Saturation Transfer MRI for Detection of Metabolic and Microstructural Impairments Underlying Neurodegeneration in Alzheimer’s Disease
Abstract
:1. Introduction
2. Pathophysiology of Alzheimer’s Disease
3. Imaging Techniques in Current Clinical Practice
3.1. PET
3.2. SPECT
3.3. MRS
3.4. Other MRI Methods
3.5. Imaging Other Aspects of AD Pathology
4. Magnetization Transfer (MT) MRI
4.1. Principles of the MT Acquisition
4.2. MT Data Processing and Parametrization
4.3. MT-Based Findings in Alzheimer’s Disease
5. Chemical Exchange Saturation Transfer (CEST)
5.1. CEST Principles
5.2. Key Points of CEST Data Acquisition, Analysis, and Parametrization
5.3. Animal Models Used in CEST Experiments
5.4. What Does Endogenous CEST Reveal in AD?
5.4.1. APT as a Potential Indicator of Protein Aggregates and pH Changes
5.4.2. Creatine CEST (CrCEST) for More Precise Identification of Altered pH
5.4.3. Neuroinflammation Detected by Myo-Inositol CEST (MICEST)
B0 (T) | Subjects 1 (AD/Early Stage AD/WT) | CEST Scans (Slices/Offsets), Offset Range | Saturation Power (μT)/Sat. Time (ms) | Parametrization | Brian Regions without Significant Differences | Brian Regions with Significant Differences | Ref. |
---|---|---|---|---|---|---|---|
CrCEST | |||||||
11.7 | Tau4RΔK and APP/PS1 (0/7+7/5) | 1/27, 2.3 to 5 ppm | 2/1000 | RCr ↓, ΔZCr depend on pH, but N/S in AD | N/A | cortex, thalamus, corpus callosum | [146] |
MICEST | |||||||
9.4 | APP/PS1 (5/0/5) | 1/20, 0 to 2 ppm | 75 Hz/5000 | MTRasym(0.6 ppm) 2↑ | N/A | whole-brain, thalamus | [151] |
9.4 | APP/PS1 (0/6/6) | 1/40, −4.00 to +4.00 ppm | 0.9/1600 | MTRasym(0.6 ppm)↑ in neuroinflammation and astrogliosis, correlates with density of reactive microglia | N/A | hippocampus | [152] |
gluCEST | |||||||
9.4 | APP/PS1 (6/0/6) | 1/50, −5.00 to +5.00 ppm | 250 Hz/1000 | MTRasym(3.0 ppm)↓, correlates with MRS-derived Glu/tCr | hippocampus | [155] | |
9.4 | PS19 (9/0/8) | 1/40, ± (2.4 to 3.6) ppm | 5.9/4 × 250 | MTRasym(3.0 ppm)↓, correlates with synaptic density | cortex, hippocampus DG | hippocampus CA and thalamus | [156] |
9.4 | PS19 (6/6/9) | 3/10, ± (2.5 to 3.5) ppm | 5.87/4 × 250 | early: MTRasym(3.0 ppm)↑; advanced: MTRasym(3.0 ppm)↓, correlates: (+) with synaptic density and (−) with density of reactive microglia | early: CA1 and DG subregions; advanced: all hippocampal layers | [157] | |
7.0 | 5xFAD (23/6/29) | 2/50, −5.00 to +5.00 ppm | 5/8 × 100 | early & advanced: MTRasym(3.0 ppm)↓, correlates with synaptic and neurites density | caudate | early: parietal and temporal cortex, hippocampus; advanced: frontal cortex, thalamus | [158] |
5.4.4. Glutamate CEST (gluCEST)—The Most Comprehensive Tool for Staging AD
5.5. Impaired Metabolism Revealed by Exogenous Glucose CEST (GlucoCEST)
6. Conclusions and Future Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- 2021 Alzheimer’s disease facts and figures. Alzheimer’s Dement. 2021, 17, 327–406. [CrossRef]
- Srivastava, S.; Ahmad, R.; Khare, S.K. Alzheimer’s disease and its treatment by different approaches: A review. Eur. J. Med. Chem. 2021, 216, 113320. [Google Scholar] [CrossRef]
- Guerchet, M.; Prince, M.; Prina, M. Numbers of People with Dementia around the World; Alzheimer’s Disease International: London, UK, 2020. [Google Scholar]
- Prince, M.J.; Wimo, A.; Guerchet, M.M.; Ali, G.C.; Wu, Y.T.; Prina, M. World Alzheimer Report 2015—The Global Impact of Dementia: An Analysis of Prevalence, Incidence, Cost and Trends; Alzheimer’s Disease International: London, UK, 2015; 84p. [Google Scholar]
- McKhann, G.M.; Knopman, D.S.; Chertkow, H.; Hyman, B.T.; Jack, C.R., Jr.; Kawas, C.H.; Klunk, W.E.; Koroshetz, W.J.; Manly, J.J.; Mayeux, R.; et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011, 7, 263–269. [Google Scholar] [CrossRef] [Green Version]
- Jack, C.R., Jr.; Bennett, D.A.; Blennow, K.; Carrillo, M.C.; Dunn, B.; Haeberlein, S.B.; Holtzman, D.M.; Jagust, W.; Jessen, F.; Karlawish, J.; et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimer Dement. 2018, 14, 535–562. [Google Scholar] [CrossRef]
- Dugger, B.N.; Dickson, D.W. Pathology of Neurodegenerative Diseases. Cold Spring Harb. Perspect. Biol. 2017, 9, a028035. [Google Scholar] [CrossRef]
- Braak, H.; Braak, E. Diagnostic Criteria for Neuropathologic Assessment of Alzheimer’s Disease. Neurobiol. Aging 1997, 18, S85–S88. [Google Scholar] [CrossRef]
- Chételat, G.; Villemagne, V.L.; Bourgeat, P.; Pike, K.E.; Jones, G.; Ames, D.; Ellis, K.A.; Szoeke, C.; Martins, R.N.; O’Keefe, G.J.; et al. Relationship between atrophy and β-amyloid deposition in Alzheimer’s disease. Ann. Neurol. 2009, 67, 317–324. [Google Scholar] [CrossRef]
- Braak, H.; Thal, D.R.; Ghebremedhin, E.; Del Tredici, K. Stages of the pathologic process in Alzheimer disease: Age categories from 1 to 100 years. J. Neuropathol. Exp. Neurol. 2011, 70, 960–969. [Google Scholar] [CrossRef] [PubMed]
- Serrano-Pozo, A.; Qian, J.; Ms, S.E.M.; Blacker, D.; Gómez-Isla, T.; Betensky, R.A.; Growdon, J.H.; Johnson, K.A.; Frosch, M.P.; Sperling, R.A.; et al. Mild to moderate Alzheimer dementia with insufficient neuropathological changes. Ann. Neurol. 2014, 75, 597–601. [Google Scholar] [CrossRef] [PubMed]
- Knopman, D.S.; Parisi, J.E.; Salviati, A.; Floriach-Robert, M.; Boeve, B.F.; Ivnik, R.J.; Smith, G.E.; Dickson, D.W.; Johnson, K.A.; Petersen, L.E.; et al. Neuropathology of Cognitively Normal Elderly. J. Neuropathol. Exp. Neurol. 2003, 62, 1087–1095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bennett, D.A.; Schneider, J.A.; Arvanitakis, Z.; Kelly, J.F.; Aggarwal, N.T.; Shah, R.; Wilson, R.S. Neuropathology of older persons without cognitive impairment from two community-based studies. Neurology 2006, 66, 1837–1844. [Google Scholar] [CrossRef] [PubMed]
- Schneider, J.A.; Arvanitakis, Z.; Bang, W.; Bennett, D.A. Mixed brain pathologies account for most dementia cases in community-dwelling older persons. Neurology 2007, 69, 2197–2204. [Google Scholar] [CrossRef]
- Zetterberg, H.; Bendlin, B.B. Biomarkers for Alzheimer’s disease—preparing for a new era of disease-modifying therapies. Mol. Psychiatry 2021, 26, 296–308. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.C.; Kim, S.J.; Hong, S.; Kim, Y. Diagnosis of Alzheimer’s disease utilizing amyloid and tau as fluid biomarkers. Exp. Mol. Med. 2019, 51, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.-P.; Xie, Y.; Meng, X.-Y.; Kang, J.-S. History and progress of hypotheses and clinical trials for Alzheimer’s disease. Signal Transduct. Target. Ther. 2019, 4, 34. [Google Scholar] [CrossRef] [PubMed]
- Long, J.M.; Holtzman, D.M. Alzheimer Disease: An Update on Pathobiology and Treatment Strategies. Cell 2019, 179, 312–339. [Google Scholar] [CrossRef] [PubMed]
- Ertekin-Taner, N. Genetics of Alzheimer’s Disease: A Centennial Review. Neurol. Clin. 2007, 25, 611–667. [Google Scholar] [CrossRef] [Green Version]
- Edison, P.; Donat, C.K.; Sastre, M. In vivo Imaging of Glial Activation in Alzheimer’s Disease. Front. Neurol. 2018, 9, 625. [Google Scholar] [CrossRef] [Green Version]
