Dysfunctional Learning and Verbal Memory in Patients with Elevated Tau Protein Levels and Serum Recoverin Autoantibodies—Case Series and Review
Abstract
:1. Introduction
2. Methods
Statistics
3. Results
3.1. Clinical Data
3.2. Cognitive Data
4. Discussion
4.1. Limitations
4.2. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Canamary, A.M., Jr.; Takahashi, W.Y.; Sallum, J.M.F. Autoimmune retinopathy: A Review. Int. J. Retin. Vitr. 2018, 4, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oporto Caroca, J.I.; Oporto Caroca, J. Autoimmune retinop Cathy with positive anti-recoverin antibodies not associated with neoplasms: Case report. Arch. Soc. Esp. Oftalmol. 2019, 94, 540–544. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.K.; Chew, A.L.; Zhang, D.; Chen, S.C.; Chelva, E.; Chandrasekera, E.; Koay, E.M.H.; Forrester, J.; McLenachan, S. Acute progressive paravascular placoid neuroretinopathy with negative-type electroretinography in paraneoplastic retinopathy. Doc. Ophthalmol. 2017, 134, 227–235. [Google Scholar] [CrossRef] [Green Version]
- Ten Berge, J.C.T.; Van Rosmalen, J.; Vermeer, J.; Hellström, C.; Lindskog, C.; Nilsson, P.; Qundos, U.; Rothova, A.; Schreurs, M.W.J. Serum Autoantibody Profiling of Patients with Paraneoplastic and Non-Paraneoplastic Autoimmune Retinopathy. PLoS ONE 2016, 11, e0167909. [Google Scholar] [CrossRef]
- Herzog, R.; Brüggemann, N.; Sprenger, A.; Münte, T.F. Recoverin-antibody-associated late onset ataxia without retinopathy. BJM Case Rep. 2020, 13, e237479. [Google Scholar] [CrossRef]
- Fries, R.; Reddy, P.P.; Mikhaylova, M.; Haverkamp, S.; Wei, T.; Müller, M.; Kreutz, M.R.; Koch, K.-W. Dynamic cellular translocation of caldendrin is facilitated by the Ca2+-myristoyl switch of recoverin. J. Neurochem. 2010, 113, 1150–1162. [Google Scholar] [CrossRef]
- Paterlini, M.; Revilla, V.; Grant, A.L.; Wisden, W. Expression of the neuronal calcium sensor protein family in the rat brain. Neuroscience 2000, 92, 205–216. [Google Scholar] [CrossRef]
- Korf, H.W.; White, B.H.; Schaad, N.C.; Klein, D.C. Recoverin in pineal organs and retinae of various vertebrate species including man. Brain Res. 1992, 595, 57–66. [Google Scholar] [CrossRef]
- Schomerus, C.; Ruth, P.; Korf, H.W. Photoreceptor-specific proteins in the mammalian pineal organ: Immunocytochemical data and functional considerations. Acta Neurobiol. Exp. 1994, 54, 9–17. [Google Scholar]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSMV©), 5th ed.; American Psychiatric Association: Washington, DC, USA, 2013. [Google Scholar]
- Broome, M.W.; Bottlender, R.; Rösler, M.; Stieglitz, R.D. (Eds.) Manual for the Assessment and Documentation of Psychopathology in Psychiatry (The ADMP System), 9th ed.; Hofgrefe: Göttingen, Germany, 2017. [Google Scholar]
- Hansen, N.; Lipp, M.; Vogelgsang, J.; Vukovich, R.; Zindler, T.; Luedecke, D.; Gingele, S.; Malchow, B.; Frieling, H.; Kühn, S.; et al. Autoantibody-associated psychiatric syndromes and symptoms in adults: A narrative review and proposed diagnostic approach. Brain Behav. Immun. Health 2020, 9, 100154. [Google Scholar] [CrossRef]
- Arinrad, S.; Wilke, J.B.H.; Seelbach, A.; Doeren, J.; Hindermann, M.; Butt, U.J.; Steixner-Kumar, A.A.; Spieth, L.; Ronnenberg, A.; Pan, H.; et al. NMDAR1 autoantibodies amplify behavioral phenotypes of genetic white matter inflammation: A mild encephalitis model with neuropsychiatric relevance. Mol. Psychiatry 2021. [Google Scholar] [CrossRef] [PubMed]
