Brain Activity after Intermittent Hypoxic Brain Condition in Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Subjects
2.2. Methods
2.2.1. Hypoxic Brain Injury Rat Model
2.2.2. Small-Animal Positron Emission Tomography–Computed Tomography Imaging Protocol
2.2.3. Western Blot Analysis
2.2.4. Immunohistochemistry
2.2.5. Imaging of Brain Activity
2.2.6. Statistical Analyses
3. Results
3.1. Brain Metabolism Using Small-Animal PET/CT Imaging
3.2. Western Blot and Immunohistochemistry
3.3. Imaging of Brain Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, A.C.; Kozuki, N.; Blencowe, H.; Vos, T.; Bahalim, A.; Darmstadt, G.L.; Niermeyer, S.; Ellis, M.; Robertson, N.J.; Cousens, S.; et al. Intrapartum-related neonatal encephalopathy incidence and impairment at regional and global levels for 2010 with trends from 1990. Pediatr. Res. 2013, 74, 50–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hogue, C.W.; Gottesman, R.F.; Stearns, J. Mechanisms of Cerebral Injury from Cardiac Surgery. Crit. Care Clin. 2008, 24, 83-ix, Correction in Crit. Care Clin. 2008, 24, xiii. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sudikoff, S.; Banasiak, K. Techniques for measuring cerebral blood flow in children. Curr. Opin. Pediatr. 1998, 10, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Gozal, D. Morbidity of obstructive sleep apnea in children: Facts and theory. Sleep Breath. 2001, 5, 35–42. [Google Scholar] [CrossRef]
- Kawasaki, K.; Traynelis, S.F.; Dingledine, R. Different responses of CA1 and CA3 regions to hypoxia in rat hippocampal slice. J. Neurophysiol. 1990, 63, 385–394. [Google Scholar] [CrossRef]
- Goldbart, A.; Cheng, Z.J.; Brittian, K.R.; Gozal, D. Intermittent hypoxia induces time-dependent changes in the protein kinase B signaling pathway in the hippocampal CA1 region of the rat. Neurobiol. Dis. 2003, 14, 440–446. [Google Scholar] [CrossRef]
- Gozal, D.; Daniel, J.M.; Dohanich, G.P. Behavioral and anatomical correlates of chronic episodic hypoxia during sleep in the rat. J. Neurosci. 2001, 21, 2442–2450. [Google Scholar] [CrossRef]
- Gozal, D.; Row, B.W.; Gozal, E.; Kheirandish, L.; Neville, J.J.; Brittian, K.R.; Sachleben, L.R., Jr.; Guo, S.Z. Temporal aspects of spatial task performance during intermittent hypoxia in the rat: Evidence for neurogenesis. Eur. J. Neurosci. 2003, 18, 2335–2342. [Google Scholar] [CrossRef]
- Gozal, D.; Row, B.W.; Kheirandish, L.; Liu, R.; Guo, S.Z.; Qiang, F.; Brittian, K.R. Increased susceptibility to intermittent hypoxia in aging rats: Changes in proteasomal activity, neuronal apoptosis and spatial function. J. Neurochem. 2003, 86, 1545–1552. [Google Scholar] [CrossRef] [Green Version]
- Kheirandish, L.; Gozal, D.; Pequignot, J.M.; Pequignot, J.; Row, B.W. Intermittent hypoxia during development induces long-term alterations in spatial working memory, monoamines, and dendritic branching in rat frontal cortex. Pediatr. Res. 2005, 58, 594–599. [Google Scholar] [CrossRef] [Green Version]
