodes Reward Prediction Error. J. Neurosci. 2012, 32, 2950–2963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- So, N.; Stuphorn, V. Supplementary Eye Field Encodes Confidence in Decisions under Risk. Cereb. Cortex 2015, 26, 764–782. [Google Scholar] [CrossRef] [PubMed]
- Stuphorn, V. The role of supplementary eye field in goal-directed behavior. J. Physiol. 2015, 109, 118–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsumoto, M.; Inoue, K.-I.; Takada, M. Causal Role of Neural Signals Transmitted from the Frontal Eye Field to the Superior Colliculus in Saccade Generation. Front. Neural Circuits 2018, 12, 69. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; de Hemptinne, C.; Miller, A.M.; Leibbrand, M.; Little, S.J.; Lim, D.A.; Larson, P.S.; Starr, P.A. Prefrontal-Subthalamic Hyperdirect Pathway Modulates Movement Inhibition in Humans. Neuron 2020, 106, 579–588.e3. [Google Scholar] [CrossRef]
- Ranlund, S.; Adams, R.; Díez, Á.; Constante, M.; Dutt, A.; Hall, M.; Carbayo, A.M.; McDonald, C.; Petrella, S.; Schulze, K.; et al. Impaired prefrontal synaptic gain in people with psychosis and their relatives during the mismatch negativity. Hum. Brain Mapp. 2015, 37, 351–365. [Google Scholar] [CrossRef] [Green Version]
- Díez, Á.; Ranlund, S.; Pinotsis, D.; Calafato, S.; Shaikh, M.; Hall, M.-H.; Walshe, M.; Nevado, Á.; Friston, K.J.; Adams, R.A.; et al. Abnormal frontoparietal synaptic gain mediating the P300 in patients with psychotic disorder and their unaffected relatives. Hum. Brain Mapp. 2017, 38, 3262–3276. [Google Scholar] [CrossRef] [Green Version]
- Anticevic, A.; Lisman, J. How can global alteration of excitation/inhibition balance lead to the local dysfunctions that underlie schizophrenia? Biol. Psychiatry 2017, 81, 818–820. [Google Scholar] [CrossRef]
- Krystal, J.H.; D’Souza, D.C.; Mathalon, D.; Perry, E.; Belger, A.; Hoffman, R. NMDA receptor antagonist effects, cortical glutamatergic function, and schizophrenia: Toward a paradigm shift in medication development. Psychopharmacology 2003, 169, 215–233. [Google Scholar] [CrossRef]
- Verbruggen, F.; Aron, A.R.; Stevens, M.A.; Chambers, C. Theta burst stimulation dissociates attention and action updating in human inferior frontal cortex. Proc. Natl. Acad. Sci. USA 2010, 107, 13966–13971. [Google Scholar] [CrossRef] [Green Version]
- Schaum, M.; Pinzuti, E.; Sebastian, A.; Lieb, K.; Fries, P.; Mobascher, A.; Jung, P.; Wibral, M.; Tüscher, O. Right inferior frontal gyrus implements motor inhibitory control via beta-band oscillations in humans. eLife 2021, 10, e61679. [Google Scholar] [CrossRef]
- Erika-Florence, M.; Leech, R.; Hampshire, A. A functional network perspective on response inhibition and attentional control. Nat. Commun. 2014, 5, 4073. [Google Scholar] [CrossRef] [Green Version]
- Hampshire, A. Putting the brakes on inhibitory models of frontal lobe function. NeuroImage 2015, 113, 340–355. [Google Scholar] [CrossRef] [Green Version]
HC (n = 14) Mean (s.d.) | REL (n = 12) Mean (s.d.) | Statistic | p-Value | |
---|---|---|---|---|
Age | 36.5 (11.01) | 36.5 (8.64) | t < 0.01 | >0.999 |
Sex | 7 F/7 M | 7 F/5 M | χ2 = 0.00 | 0.976 |
IQ 1 | 108.20 (6.04) | 102.48 (11.52) | t = 2.01 | 0.056 |
Handedness 2 | 0.62 (0.69) | 0.73 (0.32) | t = 0.51 | 0.614 |
Education 3 | 15.79 (1.76) | 15.17 (3.69) | t = 0.56 | 0.581 |
HC (n = 23) Mean (s.d.) | SIB (n = 22) Mean (s.d.) | Statistic | p-Value | |