- Heneka, M.T.; Carson, M.J.; el Khoury, J.; Landreth, G.E.; Brosseron, F.; Feinstein, D.L.; Wyss-Coray, A.H.J.T.; Vitorica, J.; Ransohoff, R.M.; Herrup, K.; et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015, 14, 388–405. [Google Scholar] [CrossRef] [Green Version]
- Lana, D.; Ugolini, F.; Nosi, D.; Wenk, G.L.; Giovannini, M.G. The Emerging Role of the Interplay Among Astrocytes, Microglia, and Neurons in the Hippocampus in Health and Disease. Front. Aging Neurosci. 2021, 13, 156. [Google Scholar] [CrossRef]
- Vogel, J.W.; Initiative, T.A.D.N.; Young, A.L.; Oxtoby, N.P.; Smith, R.; Ossenkoppele, R.; Strandberg, O.T.; La Joie, R.; Aksman, L.M.; Grothe, M.J.; et al. Four distinct trajectories of tau deposition identified in Alzheimer’s disease. Nat. Med. 2021, 27, 871–881. [Google Scholar] [CrossRef] [PubMed]
- Parums, D.V. Editorial: Targets for Disease-Modifying Therapies in Alzheimer’s Disease, Including Amyloid β and Tau Protein. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2021, 27, e934077. [Google Scholar] [CrossRef]
- Streit, W.J.; Braak, H.; Xue, Q.-S.; Bechmann, I. Dystrophic (senescent) rather than activated microglial cells are associated with tau pathology and likely precede neurodegeneration in Alzheimer’s disease. Acta Neuropathol. 2009, 118, 475–485. [Google Scholar] [CrossRef] [Green Version]
- Misrani, A.; Tabassum, S.; Yang, L. Mitochondrial Dysfunction and Oxidative Stress in Alzheimer’s Disease. Front. Aging Neurosci. 2021, 13, 57. [Google Scholar] [CrossRef]
- Moreira, P.I.; Carvalho, C.; Zhu, X.; Smith, M.A.; Perry, G. Mitochondrial dysfunction is a trigger of Alzheimer’s disease pathophysiology. Biochim. Biophys. Acta BBA Mol. Basis Dis. 2010, 1802, 2–10. [Google Scholar] [CrossRef] [Green Version]
- Sala, A.; Perani, D. Brain Molecular Connectivity in Neurodegenerative Diseases: Recent Advances and New Perspectives Using Positron Emission Tomography. Front. Neurosci. 2019, 13, 617. [Google Scholar] [CrossRef] [Green Version]
- Barnham, K.J.; Masters, C.L.; Bush, A.I. Neurodegenerative diseases and oxidatives stress. Nat. Rev. Drug Discov. 2004, 3, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Sperling, R.A.; Aisen, P.S.; Beckett, L.A.; Bennett, D.A.; Craft, S.; Fagan, A.M.; Iwatsubo, T.; Jack, C.R., Jr.; Kaye, J.; Montine, T.J.; et al. Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 2011, 7, 280–292. [Google Scholar] [CrossRef] [Green Version]
- Levey, A.; Lah, J.; Goldstein, F.; Steenland, K.; Bliwise, D. Mild cognitive impairment: An opportunity to identify patients at high risk for progression to Alzheimer’s disease. Clin. Ther. 2006, 28, 991–1001. [Google Scholar] [CrossRef]
- Petersen, R.C.; Morris, J.C. Mild Cognitive Impairment as a Clinical Entity and Treatment Target. Arch. Neurol. 2005, 62, 1160–1163. [Google Scholar] [CrossRef]
- Valotassiou, V.; Malamitsi, J.; Papatriantafyllou, J.; Dardiotis, E.; Tsougos, I.; Psimadas, D.; Alexiou, S.; Hadjigeorgiou, G.; Georgoulias, P. SPECT and PET imaging in Alzheimer’s disease. Ann. Nucl. Med. 2018, 32, 583–593. [Google Scholar] [CrossRef] [PubMed]
- Young, P.N.E.; Estarellas, M.; Coomans, E.; Srikrishna, M.; Beaumont, H.; Maass, A.; Venkataraman, A.; Lissaman, R.; Jiménez, D.; Betts, M.; et al. Imaging biomarkers in neurodegeneration: Current and future practices. Alzheimer’s Res. Ther. 2020, 12, 49. [Google Scholar] [CrossRef]
- Van Oostveen, W.; de Lange, E. Imaging Techniques in Alzheimer’s Disease: A Review of Applications in Early Diagnosis and Longitudinal Monitoring. Int. J. Mol. Sci. 2021, 22, 2110. [Google Scholar] [CrossRef]
- Mosconi, L.; Berti, V.; Glodzik, L.; Pupi, A.; De Santi, S.; de Leon, M.J. Pre-Clinical Detection of Alzheimer’s Disease Using FDG-PET, with or without Amyloid Imaging. J. Alzheimer’s Dis. 2010, 20, 843–854. [Google Scholar] [CrossRef] [Green Version]
- Silverman, D.H.S.; Small, G.W.; Chang, C.Y.; Lu, C.S.; De Aburto, M.A.K.; Chen, W.; Czernin, J.; Rapoport, S.I.; Pietrini, P.; Alexander, G.E.; et al. Positron Emission Tomography in Evaluation of Dementia. JAMA J. Am. Med. Assoc. 2001, 286, 2120–2127. [Google Scholar] [CrossRef] [Green Version]
- Suppiah, S.; Didier, M.-A.; Vinjamuri, S. The Who, When, Why, and How of PET Amyloid Imaging in Management of Alzheimer’s Disease-Review of Literature and Interesting Images. Diagnostics 2019, 9, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wahl, R.L.; Herman, J.M.; Ford, E. The Promise and Pitfalls of Positron Emission Tomography and Single-Photon Emission Computed Tomography Molecular Imaging–Guided Radiation Therapy. Semin. Radiat. Oncol. 2011, 21, 88–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Institute for Health and Care Excellence (UK). Dementia: Assessment, Management and Support for People Living with Dementia and Their Carers, NICE Guide; National Institute for Health and Care Excellence (UK): London, UK, 2018. [Google Scholar]
- Garriga, M.; Emila, M.; Mir, M.; Eal-Baradie, R.; Ehuertas, S.; Ecastejon, C.; Ecasas, L.; Badenes, D.; Gimenez, N.; Font, M.A.; et al. 123I-FP-CIT SPECT imaging in early diagnosis of dementia in patients with and without a vascular component. Front. Syst. Neurosci. 2015, 9, 99. [Google Scholar] [CrossRef] [Green Version]
- Maul, S.; Giegling, I.; Rujescu, D. Proton Magnetic Resonance Spectroscopy in Common Dementias—Current Status and Perspectives. Front. Psychiatry 2020, 11, 769. [Google Scholar] [CrossRef]
- Öz, G.; Alger, J.R.; Barker, P.B.; Bartha, R.; Bizzi, A.; Boesch, C.; Bolan, P.J.; Brindle, K.M.; Cudalbu, C.; Dinçer, A.; et al. Clinical Proton MR Spectroscopy in Central Nervous System Disorders. Radiology 2014, 270, 658–679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bogner, W.; Otazo, R.; Henning, A. Accelerated MR spectroscopic imaging—A review of current and emerging techniques. NMR Biomed. 2021, 34, e4314. [Google Scholar] [CrossRef] [PubMed]
- Wilson, M.; Andronesi, O.; Barker, P.B.; Bartha, R.; Bizzi, A.; Bolan, P.J.; Brindle, K.M.; Choi, I.-Y.; Cudalbu, C.; Dydak, U.; et al. Methodological consensus on clinical proton MRS of the brain: Review and recommendations. Magn. Reson. Med. 2019, 82, 527–550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zöllner, H.J.; Považan, M.; Hui, S.C.; Tapper, S.; Edden, R.A.; Oeltzschner, G. Comparison of different linear-combination modeling algorithms for short-TE proton spectra. NMR Biomed. 2021, 34, e4482. [Google Scholar] [CrossRef]
- Li, B.S.; Babb, J.; Soher, B.J.; Maudsley, A.A.; Gonen, O. Reproducibility of 3D proton spectroscopy in the human brain. Magn. Reson. Med. 2002, 47, 439–446. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Strasser, B.; Jafari-Khouzani, K.; Thapa, B.; Small, J.; Cahill, D.P.; Dietrich, J.; Batchelor, T.T.; Andronesi, O.C. Super-Resolution Whole-Brain 3D MR Spectroscopic Imaging for Mapping D-2-Hydroxyglutarate and Tumor Metabolism in Isocitrate Dehydrogenase 1–mutated Human Gliomas. Radiology 2020, 294, 589–597. [Google Scholar] [CrossRef] [PubMed]