- Kheirandish, L.; Row, B.W.; Li, R.C.; Brittian, K.R.; Gozal, D. Apolipoprotein E-deficient mice exhibit increased vulnerability to intermittent hypoxia-induced spatial learning deficits. Sleep 2005, 28, 1412–1417. [Google Scholar] [CrossRef] [Green Version]
- Lavie, L. Obstructive sleep apnoea syndrome-an oxidative stress disorder. Sleep Med. Rev. 2003, 7, 35–51. [Google Scholar] [CrossRef]
- Veasey, S.C.; Davis, C.W.; Fenik, P.; Zhan, G.; Hsu, Y.J.; Pratico, D.; Gow, A. Long-term intermittent hypoxia in mice: Protracted hypersomnolence with oxidative injury to sleep–wake brain regions. Sleep 2004, 27, 194–201. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.H.; Yan, H.C.; Zhang, J.; Qu, H.D.; Qiu, X.S.; Chen, L.; Li, S.J.; Cao, X.; Bean, J.C.; Chen, L.H.; et al. Intermittent hypoxia promotes hippocampal neurogenesis and produces antidepressant-like effects in adult rats. J. Neurosci. 2010, 30, 12653–12663. [Google Scholar] [CrossRef]
- Rybnikova, E.; Mironova, V.; Pivina, S.; Tulkova, E.; Ordyan, N.; Vataeva, L. Antidepressant-like effects of mild hypoxia preconditioning in the learned helplessness model in rats. Neurosci. Lett. 2007, 417, 234–239. [Google Scholar] [CrossRef]
- Rybnikova, E.A.; Samoilov, M.O.; Mironova, V.I.; Tyul’kova, E.I.; Pivina, S.G.; Vataeva, L.A.; Vershinina, E.; Abritalin, E.; Kolchev, A.; Nalivaeva, N.; et al. The possible use of hypoxic preconditioning for the prophylaxis of post-stress depressive episodes. Neurosci. Behav. Physiol. 2008, 38, 721–726. [Google Scholar] [CrossRef]
- Kushwah, N.; Jain, V.; Deep, S.; Prasad, D.; Singh, S.B.; Khan, N. Neuroprotective role of intermittent hypobaric hypoxia in unpredictable chronic mild stress induced depression in rats. PLoS ONE 2016, 22, e0149309. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Jianhua, C.; Li, L.; Yusong, G.; Jun, C.; Zhou, F.; Weiping, L. Effect of different mild hypoxia manipulations on kainic acid-induced seizures in the hippocampus of rats. Neurochem. Res. 2013, 38, 123–132. [Google Scholar] [CrossRef]
- Song, M.K.; Kim, E.J.; Kim, J.K.; Park, H.K.; Lee, S.G. Effect of regular swimming exercise to duration-intensity on neurocognitive function in cerebral infarction rat model. Neurol. Res. 2019, 41, 37–44. [Google Scholar] [CrossRef]
- Rasband, W.; Ferreira, T. ImageJ User Guide; National Institutes of Health: Bethesda, MD, USA, 2011.
- Pillai-Kastoori, L.; Schutz-Geschwender, A.R.; Harford, J.A. A systematic approach to quantitative Western blot analysis. Anal Biochem. 2020, 593, 113608. [Google Scholar] [CrossRef]
- Di Paola, M.; Caltagirone, C.; Fadda, L.; Sabatini, U.; Serra, L.; Carlesimo, G.A. Hippocampal atrophy is the critical brain change in patients with hypoxic amnesia. Hippocampus 2008, 18, 719–728. [Google Scholar] [CrossRef]