- Matsuoka, T.; Imai, A.; Fujimoto, H.; Kato, Y.; Shibata, K.; Nakamura, K.; Yokota, H.; Yamada, K.; Narumoto, J. Reduced Pineal Volume in Alzheimer Disease: A Retrospective Cross-sectional MR Imaging Study. Radiology 2018, 286, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Song, J. Pineal gland dysfunction in Alzheimer’s disease: Relationship with the immune-pineal axis, sleep disturbance, and neurogenesis. Mol. Neurodegener. 2019, 14, 28. [Google Scholar] [CrossRef]
- Jilg, A.; Bechstein, P.; Saade, A.; Dick, M.; Li, T.X.; Tosini, G.; Rami, A.; Zemmar, A.; Stehle, J.H. Melatonin modulates daytime-dependent synaptic plasticity and learning efficiency. Pineal Res. 2019, 66, e12553. [Google Scholar] [CrossRef]
- Ramírez-Rodríguez, G.B.; Olvera-Hernández, S.; Vega-Rivera, N.M.; Ortiz-López, L. Melatonin Influences Structural Plasticity in the Axons of Granule Cells in the Dentate Gyrus of Balb/C Mice. Int. J. Mol. Sci. 2018, 20, 73. [Google Scholar] [CrossRef] [Green Version]
- Dahm, L.; Ott, C.; Steiner, J.; Stepniak, B.; Teegen, B.; Saschenbrecker, S.; Hammer, C.; Borowski, K.; Begemann, M.; Lemke, S.; et al. Seroprevalence of autoantibodies against brain antigens in health and disease. Ann Neurol. 2014, 76, 82–94. [Google Scholar] [CrossRef] [PubMed]
- Bien, C.G.; Vincent, A.; Barnett, M.H.; Becker, A.J.; Blümcke, I.; Graus, F.; Jellinger, K.A.; Reuss, D.E.; Ribalta, T.; Schlegel, J.; et al. Immunopathology of autoantibody-associated encephalitides: Clues for pathogenesis. Brain 2012, 135 Pt 5, 1622–1638. [Google Scholar] [CrossRef] [Green Version]
- Helmstaedter, C.; Hansen, N.; Leelaarporn, P.; Schwing, K.; Oender, D.; Widman, G.; Racz, A.; Surges, R.; Becker, A.; Witt, J.-A. Specific B- and T-cell populations are associated with cognition in patients with epilepsy and antibody positive and negative suspected limbic encephalitis. J. Neurol. 2021, 268, 455–466. [Google Scholar] [CrossRef]
- Déchelotte, B.; Muñiz-Castrillo, S.; Joubert, B.; Vogrig, A.; Picard, G.; Rogemond, V.; Pinto, A.-L.; Lombard, C.; Desestret, V.; Fabien, N.; et al. Diagnostic yield of commercial immunodots to diagnose paraneoplastic neurologic syndromes. Neurol. Neuroimmunol. Neuroinflamm. 2020, 7, e701. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-García, R.; Martínez-Hernández, E.; Saiz, A.; Dalmau, J.; Graus, F. The Diagnostic Value of Onconeural Antibodies Depends on How They Are Tested. Front. Immunol. 2020, 11, 1482. [Google Scholar] [CrossRef]
- Bechter, K. The mild encephalitis-hypothesis—New findings and studies. Psychiatr. Prax. 2004, 31 (Suppl. 1), 41–43. [Google Scholar] [CrossRef]
- Bechter, K. The Challenge of Assessing Mild Neuroinflammation in Severe Mental Disorders. Front. Psychiatry 2020, 11, 773. [Google Scholar] [CrossRef]
- Hansen, N.; Schwing, K.; Önder, D.; Widman, G.; Leelaarporn, P.; Prusseit, I.; Surges, R.; Melzer, N.; Gross, C.; Becker, A.J.; et al. Low CSF CD4/CD8+ T-cell proportions are associated with blood-CSF barrier dysfunction in limbic encephalitis. Epilepsy Behav. 2020, 102, 106682. [Google Scholar] [CrossRef]
- Hansen, N.; Ernst, L.; Rüber, T.; Widman, G.; Becker, A.J.; Elger, C.E.; Helmstaedter, C. Pre- and long-term postoperative courses of hippocampus-associated memory impairment in epilepsy patients with antibody-associated limbic encephalitis and selective amygdalohippocampectomy. Epilepsy Behav. 2018, 79, 93–99. [Google Scholar] [CrossRef]
