Compensation Mechanisms May Not Always Account for Enhanced Multisensory Illusion in Older Adults: Evidence from Sound-Induced Flash Illusion
Abstract
:1. Introduction
2. Materials & Methods
2.1. Participants
2.2. Apparatus and Procedure
2.3. rs-fMRI
2.3.1. Image Acquisition and Analysis
2.3.2. Data Preprocessing
2.3.3. ReHo Analysis
2.4. Statistical Analysis
2.4.1. Behavioral Data Analysis
2.4.2. Correlation Analysis of ReHo Values and Likelihood of the SiFI
Older Adults Group
Between-Group Comparisons
3. Results
3.1. Behavioral Performance
Signal Detection Theory Analysis
3.2. Older Adults Group
Correlation of ReHo Value and Likelihood of Illusion
3.3. Between-Group Comparisons
3.3.1. Brain Area with Changed ReHo Values in Older vs. Younger Adults
3.3.2. Correlation of ReHo Values and the Likelihood of Illusions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Falchier, A.; Clavagnier, S.; Barone, P.; Kennedy, H. Anatomical Evidence of Multimodal Integration in Primate Striate Cortex. J. Neurosci. 2002, 22, 5749–5759. [Google Scholar] [CrossRef] [PubMed]
- Foxe, J.J.; Wylie, G.R.; Martinez, A.; Schroeder, C.E.; Javitt, D.C.; Guilfoyle, D.; Ritter, W.; Murray, M.M. Auditory-somatosensory multisensory processing in auditory association cortex: A fMRI study. J. Neurophysiol. 2002, 88, 540–543. [Google Scholar] [CrossRef] [PubMed]
- Ghazanfar, A.A.; Schroeder, C.E. Is neocortex essentially multisensory? Trends Cognit. Sci. 2006, 10, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Keil, J. Double flash illusions: Current findings and future directions. Front. Neurosci. Percept. Sci. 2020, 14, 298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welch, R.B.; Warren, D.H. Intersensory Interactionsin. In Handbook of Perception and Human Performance; Boff, K.R., Kaufman, L., Thomas, J.P., Eds.; Wiley: New York, NY, USA, 1986; pp. 25.1–25.36. [Google Scholar]
- Hirst, R.J.; McGovern, D.P.; Setti, A.; Shams, L.; Newell, F.N. What you see is what you hear: Twenty years of research using the Sound-Induced Flash Illusion. Neurosci. Biobehav. Rev. 2020, 118, 759–774. [Google Scholar] [CrossRef]
- Shams, L.; Kamitani, Y.; Shimojo, S. Illusions: What you see is what you hear. Nature 2000, 408, 788. [Google Scholar] [CrossRef]
- Shams, L.; Kim, R. Crossmodal influences on visual perception. Phys. Life Rev. 2010, 7, 269–284. [Google Scholar] [CrossRef]
- Andersen, T.S.; Tiippana, K.; Sams, M. Factors influencing audiovisual fission and fusion illusions. Cogn. Brain Res. 2004, 21, 301–308. [Google Scholar] [CrossRef]
- Watkins, S.; Shams, L.; Josephs, O.; Rees, G. Activity in human V1 follows multisensory perception. Neuroimage 2007, 37, 572–578. [Google Scholar] [CrossRef]
- Wang, A.; Sang, H.; He, J.; Sava-Segal, C.; Tang, X.; Zhang, M. Effects of cognitive expectation on sound-induced flash illusion. Perception 2019, 48, 1214–1234. [Google Scholar] [CrossRef]
- Bidelman, G.M. Musicians have enhanced audiovisual multisensory binding: Experience-dependent effects in the double-flash illusion. Exp. Brain Res. 2016, 234, 3037–3047. [Google Scholar] [CrossRef] [PubMed]
- Bidelman, G.M.; Heath, S. Enhanced temporal binding of audiovisual information in the bilingual brain. Biling. Lang. Cogn. 2018, 22, 752–762. [Google Scholar] [CrossRef] [Green Version]