- Tkáč, I.; Oz, G.; Adriany, G.; Uğurbil, K.; Gruetter, R. In vivo 1 H NMR spectroscopy of the human brain at high magnetic fields: Metabolite quantification at 4T vs. 7T. Magn. Reson. Med. 2009, 62, 868–879. [Google Scholar] [CrossRef] [Green Version]
- Kantarci, K.; Jack, C.R. Quantitative magnetic resonance techniques as surrogate markers of Alzheimer’s disease. NeuroRX 2004, 1, 196–205. [Google Scholar] [CrossRef]
- Dona, O.; Thompson, J.; Druchok, C. Comprehensive Review on Magnetic Resonance Imaging in Alzheimer’s Disease. Crit. Rev. Biomed. Eng. 2016, 44, 213–225. [Google Scholar] [CrossRef]
- Ravanfar, P.; Loi, S.M.; Syeda, W.T.; Van Rheenen, T.E.; Bush, A.I.; Desmond, P.; Cropley, V.L.; Lane, D.J.R.; Opazo, C.M.; Moffat, B.A.; et al. Systematic Review: Quantitative Susceptibility Mapping (QSM) of Brain Iron Profile in Neurodegenerative Diseases. Front. Neurosci. 2021, 15, 41. [Google Scholar] [CrossRef]
- Adlard, P.A.; Tran, B.A.; Finkelstein, D.I.; Desmond, P.M.; Johnston, L.A.; Bush, A.I.; Egan, G.F. A review of Î2-amyloid neuroimaging in Alzheimer’s disease. Front. Neurosci. 2014, 8, 327. [Google Scholar] [CrossRef] [Green Version]
- Matthews, P.M.; Jezzard, P. Functional magnetic resonance imaging. J. Neurol. Neurosurg. Psychiatry 2004, 75, 6–12. [Google Scholar]
- Ogawa, S.; Tank, D.W.; Menon, R.; Ellermann, J.; Kim, S.G.; Merkle, H.; Ugurbil, K. Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging. Proc. Natl. Acad. Sci. USA 1992, 89, 5951–5955. [Google Scholar] [CrossRef] [Green Version]
- Hämäläinen, A.; Pihlajamäki, M.; Tanila, H.; Hänninen, T.; Niskanen, E.; Tervo, S.; Karjalainen, P.; Vanninen, R.L.; Soininen, H. Increased fMRI responses during encoding in mild cognitive impairment. Neurobiol. Aging 2007, 28, 1889–1903. [Google Scholar] [CrossRef]
- Heuvel, M.P.V.D.; Mandl, R.C.; Kahn, R.S.; Pol, H.E.H. Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain. Hum. Brain Mapp. 2009, 30, 3127–3141. [Google Scholar] [CrossRef]
- Baggio, H.C.; Junqué, C. Functional MRI in Parkinson’s Disease Cognitive Impairment. In Imaging in Movement Disorders: Imaging in Non-Parkinsonian Movement Disorders and Dementias, Part 2; Politis, M., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 29–58. [Google Scholar]
- Talwar, P.; Kushwaha, S.; Chaturvedi, M.; Mahajan, V. Systematic Review of Different Neuroimaging Correlates in Mild Cognitive Impairment and Alzheimer’s Disease. Clin. Neuroradiol. 2021, 31, 953–967. [Google Scholar] [CrossRef] [PubMed]
- Basser, P.J.; Jones, D.K. Diffusion-tensor MRI: Theory, experimental design and data analysis—A technical review. NMR Biomed. 2002, 15, 456–467. [Google Scholar] [CrossRef] [Green Version]
- Basser, P.; Mattiello, J.; LeBihan, D. MR diffusion tensor spectroscopy and imaging. Biophys. J. 1994, 66, 259–267. [Google Scholar] [CrossRef] [Green Version]
- Filley, C.M.; Fields, R.D. White matter and cognition: Making the connection. J. Neurophysiol. 2016, 116, 2093–2104. [Google Scholar] [CrossRef] [PubMed]
- Soares, J.M.; Marques, P.; Alves, V.; Sousa, N. A hitchhiker’s guide to diffusion tensor imaging. Front. Neurosci. 2013, 7, 31. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Uh, J.; Devous, M.D.; Adinoff, B.; Lu, H. Comparison of relative cerebral blood flow maps using pseudo-continuous arterial spin labeling and single photon emission computed tomography. NMR Biomed. 2011, 25, 779–786. [Google Scholar] [CrossRef]
- Anazodo, U.C.; Finger, E.; Kwan, B.Y.M.; Pavlosky, W.; Warrington, J.C.; Günther, M.; Prato, F.S.; Thiessen, J.D.; Lawrence, K.S.S. Using simultaneous PET/MRI to compare the accuracy of diagnosing frontotemporal dementia by arterial spin labelling MRI and FDG-PET. NeuroImage Clin. 2018, 17, 405–414. [Google Scholar] [CrossRef]
- Haller, S.; Zaharchuk, G.; Thomas, D.; Lovblad, K.-O.; Barkhof, F.; Golay, X. Arterial Spin Labeling Perfusion of the Brain: Emerging Clinical Applications. Radiology 2016, 281, 337–356. [Google Scholar] [CrossRef] [Green Version]
- Petcharunpaisan, S.; Ramalho, J.; Castillo, M. Arterial spin labeling in neuroimaging. World J. Radiol. 2010, 2, 384–398. [Google Scholar] [CrossRef]
- Alsop, D.C.; Detre, J.A.; Grossman, M. Assessment of cerebral blood flow in Alzheimer’s disease by spin-labeled magnetic resonance imaging. Ann. Neurol. 2000, 47, 93–100. [Google Scholar] [CrossRef]
- Wolff, S.D.; Balaban, R.S. Magnetization transfer contrast (MTC) and tissue water proton relaxationin vivo. Magn. Reson. Med. 1989, 10, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Seiler, S.; Ropele, S.; Schmidt, R. Magnetization Transfer Imaging for in vivo Detection of Microstructural Tissue Changes in Aging and Dementia: A Short Literature Review. J. Alzheimer’s Dis. 2014, 42, S229–S237. [Google Scholar] [CrossRef] [PubMed]
- Van Zijl, P.C.; Lam, W.W.; Xu, J.; Knutsson, L.; Stanisz, G.J. Magnetization Transfer Contrast and Chemical Exchange Saturation Transfer MRI. Features and analysis of the field-dependent saturation spectrum. NeuroImage 2018, 168, 222–241. [Google Scholar] [CrossRef] [PubMed]
- Odrobina, E.E.; Lam, T.Y.J.; Pun, T.; Midha, R.; Stanisz, G.J. MR properties of excised neural tissue following experimentally induced demyelination. NMR Biomed. 2005, 18, 277–284. [Google Scholar] [CrossRef]
- Sled, J.G. Modelling and interpretation of magnetization transfer imaging in the brain. NeuroImage 2018, 182, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Heo, H.-Y.; Knutsson, L.; Van Zijl, P.C.; Jiang, S. APT-weighted MRI: Techniques, current neuro applications, and challenging issues. J. Magn. Reson. Imaging 2019, 50, 347–364. [Google Scholar] [CrossRef]
- Zhou, J.; Payen, J.-F.; Wilson, D.A.; Traystman, R.J.; Van Zijl, P.C.M. Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI. Nat. Med. 2003, 9, 1085–1090. [Google Scholar] [CrossRef]
- Kogan, F.; Hariharan, H.; Reddy, R. Chemical Exchange Saturation Transfer (CEST) Imaging: Description of Technique and Potential Clinical Applications. Curr. Radiol. Rep. 2013, 1, 102–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, K.; Singh, A.; Poptani, H.; Li, W.; Yang, S.; Lu, Y.; Hariharan, H.; Zhou, X.J.; Reddy, R. CEST signal at 2 ppm (CEST@2ppm) fromZ-spectral fitting correlates with creatine distribution in brain tumor. NMR Biomed. 2014, 28, 437–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehrabian, H.; Desmond, K.L.; Soliman, H.; Sahgal, A.; Stanisz, G. Differentiation between Radiation Necrosis and Tumor Progression Using Chemical Exchange Saturation Transfer. Clin. Cancer Res. 2017, 23, 3667–3675. [Google Scholar] [CrossRef] [Green Version]
- Henkelman, R.M.; Huang, X.; Xiang, Q.-S.; Stanisz, G.J.; Swanson, S.D.; Bronskill, M.J. Quantitative interpretation of magnetization transfer. Magn. Reson. Med. 1993, 29, 759–766. [Google Scholar] [CrossRef]
- Ramani, A.; Dalton, C.; Miller, D.; Tofts, P.; Barker, G. Precise estimate of fundamental in-vivo MT parameters in human brain in clinically feasible times. Magn. Reson. Imaging 2002, 20, 721–731. [Google Scholar] [CrossRef]
- Sled, J.G.; Pike, G.B. Quantitative imaging of magnetization transfer exchange and relaxation properties in vivo using MRI. Magn. Reson. Med. 2001, 46, 923–931. [Google Scholar] [CrossRef] [PubMed]