PARAMETER | |
---|---|
DEMOGRAPHIC PARAMETER | |
Sex (female) | 3 |
Age y | 73 ± 2.2 |
Onset y | 69.5 ± 7 |
Early onset | 2/5 (40%) |
PSYCHOPATHOLOGY | |
Disorders of consciousness | 0/4 (0%) |
Disturbances of orientation | 3/4 (75%) |
Disturbances of attention and memory | 5/5 (100%) |
Formal thought disorder | 3/4 (75%) |
Worries and compulsions | 0/4 (0%) |
Delusions | 0/4 (0%) |
Disorders of perception | 0/4 (0%) |
Ego disturbances | 0/4 (0%) |
Disturbances of affect | 2/4 (50%) |
Disorders of drive and psychomotor activity | 2/4 (50%) |
Circadian disturbances | 0/4 (0%) |
Social withdrawal | 1/4 (25%) |
Excessive social contact | 0/4 (0%) |
Aggressiveness | 0/4 (0%) |
Suicidal behavior | 0/4 (0%) |
Self-harm | 0/4 (0%) |
Lack of feeling ill | 0/4 (0%) |
Lack of insight into illness | 0/4 (0%) |
Uncooperativeness | 0/4 (0%) |
Need for care | 0/4 (0%) |
STRONG INDICATORS FOR AUTOIMMUNITY | |
Aphasia, mutism, dysarthria | 0/5 (0%) |
Autonomic disturbances | 0/5 (0%) |
Central hypoventilation | 0/5 (0%) |
Decreased level of consciousness | 0/5 (0%) |
Epileptic seizures | 0/5 (0%) |
Faciobrachial dystonic seizures | 0/5 (0%) |
Focal neurological deficit | 3/5 (60%) |
Hyponatremia | 0/5 (0%) |
Infectious prodrome | 0/5 (0%) |
Movement disorder | 1/5 (20%) |
New onset headache | 1/5 (20%) |
Adverse response to AP or AD | 0/5 (0%) |
Optic hallucinations | 0/5 (0%) |
Other autoimmune disorder | 1/5 (20%) |
Paresthesia | 3/5 (60%) |
Presence of a tumor | 1/5 (20%) |
Presence of neuroleptic malignant syndrome | 0/5 (0%) |
Severe cognitive dysfunction | 5/5 (100%) |
WEAK INDICATORS FOR AUTOIMMUNITY | |
Confusion | 0/5 (0%) |
Dynamic course | 0/5 (0%) |
Early resistance to therapy | 0/5 (0%) |
Fluctuating psychopathology | 0/5 (0%) |
CSF | |
Cell count (<5 µg/L) | 0.4 ± 0.24 |
Albumin mg/L | 247 ± 47 |
IgG mg/L | 23 ± 4.3 |
IgA mg/L | 2.26 ± 0.39 |
IgM mg/L | 0.49 ± 0.14 |
t-tau protein (<450 pg/mL) | 485 ± 174 |
p-tau 181 (<61 pg/mL) | 84.6 ± 38 |
Aß42 (>450 pg/mL) | 948 ± 160 |
Aß40 | 11842 ± 807 |
Aß42/Aß40 ×10 (>0.5) | 0.83 ± 0.16 |
BRAIN MRI | |
Generalized atrophy | 3/5 (60%) |
Focal atrophy | 3/5 (60%) |
Vascular lesions | 5/5 (100%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hansen, N.; Bartels, C.; Rentzsch, K.; Stöcker, W.; Fitzner, D. Dysfunctional Learning and Verbal Memory in Patients with Elevated Tau Protein Levels and Serum Recoverin Autoantibodies—Case Series and Review. Brain Sci. 2022, 12, 15. https://doi.org/10.3390/brainsci12010015
Hansen N, Bartels C, Rentzsch K, Stöcker W, Fitzner D. Dysfunctional Learning and Verbal Memory in Patients with Elevated Tau Protein Levels and Serum Recoverin Autoantibodies—Case Series and Review. Brain Sciences. 2022; 12(1):15. https://doi.org/10.3390/brainsci12010015
Chicago/Turabian StyleHansen, Niels, Claudia Bartels, Kristin Rentzsch, Winfried Stöcker, and Dirk Fitzner. 2022. "Dysfunctional Learning and Verbal Memory in Patients with Elevated Tau Protein Levels and Serum Recoverin Autoantibodies—Case Series and Review" Brain Sciences 12, no. 1: 15. https://doi.org/10.3390/brainsci12010015
APA StyleHansen, N., Bartels, C., Rentzsch, K., Stöcker, W., & Fitzner, D. (2022). Dysfunctional Learning and Verbal Memory in Patients with Elevated Tau Protein Levels and Serum Recoverin Autoantibodies—Case Series and Review. Brain Sciences, 12(1), 15. https://doi.org/10.3390/brainsci12010015