- Cecere, R.; Rees, G.; Romei, V. Individual differences in alpha frequency drive crossmodal illusory perception. Curr. Biol. 2015, 25, 231–235. [Google Scholar]
- Keil, J.; Müller, N.; Hartmann, T.; Weisz, N. Prestimulus beta power and phase synchrony influence the sound-induced flash illusion. Cereb. Cortex 2014, 24, 1278–1288. [Google Scholar] [CrossRef]
- Mishra, J.; Martinez, A.; Sejnowski, T.J.; Hillyard, S.A. Early cross-modal interactions in auditory and visual cortex underlie a sound-induced visual illusion. J. Neurosci. 2007, 27, 4120–4131. [Google Scholar] [CrossRef] [Green Version]
- McGovern, D.P.; Roudaia, E.; Stapleton, J.; McGinnity, T.M.; Newell, F.N. The sound-induced flash illusion reveals dissociable age-related effects in multisensory integration. Front. Aging Neurosci. 2014, 6, 250. [Google Scholar] [CrossRef]
- Setti, A.; Burke, K.E.; Kenny, R.A.; Newell, F.N. Is inefficient multisensory processing associated with falls in older people? Exp. Brain Res. 2011, 209, 375–384. [Google Scholar] [CrossRef]
- Setti, A.; Stapleton, J.; Leahy, D.; Walsh, C.; Kenny, R.A.; Newell, F.N. Improving the efficiency of multisensory integration in older adults: Audio-visual temporal discrimination training reduces susceptibility to the sound-induced flash illusion. Neuropsychologia 2014, 61, 259–268. [Google Scholar] [CrossRef] [Green Version]
- Farah, R.; Ionta, S.; Horowitz-Kraus, T. Neuro-Behavioral Correlates of Executive Dysfunctions in Dyslexia Over Development From Childhood to Adulthood. Front. Psychol. 2021, 12, 708863. [Google Scholar] [CrossRef]
- Diaconescu, A.O.; Hasher, L.; Mcintosh, A.R. Visual dominance and multisensory integration changes with age. Neuroimage 2013, 65, 152–166. [Google Scholar] [CrossRef] [Green Version]
- Stephen, J.M.; Knoefel, J.E.; Adair, J.; Hart, B.; Aine, C.J. Aging-related changes in auditory and visual integration measured with MEG. Neurosci. Lett. 2010, 484, 76–80. [Google Scholar] [CrossRef] [PubMed]
- Yan, T.; Bi, X.; Zhang, M.; Wang, W.; Yao, Z.; Yang, W.; Wu, J. Age-related oscillatory theta modulation of multisensory integration in frontocentral regions. Neuroreport 2016, 27, 796–801. [Google Scholar] [CrossRef] [PubMed]
- Hernández, B.; Setti, A.; Kenny, R.A.; Newell, F.N. Individual differences in ageing, cognitive status, and sex on susceptibility to the sound-induced flash illusion: A large-scale study. Psychol. Aging 2019, 34, 978–990. [Google Scholar] [CrossRef] [PubMed]
- Hirst, R.J.; Setti, A.; Kenny, R.; Newell, F.N. Age-related sensory decline mediates the Sound-Induced Flash Illusion: Evidence for reliability weighting models of multisensory perception. Sci. Rep. 2019, 9, 19347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freiherr, J.; Lundstrom, J.N.; Habel, U.; Reetz, K. Multisensory integration mechanisms during aging. Front. Hum. Neurosci. 2013, 7, 863. [Google Scholar] [CrossRef] [Green Version]
- Laurienti, P.J.; Burdette, J.H.; Maldjian, J.A.; Wallace, M.T. Enhanced multisensory integration in older adults. Neurobiol. Aging 2006, 27, 1155–1163. [Google Scholar] [CrossRef]
- Mozolic, J.L.; Hugenschmidt, C.E.; Peiffer, A.M.; Laurienti, P.J. Multisensory Integration and Aging; CRC Press: Florida, MA, USA; Boca Raton, FL, USA, 2012. [Google Scholar]