- Yarnykh, V.L. Pulsed Z-spectroscopic imaging of cross-relaxation parameters in tissues for human MRI: Theory and clinical applications. Magn. Reson. Med. 2002, 47, 929–939. [Google Scholar] [CrossRef]
- Hanyu, H.; Asano, T.; Sakurai, H.; Imon, Y.; Iwamoto, T.; Takasaki, M.; Shindo, H.; Abe, K. Diffusion-weighted and magnetization transfer imaging of the corpus callosum in Alzheimer’s disease. J. Neurol. Sci. 1999, 167, 37–44. [Google Scholar] [CrossRef]
- Hanyu, H.; Asano, T.; Iwamoto, T.; Takasaki, M.; Shindo, H.; Abe, K. Magnetization Transfer Measurements of the Hippocampus in Patients with Alzheimer’s Disease, Vascular Dementia, and Other Types of Dementia. Am. J. Neuroradiol. 2000, 21, 1235–1242. [Google Scholar]
- Hanyu, H.; Asano, T.; Sakurai, H.; Takasaki, M.; Shindo, H.; Abe, K. Magnetization transfer measurements of the hippocampus in the early diagnosis of Alzheimer’s disease. J. Neurol. Sci. 2001, 188, 79–84. [Google Scholar] [CrossRef] [Green Version]
- Kabani, N.J.; Sled, J.G.; Chertkow, H. Magnetization Transfer Ratio in Mild Cognitive Impairment and Dementia of Alzheimer’s Type. NeuroImage 2002, 15, 604–610. [Google Scholar] [CrossRef]
- Bozzali, M.; Franceschi, M.; Falini, A.; Pontesilli, S.; Cercignani, M.; Magnani, G.; Scotti, G.; Comi, G.; Filippi, M. Quantification of tissue damage in AD using diffusion tensor and magnetization transfer MRI. Neurology 2001, 57, 1135–1137. [Google Scholar] [CrossRef] [PubMed]
- Van Der Flier, W.M.; Heuvel, D.M.J.V.D.; Weverling-Rijnsburger, A.W.E.; Bollen, E.L.E.M.; Westendorp, R.G.J.; Van Buchem, M.A.; Middelkoop, H.A.M. Magnetization transfer imaging in normal aging, mild cognitive impairment, and Alzheimer’s disease. Ann. Neurol. 2002, 52, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Hanyu, H.; Shimizu, S.; Tanaka, Y.; Kanetaka, H.; Iwamoto, T.; Abe, K. Differences in magnetization transfer ratios of the hippocampus between dementia with Lewy bodies and Alzheimer’s disease. Neurosci. Lett. 2005, 380, 166–169. [Google Scholar] [CrossRef]
- Van Es, A.; van der Flier, W.; Admiraal-Behloul, F.; Olofsen, H.; Bollen, E.; Middelkoop, H.; Weverling-Rijnsburger, A.; Westendorp, R.; van Buchem, M. Magnetization transfer imaging of gray and white matter in mild cognitive impairment and Alzheimer’s disease. Neurobiol. Aging 2006, 27, 1757–1762. [Google Scholar] [CrossRef]
- Van Es, A.; Van Der Flier, W.; Behloul, F.A.; Olofsen, H.; Bollen, E.; Middelkoop, H.; Weverling-Rijnsburger, A.; Van Der Grond, J.; Westendorp, R.; Van Buchem, M. Lobar Distribution of Changes in Gray Matter and White Matter in Memory Clinic Patients: Detected Using Magnetization Transfer Imaging. Am. J. Neuroradiol. 2007, 28, 1938–1942. [Google Scholar] [CrossRef] [Green Version]
- Ridha, B.; Symms, M.; Tozer, D.; Stockton, K.; Frost, C.; Siddique, M.; Lewis, E.; MacManus, D.; Boulby, P.; Barker, G.; et al. Magnetization Transfer Ratio in Alzheimer Disease: Comparison with Volumetric Measurements. Am. J. Neuroradiol. 2007, 28, 965–970. [Google Scholar]
- Ginestroni, A.; Battaglini, M.; Della Nave, R.; Moretti, M.; Tessa, C.; Giannelli, M.; Caffarra, P.; Nacmias, B.; Bessi, V.; Sorbi, S.; et al. Early structural changes in individuals at risk of familial Alzheimer’s disease: A volumetry and magnetization transfer MR imaging study. J. Neurol. 2009, 256, 925–932. [Google Scholar] [CrossRef]
- Ropele, S.; Schmidt, R.; Enzinger, C.; Windisch, M.; Martinez, N.; Fazekas, F. Longitudinal Magnetization Transfer Imaging in Mild to Severe Alzheimer Disease. Am. J. Neuroradiol. 2011, 33, 570–575. [Google Scholar] [CrossRef] [Green Version]
- Fornari, E.; Maeder, P.; Meuli, R.; Ghika, J.; Knyazeva, M.G. Demyelination of superficial white matter in early Alzheimer’s disease: A magnetization transfer imaging study. Neurobiol. Aging 2012, 33, 428.e7–428.e19. [Google Scholar] [CrossRef] [PubMed]
- Mascalchi, M.; Ginestroni, A.; Bessi, V.; Toschi, N.; Padiglioni, S.; Ciulli, S.; Tessa, C.; Giannelli, M.; Bracco, L.; Diciotti, S. Regional Analysis of the Magnetization Transfer Ratio of the Brain in Mild Alzheimer Disease and Amnestic Mild Cognitive Impairment. Am. J. Neuroradiol. 2013, 34, 2098–2104. [Google Scholar] [CrossRef] [Green Version]
- Carmeli, C.; Donati, A.; Antille, V.; Viceic, D.; Ghika, J.; von Gunten, A.; Clarke, S.; Meuli, R.; Frackowiak, R.S.; Knyazeva, M.G. Demyelination in Mild Cognitive Impairment Suggests Progression Path to Alzheimer’s Disease. PLoS ONE 2013, 8, e72759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colonna, I.; Koini, M.; Pirpamer, L.; Damulina, A.; Hofer, E.; Schwingenschuh, P.; Enzinger, C.; Schmidt, R.; Ropele, S. Microstructural Tissue Changes in Alzheimer Disease Brains: Insights from Magnetization Transfer Imaging. Am. J. Neuroradiol. 2021, 42, 688–693. [Google Scholar] [CrossRef] [PubMed]
- Giulietti, G.; Bozzali, M.; Figura, V.; Spanò, B.; Perri, R.; Marra, C.; Lacidogna, G.; Giubilei, F.; Caltagirone, C.; Cercignani, M. Quantitative magnetization transfer provides information complementary to grey matter atrophy in Alzheimer’s disease brains. NeuroImage 2012, 59, 1114–1122. [Google Scholar] [CrossRef] [PubMed]
- Ridha, B.H.; Tozer, D.J.; Symms, M.R.; Stockton, K.C.; Lewis, E.B.; Siddique, M.M.; MacManus, D.G.; Rossor, M.N.; Fox, N.C.; Tofts, P.S. Quantitative Magnetization Transfer Imaging in Alzheimer Disease. Neurology 2007, 244, 832–837. [Google Scholar] [CrossRef]
- Kiefer, C.; Brockhaus, L.; Cattapan-Ludewig, K.; Ballinari, P.; Burren, Y.; Schroth, G.; Wiest, R. Multi-parametric classification of Alzheimer’s disease and mild cognitive impairment: The impact of quantitative magnetization transfer MR imaging. NeuroImage 2009, 48, 657–667. [Google Scholar] [CrossRef] [PubMed]
- Wiest, R.; Burren, Y.; Hauf, M.; Schroth, G.; Pruessner, J.; Zbinden, M.; Cattapan-Ludewig, K.; Kiefer, C. Classification of Mild Cognitive Impairment and Alzheimer Disease Using Model-Based MR and Magnetization Transfer Imaging. Am. J. Neuroradiol. 2012, 34, 740–746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makovac, E.; Serra, L.; Di Domenico, C.; Marra, C.; Caltagirone, C.; Cercignani, M.; Bozzali, M. Quantitative Magnetization Transfer of White Matter Tracts Correlates with Diffusion Tensor Imaging Indices in Predicting the Conversion from Mild Cognitive Impairment to Alzheimer’s Disease. J. Alzheimer’s Dis. 2018, 63, 561–575. [Google Scholar] [CrossRef]
- Hsiao, K.; Chapman, P.; Nilsen, S.; Eckman, C.; Harigaya, Y.; Younkin, S.; Yang, F.; Cole, G. Correlative Memory Deficits, Aβ Elevation, and Amyloid Plaques in Transgenic Mice. Science 1996, 274, 99–103. [Google Scholar] [CrossRef]
- Holcomb, L.A.; Gordon, M.N.; McGowan, E.; Yu, X.; Benkovic, S.; Jantzen, P.T.; Wright, K.; Saad, I.; Mueller, R.; Morgan, D.; et al. Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes. Nat. Med. 1998, 4, 97–100. [Google Scholar] [CrossRef]
