Sensitivity of a 29-Channel MEG Source Montage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Spatial Filtering from Sensor to Source Space
2.2. Regional Sources
- Individual amplitudes of the orthogonal dipole sources: 58 waveforms for MEG or 87 for EEG.
- Root mean square of the amplitudes of all dipolar components of a regional source: 29 waveforms.
- Amplitude of the principal component of the dipolar sources comprising the regional source: 29 waveforms.
2.3. Simulated MEG Signals
2.4. Signal-to-Noise Ratio and Source Detectability
3. Results
3.1. Source Dipoles at Montage Channel Locations
3.2. Source Dipoles at 50 Cortical Locations
3.3. Source Dipoles on Cortical Surfaces
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Appendix A
References
- Mäkelä, J.P.; Forss, N.; Jääskeläinen, J.; Kirveskari, E.; Korvenoja, A.; Paetau, R. Magnetoencephalography in neurosurgery. Neurosurgery 2006, 59, 493–511. [Google Scholar] [CrossRef] [PubMed]
- Knake, S.; Halgren, E.; Shiraishi, H.; Hara, K.; Hamer, H.M.; Grant, P.E.; Carr, V.A.; Foxe, D.; Camposano, S.; Busa, E.; et al. The value of multichannel MEG and EEG in the presurgical evaluation of 70 epilepsy patients. Epilepsy Res. 2006, 69, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Bagić, A.I.; Knowlton, R.C.; Rose, D.F.; Ebersole, J.S. ACMEGS Clinical Practice Guideline (CPG) Committee. American Clinical Magnetoencephalography Society Clinical Practice Guideline 1: Recording and analysis of spontaneous cerebral activity. J. Clin. Neurophysiol. 2011, 28, 348–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Tiège, X.; Carrette, E.; Legros, B.; Vonck, K.; Op de Beeck, M.; Bourguignon, M.; Massager, N.; David, P.; Van Roost, D.; Meurs, A.; et al. Clinical added value of magnetic source imaging in the presurgical evaluation of refractory focal epilepsy. J. Neurol. Neurosurg. Psychiatry 2012, 83, 417–423. [Google Scholar] [CrossRef]
- Rampp, S.; Stefan, H.; Wu, X.; Kaltenhäuser, M.; Maess, B.; Schmitt, F.C.; Wolters, C.H.; Hamer, H.; Kasper, B.S.; Schwab, S.; et al. Magnetoencephalography for epileptic focus localization in a series of 1000 cases. Brain 2019, 142, 3059–3071. [Google Scholar] [CrossRef]
- Beniczky, S.; Duez, L.; Scherg, M.; Hansen, P.O.; Tankisi, H.; Sidenius, P.; Sabers, A.; Pinborg, L.H.; Uldall, P.; Fuglsang-Frederiksen, A. Visualizing spikes in source-space: Rapid and efficient evaluation of magnetoencephalography. Clin. Neurophysiol. 2016, 127, 1067–1072. [Google Scholar] [CrossRef]
- Scherg, M.; Ebersole, J.S. Brain source imaging of focal and multifocal epileptiform EEG activity. Neurophysiol. Clin. 1994, 24, 51–60. [Google Scholar] [CrossRef]
- Scherg, M.; Ille, N.; Bornfleth, H.; Berg, P. Advanced tools for digital EEG review: Virtual source montages, whole-head mapping, correlation, and phase analysis. J. Clin. Neurophysiol. 2002, 19, 91–112. [Google Scholar] [CrossRef]
- Scherg, M.; Berg, P.; Nakasato, N.; Beniczky, S. Taking the EEG Back into the Brain: The Power of Multiple Discrete Sources. Front. Neurol. 2019, 10, 855. [Google Scholar] [CrossRef] [Green Version]
- Mosher, J.C.; Lewis, P.S.; Leahy, R.M. Multiple dipole modeling and localization from spatio-temporal MEG data. IEEE Trans. Biomed. Eng. 1992, 39, 541–557. [Google Scholar] [CrossRef]