---|---|---|---|---|
Age | 31.91 (8.23) | 31.09 (5.46) | t = 0.40 | 0.694 |
Sex | 10 F/13 M | 7 F/15 M | χ2 = 0.25 | 0.618 |
IQ 1 | 99.72 (14.36) | 100.27 (14.67) | t = 0.63 | 0.532 |
Handedness 2 | 0.79 (0.53) | 0.87 (0.30) | t = 0.12 | 0.906 |
Education 3 | 6.87 (1.63) | 6.32 (1.67) | t = 1.12 | 0.270 |
HC Mean (s.d.) | REL Mean (s.d.) | Statistic | p-Value | |
---|---|---|---|---|
No Stop-Signal Reaction Time (ms) | 269.40 (50.03) | 316.83 (34.91) | t(24) = 2.76 | 0.011 |
Noncanceled Reaction Time (ms) | 215.72 (36.89) | 257.94 (39.23) | t(24) = 2.83 | 0.009 |
SSRT (ms) | 99.01 (35.38) | 135.67 (42.67) | t(24) = 2.40 | 0.024 |
Probability of Inhibition (%) | 49.62 (3.68) | 47.97 (4.34) | t(24) = 1.05 | 0.305 |
HC Mean (s.d.) | SIB Mean (s.d.) | Statistic | p-Value | |
---|---|---|---|---|
No-Step Reaction Time (ms) | 324.42 (78.26) | 360.61 (90.95) | t(43) = 1.43 | 0.159 |
Compensated Reaction Time (ms) | 312.05 (57.69) | 351.07 (78.20) | t(43) = 1.91 | 0.063 |
Noncompensated Reaction Time (ms) | 289.71 (48.41) | 317.67 (72.27) | t(43) = 1.53 | 0.133 |
TSRT (ms) | 153.59 (19.53) | 169.57 (33.99) | t(43) = 1.94 | 0.058 |
Percent Noncompensated (%) | 46.48 (6.09) | 44.59 (6.64) | t(43) = 0.99 | 0.327 |
Controls: Fixed Effects | Estimate | Std. Error | t-Stat | p-Value |
---|---|---|---|---|
Intercept | 612.38 | 119.82 | 5.11 | <0.001 |
Mean FEF to SEF | −219.33 | 78.17 | −2.81 | 0.015 |
Mean SEF to caudate | −3089.15 | 875.85 | −3.53 | 0.004 |
Mean rIFC to SEF | −816.58 | 224.40 | −3.64 | 0.003 |
Mean SEF to superior colliculus | 462.38 | 129.99 | 3.56 | 0.004 |
Mean caudate to superior colliculus | 911.54 | 281.31 | 3.24 | 0.006 |
Mean self-inhibition of rIFC | −1301.16 | 426.18 | −3.05 | 0.009 |
Mean self-inhibition of FEF | 712.08 | 258.45 | 2.76 | 0.016 |
Mean self-inhibition of thalamus | 1367.23 | 321.19 | 4.26 | <0.001 |
Modulation of thalamus to SEF | 44.87 | 12.23 | 3.67 | 0.003 |
Siblings: Fixed Effects | Estimate | Std. Error | t-Stat | p-Value |
Intercept | 206.01 | 18.16 | 11.34 | <0.001 |
Mean FEF to CD | 420.18 | 191.85 | 2.19 | 0.042 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lehet, M.; Tso, I.F.; Park, S.; Neggers, S.F.W.; Thompson, I.A.; Kahn, R.S.; Thakkar, K.N. Altered Effective Connectivity within an Oculomotor Control Network in Unaffected Relatives of Individuals with Schizophrenia. Brain Sci. 2021, 11, 1228. https://doi.org/10.3390/brainsci11091228
Lehet M, Tso IF, Park S, Neggers SFW, Thompson IA, Kahn RS, Thakkar KN. Altered Effective Connectivity within an Oculomotor Control Network in Unaffected Relatives of Individuals with Schizophrenia. Brain Sciences. 2021; 11(9):1228. https://doi.org/10.3390/brainsci11091228
Chicago/Turabian StyleLehet, Matthew, Ivy F. Tso, Sohee Park, Sebastiaan F. W. Neggers, Ilse A. Thompson, Rene S. Kahn, and Katharine N. Thakkar. 2021. "Altered Effective Connectivity within an Oculomotor Control Network in Unaffected Relatives of Individuals with Schizophrenia" Brain Sciences 11, no. 9: 1228. https://doi.org/10.3390/brainsci11091228
APA StyleLehet, M., Tso, I. F., Park, S., Neggers, S. F. W., Thompson, I. A., Kahn, R. S., & Thakkar, K. N. (2021). Altered Effective Connectivity within an Oculomotor Control Network in Unaffected Relatives of Individuals with Schizophrenia. Brain Sciences, 11(9), 1228. https://doi.org/10.3390/brainsci11091228