Experimental Sleep Deprivation Results in Diminished Perceptual Stability Independently of Psychosis Proneness
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. General Procedures
2.3. Materials
2.3.1. Psychosis Proneness
2.3.2. Perceptual Stability
2.4. Modeling and Statistical Analysis
2.5. Changes to Preregistered Analysis Plan
3. Results
3.1. Summary Statistics
3.1.1. Trait Levels of Psychosis Proneness (PDI-21)
3.1.2. Perceptual Stability (RDK)
3.1.3. Data Exclusions
3.2. Modeling
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Silverstein, S.M.; Demmin, D.; Škodlar, B. Space and Objects: On the Phenomenology and Cognitive Neuroscience of Anomalous Perception in Schizophrenia (Ancillary Article to EAWE Domain 1). Psychopathology 2017, 50, 60–67. [Google Scholar] [CrossRef] [PubMed]
- King, D.J.; Hodgekins, J.; Chouinard, P.A.; Chouinard, V.-A.; Sperandio, I. A review of abnormalities in the perception of visual illusions in schizophrenia. Psychon. Bull. Rev. 2017, 24, 734–751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butler, P.D.; Silverstein, S.M.; Dakin, S.C. Visual Perception and Its Impairment in Schizophrenia. Biol. Psychiatry 2008, 64, 40–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Javitt, D.C.; Freedman, R. Sensory Processing Dysfunction in the Personal Experience and Neuronal Machinery of Schizophrenia. Am. J. Psychiatry 2015, 172, 17–31. [Google Scholar] [CrossRef]
- Waters, F.; Chiu, V.; Atkinson, A.; Blom, J.D. Severe Sleep Deprivation Causes Hallucinations and a Gradual Progression Toward Psychosis With Increasing Time Awake. Front. Psychiatry 2018, 10, 303. [Google Scholar] [CrossRef] [Green Version]
- Friston, K. A theory of cortical responses. Philos. Trans. R. Soc. B Biol. Sci. 2005, 360, 815–836. [Google Scholar] [CrossRef]
- Sterzer, P.; Adams, R.A.; Fletcher, P.; Frith, C.; Lawrie, S.M.; Muckli, L.; Petrovic, P.; Uhlhaas, P.; Voss, M.; Corlett, P.R. The Predictive Coding Account of Psychosis. Biol. Psychiatry 2018, 84, 634–643. [Google Scholar] [CrossRef] [Green Version]
- Schmack, K.; Rothkirch, M.; Priller, J.; Sterzer, P. Enhanced predictive signalling in schizophrenia. Hum. Brain Mapp. 2017, 38, 1767–1779. [Google Scholar] [CrossRef] [Green Version]
- Schmack, K.; De Castro, A.G.-C.; Rothkirch, M.; Sekutowicz, M.; Rössler, H.; Haynes, J.-D.; Heinz, A.; Petrovic, P.; Sterzer, P. Delusions and the Role of Beliefs in Perceptual Inference. J. Neurosci. 2013, 33, 13701–13712. [Google Scholar] [CrossRef] [Green Version]
- Louzolo, A.; Almeida, R.; Guitart-Masip, M.; Björnsdotter, M.; Lebedev, A.; Ingvar, M.; Olsson, A.; Petrovic, P. Enhanced Instructed Fear Learning in Delusion-Proneness. Front. Psychol. 2022, 13, 786778. [Google Scholar] [CrossRef]
- Howes, O.D.; Hird, E.J.; Adams, R.A.; Corlett, P.R.; McGuire, P. Aberrant Salience, Information Processing, and Dopaminergic Signaling in People at Clinical High Risk for Psychosis. Biol. Psychiatry 2020, 88, 304–314. [Google Scholar] [CrossRef] [PubMed]
- Jardri, R.; Hugdahl, K.; Hughes, M.; Brunelin, J.; Waters, F.; Alderson-Day, B.; Smailes, D.; Sterzer, P.; Corlett, P.R.; Leptourgos, P.; et al. Are Hallucinations Due to an Imbalance Between Excitatory and Inhibitory Influences on the Brain? Schizophr. Bull. 2016, 42, 1124–1134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vyazovskiy, V.; Olcese, U.; Hanlon, E.C.; Nir, Y.; Cirelli, C.; Tononi, G. Local sleep in awake rats. Nature 2011, 472, 443–447. [Google Scholar] [CrossRef] [PubMed]
- Hung, C.-S.; Sarasso, S.; Ferrarelli, F.; Riedner, B.; Ghilardi, M.F.; Cirelli, C.; Tononi, G. Local Experience-Dependent Changes in the Wake EEG after Prolonged Wakefulness. Sleep 2013, 36, 59–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernardi, G.; Siclari, F.; Yu, X.; Zennig, C.; Bellesi, M.; Ricciardi, E.; Cirelli, C.; Ghilardi, M.F.; Pietrini, P.; Tononi, G. Neural and behavioral correlates of extended training during sleep deprivation in humans: Evidence for local, task-specific effects. J. Neurosci. 2015, 35, 4487–4500. [Google Scholar] [CrossRef] [Green Version]
- Nir, Y.; Andrillon, T.; Marmelshtein, A.; Suthana, N.; Cirelli, C.; Tononi, G.; Fried, I. Selective neuronal lapses precede human cognitive lapses following sleep deprivation. Nat. Med. 2017, 23, 1474–1480. [Google Scholar] [CrossRef]
- Brambilla, D.; Chapman, D.; Greene, R. Adenosine Mediation of Presynaptic Feedback Inhibition of Glutamate Release. Neuron 2005, 46, 275–283. [Google Scholar] [CrossRef] [Green Version]
- Tononi, G.; Cirelli, C. Sleep and the Price of Plasticity: From Synaptic and Cellular Homeostasis to Memory Consolidation and Integration. Neuron 2014, 81, 12–34. [Google Scholar] [CrossRef] [Green Version]