- Hämäläinen, M.; Hari, R.; Ilmoniemi, R.J.; Knuutila, J.; Lounasmaa, O.V. Magnetoencephalography—Theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev. Mod. Phys. 1993, 65, 413–497. [Google Scholar] [CrossRef] [Green Version]
- Mosher, J.C.; Baillet, S.; Leahy, R.M. Equivalence of linear approaches in bioelectromagnetic inverse solutions. In Proceedings of the IEEE Workshop on Statistical Signal Processing, St. Louis, MO, USA, 28 September–1 October 2003; pp. 294–297. [Google Scholar] [CrossRef]
- Jaiswal, A.; Nenonen, J.; Stenroos, M.; Gramfort, A.; Dalal, S.S.; Westner, B.U.; Litvak, V.; Mosher, J.C.; Schoffelen, J.M.; Witton, C.; et al. Comparison of beamformer implementations for MEG source localization. NeuroImage 2020, 216, 116797. [Google Scholar] [CrossRef]
- Goldenholz, D.M.; Ahlfors, S.P.; Hämäläinen, M.S.; Sharon, D.; Ishitobi, M.; Vaina, L.M.; Stufflebeam, S.M. Mapping the signal-to-noise-ratios of cortical sources in magnetoencephalography and electroencephalography. Hum. Brain Mapp. 2009, 30, 1077–1086. [Google Scholar] [CrossRef] [Green Version]
- Dale, A.M.; Fischl, B.; Sereno, M.I. Cortical surface-based analysis. I. Segmentation and surface reconstruction. NeuroImage 1999, 9, 179–194. [Google Scholar] [CrossRef]
- Fischl, B. FreeSurfer. NeuroImage 2012, 62, 774–781. [Google Scholar] [CrossRef] [Green Version]
- Hillebrand, A.; Barnes, G.R. A quantitative assessment of the sensitivity of whole-head MEG to activity in the adult human cortex. NeuroImage 2002, 16, 638–650. [Google Scholar] [CrossRef]
- Vrba, J.; Robinson, S.E. Signal processing in magnetoencephalography. Methods 2001, 25, 249–271. [Google Scholar] [CrossRef] [Green Version]
- Hall, M.; Nissen, I.A.; van Straaten, E.; Furlong, P.L.; Witton, C.; Foley, E.; Seri, S.; Hillebrand, A. An evaluation of kurtosis beamforming in magnetoencephalography to localize the epileptogenic zone in drug resistant epilepsy patients. Clin. Neurophysiol. 2018, 129, 1221–1229. [Google Scholar] [CrossRef]
- Gotman, J.; Gloor, P. Automatic recognition and quantification of interictal epileptic activity in the human scalp EEG. Electroencephalogr. Clin. Neurophysiol. 1976, 41, 513–529. [Google Scholar] [CrossRef]
- Wilson, S.B.; Emerson, R. Spike detection: A review and comparison of algorithms. Clin. Neurophysiol. 2002, 113, 1873–1881. [Google Scholar] [CrossRef]
- Wilson, S.B.; Harner, R.N.; Duffy, F.H.; Tharp, B.R.; Nuwer, M.R.; Sperling, M.R. Spike detection. I. Correlation and reliability of human experts. Electroencephalogr. Clin. Neurophysiol. 1996, 98, 186–198. [Google Scholar] [CrossRef]
- Wilson, S.B.; Turner, C.A.; Emerson, R.G.; Scheuer, M.L. Spike detection II: Automatic, perception-based detection and clustering. Clin. Neurophysiol. 1999, 110, 404–411. [Google Scholar] [CrossRef]
- Scherg, M.; Ille, N.; Weckesser, D.; Ebert, A.; Ostendorf, A.; Boppel, T.; Schubert, S.; Larsson, P.G.; Henning, O.; Bast, T. Fast evaluation of interictal spikes in long-term EEG by hyper-clustering. Epilepsia 2012, 53, 1196–1204. [Google Scholar] [CrossRef]
- Jing, J.; Sun, H.; Kim, J.A.; Herlopian, A.; Karakis, I.; Ng, M.; Halford, J.J.; Maus, D.; Chan, F.; Dolatshahi, M.; et al. Development of Expert-Level Automated Detection of Epileptiform Discharges During Electroencephalogram Interpretation. JAMA Neurol. 2020, 77, 103–108. [Google Scholar] [CrossRef]