- Winneke, A.H.; Phillips, N.A. Does audiovisual speech offer a fountain of youth for old ears? An event-related brain potential study of age differences in audiovisual speech perception. Psychol. Aging 2011, 26, 427–438. [Google Scholar] [CrossRef] [Green Version]
- Krueger, J.; Stevenson, R.; Nidiffer, A.; Barnett, Z.; Wallace, M. Stimulus intensity modulates multisensory temporal processing. Neuropsychologia 2016, 88, 92–100. [Google Scholar] [CrossRef] [Green Version]
- Senkowski, D.; Saint-Amour, D.; Hofle, M.; Foxe, J.J. Multisensory interactions in early evoked brain activity follow the principle of inverse effectiveness. Neuroimage 2011, 56, 2200–2208. [Google Scholar] [CrossRef]
- Chen, Y.C.; Lewis, T.L.; Shore, D.I.; Maurer, D. Early binocular input is critical for development of audiovisual but not visuotactile simultaneity perception. Curr. Biol. 2017, 27, 583–589. [Google Scholar] [CrossRef] [Green Version]
- Hirst, R.J.; Setti, A.; Boyle, R.; Whelan, R.; Knight, S.; O’Connor, J.; Williamson, W.; McMorrow, J.; Fagan, A.J.; Meaney, J.F.; et al. Grey matter volume in the right Angular Gyrus is associated with differential patterns of multisensory integration with ageing. Neurobiol. Aging 2020, 100, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Hirst, R.J.; Setti, A.; Kenny, R.A.; Newell, F.N. The effect of eye disease, cataract removal and hearing aid use on the Sound Induced Flash Illusion in aging. Cortex 2020, 133, 161–176. [Google Scholar] [CrossRef] [PubMed]
- Zang, Y.; He, Y.; Zhu, C.; Cao, Q.; Sui, M.; Liang, M.; Wang, Y.F. Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev.-Jpn. 2007, 29, 83–91. [Google Scholar]
- Zang, Y.; Jiang, T.; Lu, Y.; He, Y.; Tian, L. Regional homogeneity approach to fMRI data analysis. Neuroimage 2004, 22, 394–400. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.B.; Cui, X.; Dai, X.Y.; Mo, L. Regional Homogeneity Predicts Creative Insight: A Resting-State fMRI Study. Front. Hum. Neurosci. 2018, 12, 210. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.J.; Li, Y.Y.; Guan, M.Z.; Duan, H.D.; Xu, X.L.; Fang, P. Audiovisual working memory and association with resting-state regional homogeneity. Behav. Brain Res. 2021, 411, 113382. [Google Scholar] [CrossRef]
- Jiang, L.; Xu, T.; He, Y.; Hou, X.H.; Wang, J.; Cao, X.Y.; Wei, G.X.; Yang, Z.; He, Y.; Zuo, X.N. Toward neurobiological characterization of functional homogeneity in the human cortex: Regional variation, morphological association and functional covariance network organization. Brain Struct. Funct. 2014, 220, 2485–2507. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, X.; Li, B.; Sava-Segal, C.; Wang, A.; Zhang, M. Effects of Repetition Suppression on Sound Induced Flash Illusion with Aging. Front Psychol. 2020, 11, 216. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef] [Green Version]
- Shams, L.; Ma, W.J.; Beierholm, U. Sound-induced flash illusion as an optimal percept. Neuroreport 2005, 16, 1923–1927. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; He, H.; Yu, W.; Wang, A.J.; Zhang, M. Sound-induced flash illusion in elderly adults: Evidence from low-frequency fluctuation amplitudes in resting-state fMRI. Acta Psychol. Sin. 2020, 52, 823–834. [Google Scholar] [CrossRef]