- Chuah, L.Y.; Dolcos, F.; Chen, A.K.; Zheng, H.; Parimal, S.; Chee, M.W. Sleep deprivation and interference by emotional distracters. Sleep 2010, 33, 1305–1313. [Google Scholar] [CrossRef] [Green Version]
- Kong, D.; Soon, C.S.; Chee, M.W. Reduced visual processing capacity in sleep deprived persons. NeuroImage 2011, 55, 629–634. [Google Scholar] [CrossRef]
- Nilsonne, G.; Tamm, S.; Schwarz, J.; Almeida, R.; Fischer, H.; Kecklund, G.; Lekander, M.; Fransson, P.; Åkerstedt, T. Intrinsic brain connectivity after partial sleep deprivation in young and older adults: Results from the Stockholm Sleepy Brain study. Sci. Rep. 2017, 7, 9422. [Google Scholar] [CrossRef] [PubMed]
- Reeve, S.; Sheaves, B.; Freeman, D. The role of sleep dysfunction in the occurrence of delusions and hallucinations: A systematic review. Clin. Psychol. Rev. 2015, 42, 96–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruhrmann, S.; Schultze-Lutter, F.; Salokangas, R.K.R.; Heinimaa, M.; Linszen, D.; Dingemans, P.; Birchwood, M.; Patterson, P.; Juckel, G.; Heinz, A.; et al. Prediction of Psychosis in Adolescents and Young Adults at High Risk. Arch. Gen. Psychiatry 2010, 67, 241–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waite, F.; Sheaves, B.; Isham, L.; Reeve, S.; Freeman, D. Sleep and schizophrenia: From epiphenomenon to treatable causal target. Schizophr. Res. 2020, 221, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Hennig, T.; Schlier, B.; Lincoln, T.M. Sleep and psychotic symptoms: An actigraphy and diary study with young adults with low and elevated psychosis proneness. Schizophr. Res. 2020, 221, 12–19. [Google Scholar] [CrossRef]
- Van Os, J.; Linscott, R.J.; Myin-Germeys, I.; Delespaul, P.; Krabbendam, L. A systematic review and meta-analysis of the psychosis continuum: Evidence for a psychosis proneness–persistence–impairment model of psychotic disorder. Psychol. Med. 2009, 39, 179–195. [Google Scholar] [CrossRef]
- Van Os, J.; Kenis, G.; Rutten, B.P.F. The environment and schizophrenia. Nature 2010, 468, 203–212. [Google Scholar] [CrossRef]
- Peters, E.; Joseph, S.; Day, S.; Garety, P. Measuring delusional ideation: The 21-item Peters et al. Delusions Inventory (PDI). Schizophr. Bull. 2004, 30, 1005–1022. [Google Scholar] [CrossRef] [Green Version]
- Schmack, K.; Schnack, A.; Priller, J.; Sterzer, P. Perceptual instability in schizophrenia: Probing predictive coding accounts of delusions with ambiguous stimuli. Schizophr. Res. Cogn. 2015, 2, 72–77. [Google Scholar] [CrossRef] [Green Version]
- Weilnhammer, V.; Fritsch, M.; Chikermane, M.; Eckert, A.-L.; Kanthak, K.; Stuke, H.; Kaminski, J.; Sterzer, P. An active role of inferior frontal cortex in conscious experience. Curr. Biol. 2021, 31, 2868–2880.e8. [Google Scholar] [CrossRef]
- Holding, B.C.; Sundelin, T.; Lekander, M.; Axelsson, J. Sleep deprivation and its effects on communication during individual and collaborative tasks. Sci. Rep. 2019, 9, 3131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Floros, O.; Axelsson, J.; Almeida, R.; Tigerström, L.; Lekander, M.; Sundelin, T.; Petrovic, P. Vulnerability in Executive Functions to Sleep Deprivation Is Predicted by Subclinical Attention-Deficit/Hyperactivity Disorder Symptoms. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2021, 6, 290–298. [Google Scholar] [CrossRef] [PubMed]
- Holding, B.C.; Ingre, M.; Petrovic, P.; Sundelin, T.; Axelsson, J. Quantifying Cognitive Impairment After Sleep Deprivation at Different Times of Day: A Proof of Concept Using Ultra-Short Smartphone-Based Tests. Front. Behav. Neurosci. 2021, 15, 666146. [Google Scholar] [CrossRef]
- Holding, B.C.; Sundelin, T.; Cairns, P.; Perrett, D.; Axelsson, J. The effect of sleep deprivation on objective and subjective measures of facial appearance. J. Sleep Res. 2019, 28, e12860. [Google Scholar] [CrossRef] [PubMed]
- Holding, M.B.C.; Laukka, P.; Fischer, H.; Bänziger, T.; Axelsson, J.; Sundelin, T. Multimodal Emotion Recognition Is Resilient to Insufficient Sleep: Results From Cross-Sectional and Experimental Studies. Sleep 2017, 40, zsx145. [Google Scholar] [CrossRef] [Green Version]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Carpenter, B.; Gelman, A.; Hoffman, M.D.; Lee, D.; Goodrich, B.; Betancourt, M.; Brubaker, M.; Guo, J.; Li, P.; Riddell, A. Stan: A probabilistic programming language. J. Stat. Softw. 2017, 76, 1–32. [Google Scholar]
- Bürkner, P.C. Brms: An R package for Bayesian multilevel models using Stan. J. Stat. Softw. 2017, 80, 1–28. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 1 September 2022).