- Ossadtchi, A.; Baillet, S.; Mosher, J.C.; Thyerlei, D.; Sutherling, W.; Leahy, R.M. Automated interictal spike detection and source localization in magnetoencephalography using independent components analysis and spatio-temporal clustering. Clin. Neurophysiol. 2004, 115, 508–522. [Google Scholar] [CrossRef] [Green Version]
- Alotaiby, T.N.; Alrshoud, S.R.; Alshebeili, S.A.; Alhumaid, M.H.; Alsabhan, W.M. Epileptic MEG Spike Detection Using Statistical Features and Genetic Programming with KNN. J. Healthc. Eng. 2017, 2017, 3035606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, L.; Liao, P.; Luo, S.; Sheng, J.; Teng, P.; Luan, G.; Gao, J.H. EMS-Net: A Deep Learning Method for Autodetecting Epileptic Magnetoencephalography Spikes. IEEE Trans. Med. Imaging 2020, 39, 1833–1844. [Google Scholar] [CrossRef]
SNR1 | = 0% | = 0.5% | = 1% | = 2% | = 3% | = 4% | = 5% | |
---|---|---|---|---|---|---|---|---|
306 chns | 37 | 28 | 33 | 35 | 37 | 38 | 38 | 38 |
204 grads | 37 | 29 | 33 | 35 | 37 | 38 | 38 | 39 |
102 mags | 29 | 17 | 31 | 32 | 34 | 34 | 35 | 35 |
= 0% | = 0.5% | = 1% | = 2% | = 5% | |||
---|---|---|---|---|---|---|---|
306 chns | 100 | 86 | 80 | 73 | 69 | 66 | 63 |
204 grads | 100 | 89 | 84 | 78 | 73 | 70 | 68 |
102 mags | 94 | 71 | 64 | 58 | 54 | 51 | 49 |
SNR1 | Ndt1 | SNR2 | Ndt2 | Amp | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
- | - | 0% | 1% | 2% | 0% | 1% | 2% | 0% | 1% | 2% | |
mean | 31 | 33 | 23 | 26 | 28 | 4.4 | 3.9 | 3.8 | 94 | 67 | 60 |
median | 38 | 44 | 25 | 32 | 34 | 2 | 3 | 4 | 84 | 64 | 56 |
max | 50 | 71 | 47 | 47 | 47 | 19 | 14 | 12 | 263 | 202 | 176 |
SNR1 | Ndt1 | SNR2 | Ndt2 | Amp | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
- | - | 0% | 1% | 2% | 0% | 1% | 2% | 0% | 1% | 2% | ||
Left | mean | 21 | 11 | 10 | 14 | 15 | 0.6 | 1 | 1.2 | 41 | 30 | 28 |
median | 21 | 5 | 7 | 13 | 15 | 0 | 0 | 1 | 31 | 25 | 23 | |
max | 52 | 55 | 44 | 48 | 48 | 12 | 10 | 9 | 257 | 191 | 166 | |
Right | mean | 22 | 12 | 13 | 16 | 18 | 1.3 | 1.5 | 1.7 | 42 | 32 | 29 |
median | 24 | 8 | 12 | 16 | 18 | 0 | 1 | 1 | 31 | 25 | 23 | |
max | 53 | 58 | 48 | 47 | 47 | 22 | 13 | 13 | 295 | 241 | 221 |
Sensors | BR29 | |||
---|---|---|---|---|
- | ||||
Left | 2715 | 1182 | 1894 | 2059 |
Right | 2840 | 1710 | 2186 | 2333 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nenonen, J.; Helle, L.; Jaiswal, A.; Bock, E.; Ille, N.; Bornfleth, H. Sensitivity of a 29-Channel MEG Source Montage. Brain Sci. 2022, 12, 105. https://doi.org/10.3390/brainsci12010105
Nenonen J, Helle L, Jaiswal A, Bock E, Ille N, Bornfleth H. Sensitivity of a 29-Channel MEG Source Montage. Brain Sciences. 2022; 12(1):105. https://doi.org/10.3390/brainsci12010105
Chicago/Turabian StyleNenonen, Jukka, Liisa Helle, Amit Jaiswal, Elizabeth Bock, Nicole Ille, and Harald Bornfleth. 2022. "Sensitivity of a 29-Channel MEG Source Montage" Brain Sciences 12, no. 1: 105. https://doi.org/10.3390/brainsci12010105
APA StyleNenonen, J., Helle, L., Jaiswal, A., Bock, E., Ille, N., & Bornfleth, H. (2022). Sensitivity of a 29-Channel MEG Source Montage. Brain Sciences, 12(1), 105. https://doi.org/10.3390/brainsci12010105