- Radde, R.; Bolmont, T.; Kaeser, S.A.; Coomaraswamy, J.; Lindau, D.; Stoltze, L.; Calhoun, M.E.; Jäggi, F.; Wolburg, H.; Gengler, S.; et al. Aβ42-driven cerebral amyloidosis in transgenic mice reveals early and robust pathology. EMBO Rep. 2006, 7, 940–946. [Google Scholar] [CrossRef] [Green Version]
- McGowan, E.; Pickford, F.; Kim, J.; Onstead, L.; Eriksen, J.; Yu, C.; Skipper, L.; Murphy, M.P.; Beard, J.; Das, P.; et al. Aβ42 Is Essential for Parenchymal and Vascular Amyloid Deposition in Mice. Neuron 2005, 47, 191–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Torres, C.J.; Reynolds, J.O.; Pautler, R.G. Use of Magnetization Transfer Contrast MRI to Detect Early Molecular Pathology in Alzheimer’s Disease. Magn. Reson. Med. 2014, 71, 333–338. [Google Scholar] [CrossRef]
- Esteras, N.; Alquézar, C.; Bartolomé, F.; Antequera, D.; Barrios, L.; Carro, E.; Cerdán, S.; Martín-Requero, Á. Systematic Evaluation of Magnetic Resonance Imaging and Spectroscopy Techniques for Imaging a Transgenic Model of Alzheimer’s Disease (AβPP/PS1). J. Alzheimer’s Dis. 2012, 30, 337–353. [Google Scholar] [CrossRef] [Green Version]
- Bigot, C.; Vanhoutte, G.; Verhoye, M.; Van der Linden, A. Magnetization transfer contrast imaging reveals amyloid pathology in Alzheimer’s disease transgenic mice. NeuroImage 2014, 87, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Praet, J.; Bigot, C.; Orije, J.; Naeyaert, M.; Shah, D.; Mai, Z.; Guns, P.-J.; Van Der Linden, A.; Verhoye, M. Magnetization transfer contrast imaging detects early white matter changes in the APP/PS1 amyloidosis mouse model. NeuroImage Clin. 2016, 12, 85–92. [Google Scholar] [CrossRef] [Green Version]
- Kuo, Y.-M.; Kokjohn, T.A.; Beach, T.G.; Sue, L.I.; Brune, D.; Lopez, J.C.; Kalback, W.M.; Abramowski, D.; Sturchler-Pierrat, C.; Staufenbiel, M.; et al. Comparative Analysis of Amyloid-β Chemical Structure and Amyloid Plaque Morphology of Transgenic Mouse and Alzheimer’s Disease Brains. J. Biol. Chem. 2001, 276, 12991–12998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hammelrath, L.; Škokić, S.; Khmelinskii, A.; Hess, A.; van der Knaap, N.; Staring, M.; Lelieveldt, B.P.; Wiedermann, D.; Hoehn, M. Morphological maturation of the mouse brain: An in vivo MRI and histology investigation. NeuroImage 2016, 125, 144–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ward, K.; Aletras, A.; Balaban, R. A New Class of Contrast Agents for MRI Based on Proton Chemical Exchange Dependent Saturation Transfer (CEST). J. Magn. Reson. 2000, 143, 79–87. [Google Scholar] [CrossRef]
- Van Zijl, P.C.M.; Yadav, N.N. Chemical exchange saturation transfer (CEST): What is in a name and what isn’t? Magn. Reson. Med. 2011, 65, 927–948. [Google Scholar] [CrossRef] [Green Version]
- Khlebnikov, V.; Van Der Kemp, W.J.M.; Hoogduin, H.; Klomp, D.W.J.; Prompers, J.J. Analysis of chemical exchange saturation transfer contributions from brain metabolites to the Z-spectra at various field strengths and pH. Sci. Rep. 2019, 9, 1089. [Google Scholar] [CrossRef] [PubMed]
- Scheidegger, R.; Vinogradov, E.; Alsop, D. Amide proton transfer imaging with improved robustness to magnetic field inhomogeneity and magnetization transfer asymmetry using saturation with frequency alternating RF irradiation. Magn. Reson. Med. 2011, 66, 1275–1285. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Chan, K.W.; Xu, X.; Yadav, N.; Liu, G.; van Zijl, P.C. On-resonance variable delay multipulse scheme for imaging of fast-exchanging protons and semisolid macromolecules. Magn. Reson. Med. 2017, 77, 730–739. [Google Scholar] [CrossRef] [Green Version]
- Van Zijl, P.C.; Sehgal, A.A. Proton Chemical Exchange Saturation Transfer (CEST) MRS and MRI. eMagRes 2016, 5, 1307–1332. [Google Scholar] [CrossRef]
- Ramsden, M. Age-Dependent Neurofibrillary Tangle Formation, Neuron Loss, and Memory Impairment in a Mouse Model of Human Tauopathy (P301L). J. Neurosci. 2005, 25, 10637–10647. [Google Scholar] [CrossRef]
- Yoshiyama, Y.; Higuchi, M.; Zhang, B.; Huang, S.-M.; Iwata, N.; Saido, T.C.; Maeda, J.; Suhara, T.; Trojanowski, J.Q.; Lee, V.M.-Y. Synapse Loss and Microglial Activation Precede Tangles in a P301S Tauopathy Mouse Model. Neuron 2007, 53, 337–351. [Google Scholar] [CrossRef] [Green Version]
- Jankowsky, J.L.; Xu, G.; Fromholt, D.; Gonzales, V.; Borchelt, D.R. Environmental Enrichment Exacerbates Amyloid Plaque Formation in a Transgenic Mouse Model of Alzheimer Disease. J. Neuropathol. Exp. Neurol. 2003, 62, 1220–1227. [Google Scholar] [CrossRef]
- Oakley, H.; Cole, S.L.; Logan, S.; Maus, E.; Shao, P.; Craft, J.; Guillozet-Bongaarts, A.; Ohno, M.; Disterhoft, J.; Van Eldik, L.; et al. Intraneuronal beta-Amyloid Aggregates, Neurodegeneration, and Neuron Loss in Transgenic Mice with Five Familial Alzheimer’s Disease Mutations: Potential Factors in Amyloid Plaque Formation. J. Neurosci. 2006, 26, 10129–10140. [Google Scholar] [CrossRef] [PubMed]
- Sturchler-Pierrat, C.; Abramowski, D.; Duke, M.; Wiederhold, K.-H.; Mistl, C.; Rothacher, S.; Ledermann, B.; Bürki, K.; Frey, P.; Paganetti, P.; et al. Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc. Natl. Acad. Sci. USA 1997, 94, 13287–13292. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Braunstein, K.E.; Zhang, J.; Lau, A.; Sibener, L.; Deeble, C.; Wong, P.C. The neuritic plaque facilitates pathological conversion of tau in an Alzheimer’s disease mouse model. Nat. Commun. 2016, 7, 12082. [Google Scholar] [CrossRef] [Green Version]
- Kasza, Á.; Penke, B.; Frank, Z.; Bozsó, Z.; Szegedi, V.; Hunya, Á.; Németh, K.; Kozma, G.; Fülöp, L. Studies for Improving a Rat Model of Alzheimer’s Disease: Icv Administration of Well-Characterized β-Amyloid 1-42 Oligomers Induce Dysfunction in Spatial Memory. Molecules 2017, 22, 2007. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Li, S.-Y.; Chen, M.; Zhou, J.-Y.; Peng, D.-T.; Zhang, C.; Dai, Y.-M. Amide Proton Transfer Magnetic Resonance Imaging of Alzheimer’s Disease at 3.0 Tesla. Chin. Med. J. 2015, 128, 615–619. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhang, C.; Yao, J.; Chen, X.; Gao, F.; Jiang, S.; Chen, W.; Zhou, J.; Wang, G. Protein-based amide proton transfer-weighted MR imaging of amnestic mild cognitive impairment. NeuroImage Clin. 2020, 25, 102153. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.-H.; Choi, B.G.; Rhee, H.Y.; Lee, J.S.; Lee, K.M.; Park, S.; Cho, A.R.; Ryu, C.-W.; Park, K.C.; Kim, E.J.; et al. Added Value of Chemical Exchange-Dependent Saturation Transfer MRI for the Diagnosis of Dementia. Korean J. Radiol. 2021, 22, 770–781. [Google Scholar] [CrossRef] [PubMed]
- Wells, J.; O’Callaghan, J.; Holmes, H.; Powell, N.; Johnson, R.; Siow, B.; Torrealdea, F.; Ismail, O.; Walker-Samuel, S.; Golay, X.; et al. In vivo imaging of tau pathology using multi-parametric quantitative MRI. NeuroImage 2015, 111, 369–378. [Google Scholar] [CrossRef] [Green Version]
- Holmes, H.E.; Colgan, N.; Ismail, O.; Ma, D.; Powell, N.; O’Callaghan, J.M.; Harrison, I.; Johnson, R.A.; Murray, T.K.; Ahmed, Z.; et al. Imaging the accumulation and suppression of tau pathology using multiparametric MRI. Neurobiol. Aging 2016, 39, 184–194. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Chen, P.; Shen, Z.; Lin, G.; Xiao, G.; Dai, Z.; Zhang, B.; Chen, Y.; Lai, L.; Zong, X.; et al. Brain Amide Proton Transfer Imaging of Rat With Alzheimer’s Disease Using Saturation with Frequency Alternating RF Irradiation Method. Front. Aging Neurosci. 2019, 11, 217. [Google Scholar] [CrossRef] [Green Version]