- Shu, J.; Fu, H.; Qiu, G.; Kaye, P.; Ilyas, M. Segmenting overlapping cell nuclei in digital histopathology images. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; Volume 2013, pp. 5445–5448. [Google Scholar]
- Shu, J.; Dolman, G.E.; Duan, J.; Qiu, G.; Ilyas, M. Statistical colour models: An automated digital image analysis method for quantification of histological biomarkers. Biomed. Eng. Online 2016, 15, 46. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Mascarenhas, C.; Jia, X. Positron Emission Tomography after Ischemic Brain Injury: Current Challenges and Future Developments. Transl. Stroke Res. 2020, 11, 628–642. [Google Scholar] [CrossRef] [PubMed]
- Putzu, A.; Valtorta, S.; Di Grigoli, G.; Haenggi, M.; Belloli, S.; Malgaroli, A. Regional differences in cerebral glucose metabolism after cardiac arrest and resuscitation in rats using 18F-FDG positron emission tomography and autoradiography. Neurocritical. Care 2018, 28, 370–378. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, C.S.; Wu, C.J.; Yang, J.; Hang, C.C. Comparison of cerebral metabolism between pig ventricular fibrillation and asphyxial cardiac arrest models. Chin. Med. J. 2015, 128, 1643–1648. [Google Scholar] [CrossRef] [PubMed]
- Fukumoto, D.; Hosoya, T.; Nishiyama, S.; Harada, N.; Iwata, H.; Yamamoto, S. Multiparametric assessment of acute and subacute ischemic neuronal damage: A small animal positron emission tomography study with rat photochemically induced thrombosis model. Synapse 2011, 65, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Jiang, X.; Zhang, Q.; Duan, S.; Zhang, T.; Huang, Q. Abnormal metabolic connectivity in rats at the acute stage of ischemic stroke. Neurosci. Bull. 2018, 34, 715–724. [Google Scholar] [CrossRef]
- Schanzer, A.; Wachs, F.P.; Wilhelm, D.; Acker, T.; Cooper-Kuhn, C.; Beck, H.; Winkler, J.; Aigner, L.; Plate, K.H.; Kuhn, H.G. Direct stimulation of adult neural stem cells in vitro and neurogenesis in vivo by vascular endothelial growth factor. Brain Pathol. 2004, 14, 237–248. [Google Scholar] [CrossRef]
- Mu, D.; Jiang, X.; Sheldon, R.A.; Fox, C.K.; Hamrick, S.E.; Vexler, Z.S.; Ferriero, D.M. Regulation of hypoxia-inducible factor 1alpha and induction of vascular endothelial growth factor in a rat neonatal stroke model. Neurobiol. Dis. 2003, 14, 524–534. [Google Scholar] [CrossRef]
- Feng, Y.; Rhodes, P.G.; Bhatt, A.J. Neuroprotective effects of vascular endothelial growth factor following hypoxic ischemic brain injury in neonatal rats. Pediatr. Res. 2008, 64, 370–374. [Google Scholar] [CrossRef] [Green Version]
- Diemer, K. On oxygen diffusion in the brain. II. Oxygen diffusion in O2 deficiency conditions. Pflugers Arch. Gesamte Physiol. Menschen Tiere 1965, 285, 109–118. [Google Scholar] [CrossRef]