- Wagenmakers, E.-J.; Lodewyckx, T.; Kuriyal, H.; Grasman, R. Bayesian hypothesis testing for psychologists: A tutorial on the Savage–Dickey method. Cogn. Psychol. 2010, 60, 158–189. [Google Scholar] [CrossRef] [Green Version]
- Killgore, W.D. Effects of sleep deprivation on cognition. Prog. Brain Res. 2010, 185, 105–129. [Google Scholar]
- Ma, N.; Dinges, D.F.; Basner, M.; Rao, H. How Acute Total Sleep Loss Affects the Attending Brain: A Meta-Analysis of Neuroimaging Studies. Sleep 2015, 38, 233–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verweij, I.M.; Romeijn, N.; Smit, D.J.; Piantoni, G.; Van Someren, E.J.; van der Werf, Y.D. Sleep deprivation leads to a loss of functional connectivity in frontal brain regions. BMC Neurosci. 2014, 15, 88. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Dai, C.; Shao, Y.; Wang, C.; Zhou, Q. Changes in ventromedial prefrontal cortex functional connectivity are correlated with increased risk-taking after total sleep deprivation. Behav. Brain Res. 2022, 418, 113674. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Mai, Z.; Li, M.; Zhou, X.; Ma, N. Altered frontal connectivity after sleep deprivation predicts sustained attentional impairment: A resting-state functional magnetic resonance imaging study. J. Sleep Res. 2021, 30, e13329. [Google Scholar] [CrossRef]
- Lim, J.; Tan, J.C.; Parimal, S.; Dinges, D.F.; Chee, M.W.L. Sleep Deprivation Impairs Object-Selective Attention: A View from the Ventral Visual Cortex. PLoS ONE 2010, 5, e9087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chee, M. Limitations on visual information processing in the sleep-deprived brain and their underlying mechanisms. Curr. Opin. Behav. Sci. 2015, 1, 56–63. [Google Scholar] [CrossRef] [Green Version]
- Davies, G.; Haddock, G.; Yung, A.; Mulligan, L.D.; Kyle, S. A systematic review of the nature and correlates of sleep disturbance in early psychosis. Sleep Med. Rev. 2017, 31, 25–38. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balter, L.J.T.; Matheson, G.J.; Sundelin, T.; Sterzer, P.; Petrovic, P.; Axelsson, J. Experimental Sleep Deprivation Results in Diminished Perceptual Stability Independently of Psychosis Proneness. Brain Sci. 2022, 12, 1338. https://doi.org/10.3390/brainsci12101338
Balter LJT, Matheson GJ, Sundelin T, Sterzer P, Petrovic P, Axelsson J. Experimental Sleep Deprivation Results in Diminished Perceptual Stability Independently of Psychosis Proneness. Brain Sciences. 2022; 12(10):1338. https://doi.org/10.3390/brainsci12101338
Chicago/Turabian StyleBalter, Leonie J. T., Granville J. Matheson, Tina Sundelin, Philipp Sterzer, Predrag Petrovic, and John Axelsson. 2022. "Experimental Sleep Deprivation Results in Diminished Perceptual Stability Independently of Psychosis Proneness" Brain Sciences 12, no. 10: 1338. https://doi.org/10.3390/brainsci12101338
APA StyleBalter, L. J. T., Matheson, G. J., Sundelin, T., Sterzer, P., Petrovic, P., & Axelsson, J. (2022). Experimental Sleep Deprivation Results in Diminished Perceptual Stability Independently of Psychosis Proneness. Brain Sciences, 12(10), 1338. https://doi.org/10.3390/brainsci12101338