- Goerke, S.; Milde, K.S.; Bukowiecki, R.; Kunz, P.; Klika, K.D.; Wiglenda, T.; Mogk, A.; Wanker, E.E.; Bukau, B.; Ladd, M.E.; et al. Aggregation-induced changes in the chemical exchange saturation transfer (CEST) signals of proteins. NMR Biomed. 2016, 30, e3665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, X.; Wen, Z.; Huang, F.; Lu, S.; Wang, X.; Hu, S.; Zu, D.; Zhou, J. Saturation power dependence of amide proton transfer image contrasts in human brain tumors and strokes at 3 T. Magn. Reson. Med. 2011, 66, 1033–1041. [Google Scholar] [CrossRef] [Green Version]
- Goerke, S.; Zaiss, M.; Kunz, P.; Klika, K.D.; Windschuh, J.D.; Mogk, A.; Bukau, B.; Ladd, M.E.; Bachert, P. Signature of protein unfolding in chemical exchange saturation transfer imaging. NMR Biomed. 2015, 28, 906–913. [Google Scholar] [CrossRef]
- Decker, Y.; Németh, E.; Schomburg, R.; Chemla, A.; Fülöp, L.; Menger, M.D.; Liu, Y.; Fassbender, K. Decreased pH in the aging brain and Alzheimer’s disease. Neurobiol. Aging 2021, 101, 40–49. [Google Scholar] [CrossRef]
- Lyros, E.; Ragoschke-Schumm, A.; Kostopoulos, P.; Sehr, A.; Backens, M.; Kalampokini, S.; Decker, Y.; Lesmeister, M.; Liu, Y.; Reith, W.; et al. Normal brain aging and Alzheimer’s disease are associated with lower cerebral pH: An in vivo histidine 1H-MR spectroscopy study. Neurobiol. Aging 2020, 87, 60–69. [Google Scholar] [CrossRef]
- Sugawara, K.; Miyati, T.; Ueda, R.; Yoshimaru, D.; Nakamura, M.; Komatsu, S.; Hagiwara, K.; Saigusa, K. Quantitative Analysis of Mobile Proteins in Normal Brain Tissue by Amide Proton Transfer Imaging: Age Dependence and Sex Differences. J. Comput. Assist. Tomogr. 2021, 45, 277–284. [Google Scholar] [CrossRef]
- Bonvento, G.; Valette, J.; Flament, J.; Mochel, F.; Brouillet, E. Imaging and spectroscopic approaches to probe brain energy metabolism dysregulation in neurodegenerative diseases. Br. J. Pharmacol. 2017, 37, 1927–1943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, H.; Zhang, H.; Zhang, J.; Huang, Q.; Shen, Z.; Wu, R. Evaluation of neuron-glia integrity by in vivo proton magnetic resonance spectroscopy: Implications for psychiatric disorders. Neurosci. Biobehav. Rev. 2016, 71, 563–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.-Q.; Wang, P.-J.; Ten, G.-J.; Zhan, W.; Li, M.-H.; Zang, F.-C. Role of Myo-Inositol by Magnetic Resonance Spectroscopy in Early Diagnosis of Alzheimer’s Disease in APP/PS1 Transgenic Mice. Dement. Geriatr. Cogn. Disord. 2009, 28, 558–566. [Google Scholar] [CrossRef] [Green Version]
- Voevodskaya, O.; Sundgren, P.C.; Strandberg, O.; Zetterberg, H.; Minthon, L.; Blennow, K.; Wahlund, L.-O.; Westman, E.; Johansson, P.; Swedish BioFINDER Study Group. Myo-inositol changes precede amyloid pathology and relate toAPOEgenotype in Alzheimer disease. Neurology 2016, 86, 1754–1761. [Google Scholar] [CrossRef] [Green Version]
- Voevodskaya, O.; Poulakis, K.; Sundgren, P.; van Westen, D.; Palmqvist, S.; Wahlund, L.-O.; Stomrud, E.; Hansson, O.; Westman, E.; Swedish BioFINDER Study Group. Brain myoinositol as a potential marker of amyloid-related pathology. Neurology 2019, 92, e395–e405. [Google Scholar] [CrossRef] [Green Version]
- Rupsingh, R.; Borrie, M.; Smith, M.; Wells, J.; Bartha, R. Reduced hippocampal glutamate in Alzheimer disease. Neurobiol. Aging 2011, 32, 802–810. [Google Scholar] [CrossRef] [PubMed]
- Goerke, S.; Zaiss, M.; Bachert, P. Characterization of creatine guanidinium proton exchange by water-exchange (WEX) spectroscopy for absolute-pH CEST imagingin vitro. NMR Biomed. 2014, 27, 507–518. [Google Scholar] [CrossRef]
- Chen, L.; van Zijl, P.C.; Wei, Z.; Lu, H.; Duan, W.; Wong, P.C.; Li, T.; Xu, J. Early detection of Alzheimer’s disease using creatine chemical exchange saturation transfer magnetic resonance imaging. NeuroImage 2021, 236, 118071. [Google Scholar] [CrossRef] [PubMed]
- Trott, O.; Palmer, A.G. R1ρ Relaxation outside of the Fast-Exchange Limit. J. Magn. Reson. 2002, 154, 157–160. [Google Scholar] [CrossRef]
- Singh, A.; Debnath, A.; Cai, K.; Bagga, P.; Haris, M.; Hariharan, H.; Reddy, R. Evaluating the feasibility of creatine-weighted CEST MRI in human brain at 7 T using a Z-spectral fitting approach. NMR Biomed. 2019, 32, e4176. [Google Scholar] [CrossRef]
- Brand, A.; Richter-Landsberg, C.; Leibfritz, D. Multinuclear NMR Studies on the Energy Metabolism of Glial and Neuronal Cells. Dev. Neurosci. 1993, 15, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Aiello, M.; Cavaliere, C.; Fiorenza, D.; Duggento, A.; Passamonti, L.; Toschi, N. Neuroinflammation in Neurodegenerative Diseases: Current Multi-modal Imaging Studies and Future Opportunities for Hybrid PET/MRI. Neuroscience 2019, 403, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Haris, M.; Singh, A.; Cai, K.; Nath, K.; Crescenzi, R.; Kogan, F.; Hariharan, H.; Reddy, R. MICEST: A potential tool for non-invasive detection of molecular changes in Alzheimer’s disease. J. Neurosci. Methods 2013, 212, 87–93. [Google Scholar] [CrossRef] [Green Version]
- Lopez, M.Y.; Pardon, M.-C.; Baiker, K.; Prior, M.; Yuchun, D.; Agostini, A.; Bai, L.; Auer, D.P.; Faas, H.M. Myoinositol CEST signal in animals with increased Iba-1 levels in response to an inflammatory challenge—Preliminary findings. PLoS ONE 2019, 14, e0212002. [Google Scholar] [CrossRef]
- Van Zijl, P.C.M.; Jones, C.K.; Ren, J.; Malloy, C.R.; Sherry, A.D. MRI detection of glycogen in vivo by using chemical exchange saturation transfer imaging (glycoCEST). Proc. Natl. Acad. Sci. USA 2007, 104, 4359–4364. [Google Scholar] [CrossRef] [Green Version]
- Nasrallah, F.A.; Pages, G.; Kuchel, P.; Golay, X.; Chuang, K.-H. Imaging Brain Deoxyglucose Uptake and Metabolism by Glucocest MRI. Br. J. Pharmacol. 2013, 33, 1270–1278. [Google Scholar] [CrossRef] [Green Version]
- Haris, M.; Nath, K.; Cai, K.; Singh, A.; Crescenzi, R.; Kogan, F.; Verma, G.; Reddy, S.; Hariharan, H.; Melhem, E.R.; et al. Imaging of glutamate neurotransmitter alterations in Alzheimer’s disease. NMR Biomed. 2013, 26, 386–391. [Google Scholar] [CrossRef] [Green Version]
- Crescenzi, R.; DeBrosse, C.; Nanga, R.P.R.; Reddy, S.; Haris, M.; Hariharan, H.; Iba, M.; Lee, V.M.; Detre, J.A.; Borthakur, A.; et al. In vivo measurement of glutamate loss is associated with synapse loss in a mouse model of tauopathy. NeuroImage 2014, 101, 185–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crescenzi, R.; DeBrosse, C.; Nanga, R.P.R.; Byrne, M.D.; Krishnamoorthy, G.; D’Aquilla, K.; Nath, H.; Morales, K.H.; Iba, M.; Hariharan, H.; et al. Longitudinal imaging reveals subhippocampal dynamics in glutamate levels associated with histopathologic events in a mouse model of tauopathy and healthy mice. Hippocampus 2017, 27, 285–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Igarashi, H.; Ueki, S.; Kitaura, H.; Kera, T.; Ohno, K.; Ohkubo, M.; Terumitsu-Tsujita, M.; Kakita, A.; Kwee, I.L. Longitudinal GluCEST MRI Changes and Cerebral Blood Flow in 5xFAD Mice. Contrast Media Mol. Imaging 2020, 2020, 8831936. [Google Scholar] [CrossRef]