- Mironov, V.; Hritz, M.A.; LaManna, J.C.; Hudetz, A.G.; Harik, S.I. Architectural alterations in rat cerebral microvessels after hypobaric hypoxia. Brain Res. 1994, 660, 73–80. [Google Scholar] [CrossRef]
- Harik, S.I.; Hritz, M.A.; LaManna, J.C. Hypoxia-induced brain angiogenesis in the adult rat. J. Physiol. 1995, 485, 25–30. [Google Scholar] [CrossRef] [Green Version]
Brain Regions (%ID/g) | Control (n = 2) | After Five Days Hypoxic Exposure († n = 6) | p-Value | Control (n = 2) | Five Days Rest after Hypoxic Exposure († n = 6) | p-Value |
---|---|---|---|---|---|---|
Accumbens left | 0.00047 ± 0.00004 | 0.0013 ± 0.00062 | * 0.046 | 0.00054 ± 0.00006 | 0.00084 ± 0.00042 | 0.505 |
Accumbens right | 0.00046 ± 0.00001 | 0.0014 ± 0.00105 | * 0.044 | 0.00055 ± 0.00013 | 0.00078 ± 0.00035 | 0.180 |
Amygdala left | 0.00046 ± 0.00003 | 0.00092 ± 0.0003444 | 0.096 | 0.00040 ± 0.00012 | 0.00067 ± 0.00031 | 0.505 |
Amygdala right | 0.00042 ± 0.00001 | 0.00095 ± 0.00055 | * 0.046 | 0.00031 ± 0.00015 | 0.00063 ± 0.00031 | 0.505 |
Striatum left | 0.00050 ± 0.00001 | 0.00133 ± 0.00073 | * 0.044 | 0.00053 ± 0.00004 | 0.00090 ± 0.00043 | 0.502 |
Striatum right | 0.00048 ± 0.00004 | 0.00139 ± 0.00089 | * 0.044 | 0.00048 ± 0.00003 | 0.00090 ± 0.00044 | 0.502 |
Auditory cortex left | 0.00047 ± 0.00002 | 0.00124 ± 0.00071 | * 0.044 | 0.00045 ± 0.00004 | 0.00080 ± 0.00038 | 0.502 |
Auditory cortex right | 0.00044 ± 0.00001 | 0.00117 ± 0.00079 | 0.180 | 0.00040 ± 0.00005 | 0.00073 ± 0.00040 | 0.502 |
Cingulate cortex left | 0.00049 ± 0.00002 | 0.00158 ± 0.00122 | * 0.046 | 0.00061 ± 0.00014 | 0.00091 ± 0.00047 | 0.505 |
Cingulate cortex right | 0.00048 ± 0.00001 | 0.00156 ± 0.00123 | * 0.046 | 0.00059 ± 0.00014 | 0.00090 ± 0.00046 | 0.505 |
Entorhinal cortex left | 0.00042 ± 0.00002 | 0.00118 ± 0.00072 | * 0.046 | 0.00045 ± 0.00002 | 0.00073 ± 0.00033 | 0.505 |
Entorhinal cortex right | 0.00042 ± 0.00001 | 0.00126 ± 0.00092 | * 0.046 | 0.00040 ± 0.00004 | 0.00073 ± 0.00035 | 0.317 |
Frontal association cortex left | 0.00037 ± 0.00006 | 0.00109 ± 0.00095 | * 0.046 | 0.00042 ± 0.00013 | 0.00055 ± 0.00025 | 0.180 |
Frontal association cortex right | 0.00035 ± 0.00014 | 0.00129 ± 0.00120 | 0.096 | 0.00045 ± 0.00028 | 0.00057 ± 0.00027 | 0.317 |
Insular cortex left | 0.00043 ± 0.00002 | 0.00150 ± 0.00100 | * 0.046 | 0.00052 ± 0.00010 | 0.00089 ± 0.00040 | 0.505 |
Insular cortex right | 0.00044 ± 0.00003 | 0.00173 ± 0.00142 | * 0.046 | 0.00050 ± 0.00005 | 0.00092 ± 0.00041 | 0.505 |
Medial prefrontal cortex left | 0.00049 ± 0.00001 | 0.00137 ± 0.00063 | * 0.046 | 0.00050 ± 0.00001 | 0.00090 ± 0.00052 | 0.505 |
Medial prefrontal cortex right | 0.00050 ± 0.00001 | 0.00137 ± 0.00067 | * 0.046 | 0.00050 ± 0.00001 | 0.00089 ± 0.00051 | 0.505 |