- Yan, C.G.; Wang, X.D.; Zuo, X.N.; Zang, Y.F. DPABI: Data processing analysis for (resting-state) brain imaging. Neuroinformatics 2016, 14, 339–351. [Google Scholar] [CrossRef] [PubMed]
- Biswal, B.; Yetkin, F.Z.; Haughton, V.M.; Hyde, J.S. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reason. Med. 1995, 34, 537–541. [Google Scholar] [CrossRef] [PubMed]
- Pan, W.; Wang, T.; Wang, X.; Hitchman, G.; Wang, L.; Chen, A. Identifying the core components of emotional intelligence: Evidence from amplitude of low-frequency fluctuations during resting state. PLoS ONE 2014, 9, e111435. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.W.; Zhou, H.; Liu, C.M.; Wang, A.J.; Yue, C.L.; Zhang, M. Sound-induced flash illusion is modulated by the depth of auditory stimuli: Evidence from younger and older adults. Atten. Percept. Psychophys. 2022, 84, 2040–2050. [Google Scholar] [CrossRef]
- Wang, A.J.; Zhou, H.; Yu, W.; Zhang, F.; Sang, H.B.; Tang, X.Y.; Zhang, T.Y.; Zhang, M. Repetition Suppression in Visual and Auditory Modalities Affects the Sound-Induced Flash Illusion. Perception 2021, 50, 489–507. [Google Scholar] [CrossRef]
- Innes-Brown, H.; Barutchu, A.; Crewther, D.P. Neural responses in parietal and occipital areas in response to visual events are modulated by prior multisensory stimuli. PLoS ONE 2013, 8, e84331. [Google Scholar] [CrossRef]
- Klatzky, R.L.; Marston, J.R.; Giudice, N.A.; Golledge, R.G.; Loomis, J.M. Cognitive load of navigating without vision when guided by virtual sound versus spatial language. J. Exp. Psychol.-Appl. 2006, 12, 223–232. [Google Scholar] [CrossRef] [Green Version]
- Maylor, E.A.; Lavie, N. The influence of perceptual load on age differences in selective attention. Psychol. Aging 1998, 13, 563–573. [Google Scholar] [CrossRef]
- Poliakoff, E.; Shore, D.I.; Lowe, C.; Spence, C. Visuotactile temporal order judgments in ageing. Neurosci. Lett. 2006, 396, 207–211. [Google Scholar] [CrossRef]
- Mishra, J.; Gazzaley, A. Preserved discrimination performance and neural processing during crossmodal attention in aging. PLoS ONE 2013, 8, e81894. [Google Scholar] [CrossRef] [PubMed]
- Lavie, N. Perceptual load as a necessary condition for selective attention. J. Exp. Psychol. Human 1995, 21, 451–468. [Google Scholar] [CrossRef]
- Lavie, N. Distracted and confused?: Selective attention under load. Trends Cogn. Sci. 2005, 9, 75–82. [Google Scholar] [CrossRef]
- de Haas, B.; Kanai, R.; Jalkanen, L.; Rees, G. Gray matter volume in early human visual cortex predicts proneness to the sound-induced flash illusion. Proc. R. Soc. B Biol. Sci. 2012, 279, 4955–4961. [Google Scholar] [CrossRef] [Green Version]
- Watkins, S.; Shams, L.; Tanaka, S.; Hayne, J.D.; Rees, G. Sound alters activity in human V1 in association with illusory visual perception. Neuroimage 2006, 31, 1247–1256. [Google Scholar] [CrossRef]
- Keil, J.; Senkowski, D. Neural Oscillations Orchestrate Multisensory Processing. Neuroscientist 2018, 24, 609–626. [Google Scholar] [CrossRef]
- Chan, J.S.; Wibral, M.; Wollstadt, P.; Stawowsky, C.; Brandl, M.; Helbling, S.; Naumer, M.; Kaiser, J. Predictive coding over the lifespan: Increased reliance on perceptual priors in older adults–a magnetoencephalography and dynamic causal modeling study. bioRxiv 2017, 13, 631599. [Google Scholar] [CrossRef]