- Conway, M.E. Alzheimer’s disease: Targeting the glutamatergic system. Biogerontology 2020, 21, 257–274. [Google Scholar] [CrossRef] [Green Version]
- Altiné-Samey, R.; Antier, D.; Mavel, S.; Dufour-Rainfray, D.; Balageas, A.; Beaufils, E.; Emond, P.; Foucault-Fruchard, L.; Chalon, S. The contributions of metabolomics in the discovery of new therapeutic targets in Alzheimer’s disease. Fundam. Clin. Pharmacol. 2021, 35, 582–594. [Google Scholar] [CrossRef]
- Antuono, P.G.; Jones, J.L.; Wang, Y.; Li, S.-J. Decreased glutamate + glutamine in Alzheimer’s disease detected in vivo with 1H-MRS at 0.5 T. Neurology 2001, 56, 737–742. [Google Scholar] [CrossRef]
- Chen, Y.; Dai, Z.; Shen, Z.; Lin, G.; Zhuang, C.; Li, H.; Wu, R. Magnetic resonance imaging of glutamate in neuroinflammation. Radiol. Infect. Dis. 2016, 3, 92–97. [Google Scholar] [CrossRef] [Green Version]
- Takeuchi, H.; Iba, M.; Inoue, H.; Higuchi, M.; Takao, K.; Tsukita, K.; Karatsu, Y.; Iwamoto, Y.; Miyakawa, T.; Suhara, T.; et al. P301S Mutant Human Tau Transgenic Mice Manifest Early Symptoms of Human Tauopathies with Dementia and Altered Sensorimotor Gating. PLoS ONE 2011, 6, e21050. [Google Scholar] [CrossRef] [PubMed]
- Johnson, G.A.; Badea, A.; Brandenburg, J.; Cofer, G.; Fubara, B.; Liu, S.; Nissanov, J. Waxholm Space: An image-based reference for coordinating mouse brain research. NeuroImage 2010, 53, 365–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magistretti, P.J.; Allaman, I. A Cellular Perspective on Brain Energy Metabolism and Functional Imaging. Neuron 2015, 86, 883–901. [Google Scholar] [CrossRef] [Green Version]
- Matthews, D.C.; Mao, X.; Dowd, K.; Tsakanikas, D.; Jiang, C.S.; Meuser, C.; Andrews, R.D.; Lukic, A.S.; Lee, J.; Hampilos, N.; et al. Riluzole, a glutamate modulator, slows cerebral glucose metabolism decline in patients with Alzheimer’s disease. Brain 2021, awab222. [Google Scholar] [CrossRef]
- Hoffman, J.M.; Welsh-Bohmer, K.A.; Hanson, M.; Crain, B.; Hulette, C.; Earl, N.; Coleman, R.E. FDG PET imaging in patients with pathologically verified dementia. J. Nucl. Med. 2000, 41, 1920–1928. [Google Scholar]
- Zhao, Q.; Chen, X.; Zhou, Y. Quantitative multimodal multiparametric imaging in Alzheimer’s disease. Brain Inform. 2016, 3, 29–37. [Google Scholar] [CrossRef] [Green Version]
- Caminiti, S.P.; Sala, A.; Iaccarino, L.; Beretta, L.; Pilotto, A.; Gianolli, L.; Iannaccone, S.; Magnani, G.; Padovani, A.; Ferini-Strambi, L.; et al. Brain glucose metabolism in Lewy body dementia: Implications for diagnostic criteria. Alzheimer’s Res. Ther. 2019, 11, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boussicault, L.; Herard, A.-S.; Calingasan, N.; Petit, F.; Malgorn, C.; Merienne, N.; Jan, C.; Gaillard, M.-C.; Lerchundi, R.; Barros, L.F.; et al. Impaired Brain Energy Metabolism in the BACHD Mouse Model of Huntington’s Disease: Critical Role of Astrocyte–Neuron Interactions. Br. J. Pharmacol. 2014, 34, 1500–1510. [Google Scholar] [CrossRef] [PubMed]
- Cerami, C.; Dodich, A.; Lettieri, G.; Iannaccone, S.; Magnani, G.; Marcone, A.; Gianolli, L.; Cappa, S.; Perani, D. Different FDG-PET metabolic patterns at single-subject level in the behavioral variant of fronto-temporal dementia. Cortex 2016, 83, 101–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caminiti, S.P.; Alongi, P.; Majno, L.; Volontè, M.A.; Cerami, C.; Gianolli, L.; Comi, G.; Perani, D. Evaluation of an optimized [18 F]fluoro-deoxy-glucose positron emission tomography voxel-wise method to early support differential diagnosis in atypical Parkinsonian disorders. Eur. J. Neurol. 2017, 24, 687-e26. [Google Scholar] [CrossRef]
- Orad, R.I.; Shiner, T. Differentiating dementia with Lewy bodies from Alzheimer’s disease and Parkinson’s disease dementia: An update on imaging modalities. J. Neurol. 2021, 1, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Stoessl, A.J. Glucose utilization: Still in the synapse. Nat. Neurosci. 2017, 20, 382–384. [Google Scholar] [CrossRef]
- Beal, M.F. Mitochondria take center stage in aging and neurodegeneration. Ann. Neurol. 2005, 58, 495–505. [Google Scholar] [CrossRef] [PubMed]
- Murley, A.G.; Rowe, J. Neurotransmitter deficits from frontotemporal lobar degeneration. Brain 2018, 141, 1263–1285. [Google Scholar] [CrossRef] [PubMed]
- Soni, N.; Ora, M.; Bathla, G.; Nagaraj, C.; Ponto, L.L.B.; Graham, M.M.; Saini, J.; Menda, Y. Multiparametric magnetic resonance imaging and positron emission tomography findings in neurodegenerative diseases: Current status and future directions. Neuroradiol. J. 2021, 34, 263–288. [Google Scholar] [CrossRef]
- Tolomeo, D.; Micotti, E.; Serra, S.C.; Chappell, M.; Snellman, A.; Forloni, G. Chemical exchange saturation transfer MRI shows low cerebral 2-deoxy-D-glucose uptake in a model of Alzheimer’s Disease. Sci. Rep. 2018, 8, 9576. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Shen, Z.; Wang, Q.; Zhang, B.; Zhuang, Z.; Lin, J.; Shen, Y.; Chen, Y.; Dai, Z.; Wu, R. Reduced Cerebral Glucose Uptake in an Alzheimer’s Rat Model With Glucose-Weighted Chemical Exchange Saturation Transfer Imaging. Front. Aging Neurosci. 2021, 13, 118. [Google Scholar] [CrossRef]
- Huang, J.; van Zijl, P.C.M.; Han, X.; Dong, C.M.; Cheng, G.W.Y.; Tse, K.-H.; Knutsson, L.; Chen, L.; Lai, J.H.C.; Wu, E.X.; et al. Altered d -glucose in brain parenchyma and cerebrospinal fluid of early Alzheimer’s disease detected by dynamic glucose-enhanced MRI. Sci. Adv. 2020, 6, eaba3884. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Wei, Z.; Chan, K.W.; Li, Y.; Suchal, K.; Bi, S.; Huang, J.; Xu, X.; Wong, P.C.; Lu, H.; et al. D-Glucose uptake and clearance in the tauopathy Alzheimer’s disease mouse brain detected by on-resonance variable delay multiple pulse MRI. Br. J. Pharmacol. 2021, 41, 1013–1025. [Google Scholar] [CrossRef]
- Sadowski, M.; Pankiewicz, J.; Scholtzova, H.; Ji, Y.; Quartermain, D.; Jensen, M.C.H.; Duff, K.; Nixon, R.A.; Gruen, R.J.; Wisniewski, T. Amyloid-β Deposition Is Associated with Decreased Hippocampal Glucose Metabolism and Spatial Memory Impairment in APP/PS1 Mice. J. Neuropathol. Exp. Neurol. 2004, 63, 418–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, W.; Achariyar, T.M.; Li, B.; Liao, Y.; Mestre, H.; Hitomi, E.; Regan, S.; Kasper, T.; Peng, S.; Ding, F.; et al. Suppression of glymphatic fluid transport in a mouse model of Alzheimer’s disease. Neurobiol. Dis. 2016, 93, 215–225. [Google Scholar] [CrossRef] [Green Version]
B0 (T) | Subjects | Other | Regions | Ref. | ||
---|---|---|---|---|---|---|
AD | MCI | NC | ||||
1.5 | 23 | 0 | 16 | WM ROI (1) | [83] | |
1.5 | 35 | 0 | 23 | 14 VaD & 13 other dementias | GM ROI (1) | [84] |
1.5 | 38 | 0 | 21 | GM ROI (1) | [85] | |
1.5 | 15 | 15 | 15 | GM & WM (separately & combined): WB | [86] | |
1.5 | 18 | 0 | 16 | GM only: WB, subregions (3) | [87] | |