Motor cortex left | 0.00043 ± 0.00001 | 0.00144 ± 0.00122 | * 0.044 | 0.00056 ± 0.00018 | 0.00077 ± 0.00038 | 0.505 |
Motor cortex right | 0.00042 ± 0.00003 | 0.00157 ± 0.00136 | * 0.044 | 0.00054 ± 0.00021 | 0.00081 ± 0.00042 | 0.505 |
Orbitofrontal cortex left | 0.00046 ± 0.00003 | 0.00137 ± 0.00101 | * 0.046 | 0.00051 ± 0.00011 | 0.00076 ± 0.00034 | 0.505 |
Orbitofrontal cortex right | 0.00045 ± 0.00001 | 0.00167 ± 0.00145 | * 0.046 | 0.00061 ± 0.00029 | 0.00076 ± 0.00035 | 0.505 |
Parietal association cortex left | 0.00046 ± 0.00001 | 0.00151 ± 0.00121 | * 0.044 | 0.00055 ± 0.00012 | 0.00088 ± 0.00042 | 0.502 |
Parietal association cortex right | 0.00046 ± 0.00001 | 0.00140 ± 0.00117 | 0.180 | 0.00055 ± 0.00012 | 0.00081 ± 0.00043 | 0.502 |
Retrosplenial cortex left | 0.00046 ± 0.00001 | 0.00144 ± 0.00132 | * 0.046 | 0.00053 ± 0.00011 | 0.00081 ± 0.00031 | 0.505 |
Retrosplenial cortex right | 0.00047 ± 0.00001 | 0.00148 ± 0.00140 | * 0.046 | 0.00054 ± 0.00010 | 0.00079 ± 0.00031 | 0.505 |
Somatosensory cortex left | 0.00046 ± 0.00001 | 0.00141 ± 0.00096 | * 0.046 | 0.00053 ± 0.00010 | 0.00082 ± 0.00044 | 0.505 |
Somatosensory cortex right | 0.00046 ± 0.00001 | 0.00132 ± 0.00088 | 0.182 | 0.00048 ± 0.00003 | 0.00082 ± 0.00045 | 0.505 |
Visual cortex left | 0.00044 ± 0.00001 | 0.00147 ± 0.00117 | * 0.044 | 0.00054 ± 0.00014 | 0.00085 ± 0.00039 | 0.502 |
Visual cortex right | 0.00043 ± 0.00002 | 0.00146 ± 0.00123 | * 0.046 | 0.00051 ± 0.00014 | 0.00083 ± 0.00042 | 0.505 |
Hippocampus anterodorsal left | 0.00043 ± 0.00007 | 0.00133 ± 0.00107 | * 0.046 | 0.00051 ± 0.00012 | 0.00081 ± 0.00027 | 0.317 |
Hippocampus anterodorsal right | 0.00074 ± 0.00008 | 0.00127 ± 0.00086 | * 0.044 | 0.00048 ± 0.00009 | 0.00081 ± 0.00031 | 0.317 |
Hippocampus posterior left | 0.00046 ± 0.00004 | 0.00110 ± 0.00065 | * 0.046 | 0.00046 ± 0.00004 | 0.00074 ± 0.00027 | 0.317 |
Hippocampus posterior right | 0.00047 ± 0.00001 | 0.00121 ± 0.00089 | * 0.046 | 0.00040 ± 0.00010 | 0.00074 ± 0.00029 | 0.505 |
Hypothalamus left | 0.00047 ± 0.00001 | 0.00100 ± 0.00041 | * 0.046 | 0.00035 ± 0.00016 | 0.00070 ± 0.00036 | 0.505 |
Hypothalamus right | 0.00049 ± 0.00001 | 0.00103 ± 0.00047 | * 0.046 | 0.00036 ± 0.00018 | 0.00070 ± 0.00035 | 0.505 |
Olfactory left | 0.00047 ± 0.00007 | 0.00116 ± 0.00050 | * 0.046 | 0.00046 ± 0.00009 | 0.00075 ± 0.00039 | 0.505 |
Olfactory right | 0.00045 ± 0.00003 | 0.00131 ± 0.00069 | * 0.044 | 0.00046 ± 0.00001 | 0.00071 ± 0.00036 | 0.505 |
Colliculus superior left | 0.00050 ± 0.00001 | 0.00134 ± 0.00106 | * 0.040 | 0.00053 ± 0.00003 | 0.00079 ± 0.00029 | 0.495 |
Colliculus superior right | 0.00051 ± 0.00001 | 0.00128 ± 0.00090 | * 0.040 | 0.00052 ± 0.00001 | 0.00079 ± 0.00030 | 0.495 |
Midbrain left | 0.00051 ± 0.00001 | 0.00132 ± 0.00098 | * 0.044 | 0.00048 ± 0.00005 | 0.00078 ± 0.00028 | 0.505 |