- Chikazoe, J.; Jimura, K.; Asari, T.; Yamashita, K.; Morimoto, H.; Hirose, S.; Miyashita, Y.; Konishi, S. Functional dissociation in right inferior frontal cortex during performance of go/no-go task. Cereb. Cortex 2009, 19, 146–152. [Google Scholar] [CrossRef]
- Gilbert, S.J.; Burgess, P.W. Executive function. Curr. Biol. 2008, 18, R110–R114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gouveia, P.A.R.; Brucki, S.M.D.; Malheiros, S.M.F.; Bueno, O.F.A. Disorders in planning and strategy application in frontal lobe lesion patients. Brain Cogn. 2007, 63, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Seger, C.; Chen, Q.; Mo, L. Left Inferior Frontal Gyrus Integrates Multisensory Information in Category Learning. Cereb. Cortex 2020, 30, 4410–4423. [Google Scholar] [CrossRef] [PubMed]
- Persson, J.; Lustig, C.; Nelson, J.K.; Reuter-Lorenz, P.A. Age Differences in Deactivation: A Link to Cognitive Control? J. Cogn. Neurosci. 2007, 19, 1021–1032. [Google Scholar] [CrossRef] [PubMed]
- Park, D.C.; Reuterlorenz, P. The adaptive brain: Aging and neurocognitive scaffolding. Annu. Rev. Psychol. 2009, 60, 173–196. [Google Scholar] [CrossRef] [Green Version]
- Beauchamp, M.S.; Argall, B.D.; Bodurka, J.; Duyn, J.H.; Martin, A. Unraveling multisensory integration: Patchy organization within human STS multisensory cortex. Nat. Neurosci. 2004, 7, 1190–1192. [Google Scholar] [CrossRef]
- Beauchamp, M.S. See me, hear me, touch me: Multisensory integration in lateral occipital–temporal cortex. Curr. Opin. Neurobiol. 2005, 15, 145–153. [Google Scholar] [CrossRef]
MNI | Likelihood of Fission Illusion | Likelihood of Fusion Illusion | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Brain Area | BA | Cluster Size | X | Y | Z | r | p | r | p | |
Older adults group | MFG | 47 | 136 | −33 | 51 | −12 | 0.547 | 0.002 ** | ||
IFG | 48 | 268 | 45 | 15 | 30 | 0.601 | <0.001 *** | |||
SFG | 6 | 397 | 18 | 3 | 54 | 0.657 | <0.001 *** | |||
Between-group comparisons | STG | 36 | 1091 | 27 | 9 | −36 | −0.020 | 0.916 | −0.132 | 0.488 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, H.; Liu, X.; Yu, J.; Yue, C.; Wang, A.; Zhang, M. Compensation Mechanisms May Not Always Account for Enhanced Multisensory Illusion in Older Adults: Evidence from Sound-Induced Flash Illusion. Brain Sci. 2022, 12, 1418. https://doi.org/10.3390/brainsci12101418
Zhou H, Liu X, Yu J, Yue C, Wang A, Zhang M. Compensation Mechanisms May Not Always Account for Enhanced Multisensory Illusion in Older Adults: Evidence from Sound-Induced Flash Illusion. Brain Sciences. 2022; 12(10):1418. https://doi.org/10.3390/brainsci12101418
Chicago/Turabian StyleZhou, Heng, Xiaole Liu, Junming Yu, Chunlin Yue, Aijun Wang, and Ming Zhang. 2022. "Compensation Mechanisms May Not Always Account for Enhanced Multisensory Illusion in Older Adults: Evidence from Sound-Induced Flash Illusion" Brain Sciences 12, no. 10: 1418. https://doi.org/10.3390/brainsci12101418
APA StyleZhou, H., Liu, X., Yu, J., Yue, C., Wang, A., & Zhang, M. (2022). Compensation Mechanisms May Not Always Account for Enhanced Multisensory Illusion in Older Adults: Evidence from Sound-Induced Flash Illusion. Brain Sciences, 12(10), 1418. https://doi.org/10.3390/brainsci12101418