1.5 | 25 | 13 | 28 | GM & WM combined: WB, subregions (2) | [88] | |
1.5 | 31 | 0 | 18 | 17 DLB | ROIs (4) | [89] |
1.5 | 55 | 19 | 43 | GM & WM (separately & combined): WB | [90] | |
1.5 | 55 | 19 | 43 | GM & WM separately; subregions (4) | [91] | |
1.5 | 18 | 0 | 18 | GM & WM combined: WB, ROIs (3) | [92] | |
1.5 | 1 | 5 | 14 | PS1 mutation carriers | GM only: WB, subregions (4) | [93] |
1.5 | 36 | 0 | 19 | longitudinal treatment with memantine | GM & WM combined: WB, subregions (4) | [94] |
3 | 15 | 0 | 15 | Superficial WM only: subregions (39) | [95] | |
1.5 | 20 | 27 | 30 | voxel-wise WB, subregions (2) | [96] | |
3 | 0 | 42 | 42 | MCI—single vs. multiple cognitive domains | voxel-wise: WB conjunction & disjunction analysis | [97] |
3 | 77 | 0 | 77 | GM & WM separately: WB, subregions (6) | [98] |
B0 (T) | Subjects (AD/MCI/NC) | MT Scans (Powers/Offsets) | Parameters Fitted 1 | Brain Regions without Significant Differences | Brain Regions with Significant Differences | Ref. |
---|---|---|---|---|---|---|
1.5 | 14/0/14 | 10 (3/6) | M0A, T2B, T1A/T2A↓, F × T1A↓ | parietal WM | bilateral hippocampus | [100] |
1.5 | 12/10/22 | 7 (1/7) | T1A↑, T2A↑, M0A, T2B↓, R × M0B↓, F↑ | hippocampal head | hippocampal body | [101] |
3 | 19/0/11 | 12 (6/5) | T1A, T2B, R × M0B↓, F, | voxel-wise analysis of the whole brain—remainder of the brain | hippocampus, thalamus, posterior cingulate, insula, posterior parietal and occipital cortices | [99] |
1.5 | 18/18/18 | 7 (1/7) | T1A, T2A, T2B, R × M0B, F (classifier 2) | hippocampal head, insula | entorhinal cortex, hippocampal body, temporal cortex | [102] |
3 | 43/34/21 | 12 (6/5) | T1A, R × M0B↓, F | right inferior longitudinal fasciculus, right superior cingulum, uncinated fasciculus | left inferior longitudinal fasciculus, left superior cingulum, bilateral inferior cingulum | [103] |
B0 (T) | WT | AD Model | Regions Investigated | Ref | |||
---|---|---|---|---|---|---|---|
APP/PS1 | Tg2576 | Other | |||||
7 | 8 | 7 | 12 | Cortex, hippocampus, whole brain | [109] | ||
9.4 | 5 | 4 | 12 | Cortex, hippocampus | [108] | ||
4 | 5 | 4, 6, 10 | Cortex, hippocampus | ||||
3 | 2 | 3 Tg/SOD | 11–14 | Cortex, hippocampus | |||
9.4 | 11 | 10 | 18 | neo-cortex, retrosplenial cortex, hippocampus and thalamus | [110] | ||
9 | 10 BRI | 18 | |||||
7 | 11 | 16 | 2 | posterior cortex, caudate, putamen, genu, anterior cortex, hippocampus, thalamus, hypothalamus, amygdala, splenium | [111] | ||
10 | 16 | 4 | |||||
11 | 16 | 6 | |||||
19 | 19 | 8 | |||||
10 | 9 | 24 |
B0 (T) | Subjects (AD/MCI/NC) | CEST Scans (Slices/Offsets), Offset Range | Saturation Power (μT)/Sat. Time (ms) | Parametrization | Brian Regions without Significant Differences | Brian Regions with Significant Differences | Ref. |
---|---|---|---|---|---|---|---|
APT—human studies | |||||||
3.0 | 20/0/20 | 1/3, −6.00 to +6.00 ppm | 2/4 × 200 | MTRasym (3.5 ppm) ↑ | temporal white matter (TWM), occipital white matter (OWM) and cerebral peduncles (CPs) | bilateral hippocampus | [127] |
3.0 | 0/18/18 | 4/32, −6.00 to +6.00 ppm | 2/800 | MTRasym (3.5 ppm) ↑ | hippocampus, frontal lobe GM, entorhinal cortex, and caudate nucleus | hippocampus, WM & GM in temporal and occipital lobes, the pons, frontal lobe WM, thalamus, and putamen | [128] |
3.0 | 19/9/13 | Whole-brain 3D/38, −5.00 to +5.00 ppm | 2/4 × 200 | MTRasym (3.5 ppm)↑, APT peak (3.5 ppm) from six-pool Lorentzian fitting | parahippocampal gyrus, pons, precuneus | anterior cingulate, hippocampus, putamen | [129] |
APT—animal studies 1 | |||||||
9.4 | rTg4510 (10/0/9) 1 | 1/79, −6.00 to +6.00 ppm | Not provided | AUC MTRasym (3.3–3.7 ppm)↓ | thalamus | cortex, hippocampus | [130] |
9.4 | rTg4510 (20/0/10) 1 | 1/79, −6.00 to +6.00 ppm | Not provided | AUC MTRasym (3.3–3.7 ppm)↓ | thalamus | cortex, hippocampus | [131] |
7.0 | Rat ICV injection of Aβ (10/0/10) 1 | 1/32, −6.00 to +6.00 ppm | 1.3/4000 for APT and APTSAFARI | MTRasym (3.5 ppm)↓, MTRSAFARI (3.5 ppm)↓ | thalamus | whole-brain, cortex and hippocampus | [132] |
B0 (T) | Subjects 1 (AD/Early Stage AD/WT) | CEST Scans (Slices/Offsets), Offset Range | Saturation Power (μT)/Sat. Time (ms) | Parametrization | Brian Regions without Significant Differences | Brian Regions with Significant Differences | Ref. |
---|---|---|---|---|---|---|---|
9.4 | rTg4510 (5/0/5) | 1/79, −6.00 to +6.00 ppm, | Not provided | AUC MTRasym (whole range): Smax(DGE)↑ | hippocampus, thalamus, and whole-brain | cortex | [130] |
7.0 | APP23 (7/0/7) | 1/58, −20.00 to +20.00 ppm | 1.5/4000 | AUC MTRasym (2.3–1 ppm) & ΔZ(1.2 ppm): Smax(DGE)↓ | ventricles, whole-brain | cortex, entorhinal cortex, hippocampus and thalamus | [178] |
3.0 | APP/PS1 (5/5/10) | onVDMP sequence 1/1 | 3.1/60 ms for brain and 900 ms for CSF | ΔS(t), early: Smax(DGE)↑, μout↓ in brain and CSF; advanced: Smax(DGE)↓, μin↓ in brain, μin and μout↓ in CSF | cortex, hippocampus | early: entorinal cortex, thalamus, whole-brain and CSF; advanced: all brain regions and CSF | [180] |
11.7 | Tau4RΔK (4/0/3) | onVDMP sequence1/1 | 3.1/36 ms for brain and 100 ms for CSF | ΔS(t): Smax(DGE)↓, μin↓ in brain and in CSF | whole-brainCSF | [181] | |
7.0 | Rat ICV injection of Aβ (6/0/6) 5 | 1/79, −3.00 to +3.00 ppm | 1.5/5000 | MTRasym(0.9 ppm): Smax(DGE)↓ | hippocampus | Parietal cortex, and whole-brain | [179] |
ST-MRI Method | Number of Studies (Human/Animal) | Usefulness | Advantages | Disadvantages/Limitations |
---|---|---|---|---|
MTR | 16/4 | Differential diagnosis and longitudinal monitoring |
|
|
qMT | 5/0 | Research tool for understanding the mechanisms driving changes in MT signal intensity |
|
|
APT | 3/3 | Differential diagnosis and longitudinal monitoring |
|
|
CrCEST | 0/1 | Mapping of pH changes associated with neuroinflammation and astrogliosis |
|
|
MICEST | 0/2 | Mapping of neuroinflammation and astrogliosis |
|
|
GluCEST | 0/4 | Detection and monitoring of glutamatergic system failure, and imaging of functional connectivity |
|
|
GlucoCEST | 0/5 | Potential replacement for FDG-PET with no radiation risk |
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orzyłowska, A.; Oakden, W. Saturation Transfer MRI for Detection of Metabolic and Microstructural Impairments Underlying Neurodegeneration in Alzheimer’s Disease. Brain Sci. 2022, 12, 53. https://doi.org/10.3390/brainsci12010053
Orzyłowska A, Oakden W. Saturation Transfer MRI for Detection of Metabolic and Microstructural Impairments Underlying Neurodegeneration in Alzheimer’s Disease. Brain Sciences. 2022; 12(1):53. https://doi.org/10.3390/brainsci12010053
Chicago/Turabian StyleOrzyłowska, Anna, and Wendy Oakden. 2022. "Saturation Transfer MRI for Detection of Metabolic and Microstructural Impairments Underlying Neurodegeneration in Alzheimer’s Disease" Brain Sciences 12, no. 1: 53. https://doi.org/10.3390/brainsci12010053
APA StyleOrzyłowska, A., & Oakden, W. (2022). Saturation Transfer MRI for Detection of Metabolic and Microstructural Impairments Underlying Neurodegeneration in Alzheimer’s Disease. Brain Sciences, 12(1), 53. https://doi.org/10.3390/brainsci12010053