Midbrain right | 0.00053 ± 0.00002 | 0.00133 ± 0.00098 | * 0.046 | 0.00048 ± 0.00010 | 0.00077 ± 0.00029 | 0.505 |
Ventral tegmental area left | 0.00053 ± 0.00004 | 0.00113 ± 0.00050 | * 0.046 | 0.00037 ± 0.00015 | 0.00077 ± 0.00032 | 0.505 |
Ventral tegmental area right | 0.00044 ± 0.00001 | 0.00117 ± 0.00067 | * 0.046 | 0.00040 ± 0.00022 | 0.00076 ± 0.00033 | 0.505 |
Cerebellum GM left | 0.00047 ± 0.00001 | 0.00101 ± 0.00064 | * 0.046 | 0.00039 ± 0.00011 | 0.00060 ± 0.00025 | 0.505 |
Cerebellum GM right | 0.00044 ± 0.00001 | 0.00098 ± 0.00066 | * 0.046 | 0.00038 ± 0.00009 | 0.00058 ± 0.00025 | 0.505 |
Cerebellum WM left | 0.00054 ± 0.00001 | 0.00121 ± 0.00089 | * 0.046 | 0.00041 ± 0.00019 | 0.00069 ± 0.00030 | 0.505 |
Cerebellum WM right | 0.00051 ± 0.00001 | 0.00117 ± 0.00086 | * 0.046 | 0.00041 ± 0.00013 | 0.00066 ± 0.00030 | 0.505 |
Colliculus inferior left | 0.00052 ± 0.00007 | 0.00142 ± 0.00104 | * 0.046 | 0.00051 ± 0.00007 | 0.00084 ± 0.00037 | 0.505 |
Colliculus inferior right | 0.00049 ± 0.00003 | 0.00135 ± 0.00093 | * 0.046 | 0.00054 ± 0.00004 | 0.00082 ± 0.00035 | 0.505 |
Thalamus left | 0.00050 ± 0.00003 | 0.00128 ± 0.00095 | * 0.046 | 0.00052 ± 0.00006 | 0.00080 ± 0.00027 | 0.317 |
Thalamus right | 0.00050 ± 0.00003 | 0.00132 ± 0.00098 | * 0.046 | 0.00050 ± 0.00003 | 0.00081 ± 0.00029 | 0.317 |
Pituitary | 0.00042 ± 0.00001 | 0.00082 ± 0.00027 | * 0.046 | 0.00033 ± 0.00014 | 0.00056 ± 0.00028 | 0.505 |
Cerebellum blood | 0.00063 ± 0.00005 | 0.00146 ± 0.00121 | * 0.043 | 0.00055 ± 0.00015 | 0.00077 ± 0.00034 | 0.502 |
Central canal periaqueductal gray | 0.00053 ± 0.00001 | 0.00134 ± 0.00111 | * 0.046 | 0.00053 ± 0.00001 | 0.00076 ± 0.00027 | 0.505 |
Pons | 0.00046 ± 0.00004 | 0.00092 ± 0.00041 | * 0.046 | 0.00034 ± 0.00022 | 0.00061 ± 0.00030 | 0.505 |
Septum | 0.00049 ± 0.00002 | 0.00125 ± 0.00092 | * 0.046 | 0.00048 ± 0.00001 | 0.00074 ± 0.00028 | 0.505 |
Medulla | 0.00057 ± 0.00007 | 0.00112 ± 0.00055 | * 0.046 | 0.00040 ± 0.00030 | 0.00070 ± 0.00036 | 0.505 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mun, B.; Jang, Y.-C.; Kim, E.-J.; Kim, J.-H.; Song, M.-K. Brain Activity after Intermittent Hypoxic Brain Condition in Rats. Brain Sci. 2022, 12, 52. https://doi.org/10.3390/brainsci12010052
Mun B, Jang Y-C, Kim E-J, Kim J-H, Song M-K. Brain Activity after Intermittent Hypoxic Brain Condition in Rats. Brain Sciences. 2022; 12(1):52. https://doi.org/10.3390/brainsci12010052
Chicago/Turabian StyleMun, Bora, Yun-Chol Jang, Eun-Jong Kim, Ja-Hae Kim, and Min-Keun Song. 2022. "Brain Activity after Intermittent Hypoxic Brain Condition in Rats" Brain Sciences 12, no. 1: 52. https://doi.org/10.3390/brainsci12010052
APA StyleMun, B., Jang, Y. -C., Kim, E. -J., Kim, J. -H., & Song, M. -K. (2022). Brain Activity after Intermittent Hypoxic Brain Condition in Rats. Brain Sciences, 12(1), 52. https://doi.org/10.3390/brainsci12010052