Cerebral Blood Deoxygenation by a Postural Change Detected by Near-Infrared Spectroscopy Has a Close Association with Cerebral Infarction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Study Participants
2.3. Procedure
2.4. Cerebral Oxygenation Measurement Protocol
2.5. Measurements
2.6. Statistical Analysis
3. Results
3.1. Postural Change and Fluctuations in Cerebral Oxygenation
3.2. Factors Affecting a Decline in Cerebral Oxygenation
3.3. A Decline in Cerebral Oxygenation Is Independently Associated with Chronic Cerebral Infarction
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koike, S.; Nishimura, Y.; Takizawa, R.; Yahata, N.; Kasai, K. Near-Infrared Spectroscopy in Schizophrenia: A Possible Biomarker for Predicting Clinical Outcome and Treatment Response. Front. Psychiatry 2013, 4, 145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogino, H.; Ueda, Y.; Sugita, T.; Morioka, K.; Sakakibara, Y.; Matsubayashi, K.; Nomoto, T. Monitoring of regional cerebral oxygenation by near-infrared spectroscopy during continuous retrograde cerebral perfusion for aortic arch surgery. Eur. J. Cardio-Thoracic Surg. 1998, 14, 415–418. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, Y.; Takagi, H.; Aoki, S.-I.; Sassa, H. Prediction of cerebral infarct sizes by cerebral blood flow SPECT performed in the early acute stage. Ann. Nucl. Med. 1999, 13, 205–210. [Google Scholar] [CrossRef]
- Harrer, M.; Waldenberger, F.R.; Weiss, G.; Folkmann, S.; Gorlitzer, M.; Moidl, R.; Grabenwoeger, M. Aortic arch surgery using bilateral antegrade selective cerebral perfusion in combination with near-infrared spectroscopy. Eur. J. Cardio-Thoracic Surg. 2010, 38, 561–567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weindling, A.M. Peripheral oxygenation and management in the perinatal period. Semin. Fetal Neonatal Med. 2010, 15, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Kameyama, M.; Fukuda, M.; Yamagishi, Y.; Sato, T.; Uehara, T.; Ito, M.; Suto, T.; Mikuni, M. Frontal lobe function in bipolar disorder: A multichannel near-infrared spectroscopy study. NeuroImage 2006, 29, 172–184. [Google Scholar] [CrossRef]
- Edlow, B.L.; Kim, M.N.; Durduran, T.; Zhou, C.; Putt, M.E.; Yodh, A.G.; Greenberg, J.H.; Detre, J.A. The effects of healthy aging on cerebral hemodynamic responses to posture change. Physiol. Meas. 2010, 31, 477–495. [Google Scholar] [CrossRef] [PubMed]
- Edwards, A.; Richardson, C.; Cope, M.; Wyatt, J.; Delpy, D.; Reynolds, E. Cotside Measurement of Cerebral Blood Flow in Ill Newborn Infants by Near Infrared Spectroscopy. Lancet 1988, 332, 770–771. [Google Scholar] [CrossRef]
- Mehagnoul-Schipper, D.J.; Vloet, L.C.M.; Colier, W.N.J.M.; Hoefnagels, W.H.L.; Jansen, R.W.M.M. Cerebral oxygenation declines in healthy elderly subjects in response to assuming the upright position. Stroke 2000, 31, 1615–1620. [Google Scholar] [CrossRef] [PubMed]
- Hargroves, D.; Tallis, R.; Pomeroy, V.; Bhalla, A. The influence of positioning upon cerebral oxygenation after acute stroke: A pilot study. Age Ageing 2008, 37, 581–585. [Google Scholar] [CrossRef] [PubMed]
- Aries, M.J.; Coumou, A.D.; Elting, J.W.J.; van der Harst, J.J.; Kremer, B.P.; Vroomen, P.C. Near infrared spectroscopy for the detection of desaturations in vulnerable ischemic brain tissue: A pilot study at the stroke unit bedside. Stroke 2012, 43, 1134–1136. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, Y.; Li, Y.; Wang, Y.; Li, J.; Zhang, L. Wavelet analysis of cerebral oxygenation signal measured by near infrared spectroscopy in subjects with cerebral infarction. Microvasc. Res. 2010, 80, 142–147. [Google Scholar] [CrossRef]
- Pase, M.P.; Grima, N.A.; Stough, C.K.; Scholey, A.; Pipingas, A. Cardiovascular Disease Risk and Cerebral Blood Flow Velocity. Stroke 2012, 43, 2803–2805. [Google Scholar] [CrossRef] [Green Version]
- Ohmae, E.; Oda, M.; Suzuki, T.; Yamashita, Y.; Kakihana, Y.; Matsunaga, A.; Kanmura, Y.; Tamura, M. Clinical evaluation of time-resolved spectroscopy by measuring cerebral hemodynamics during cardiopulmonary bypass surgery. J. Biomed. Opt. 2007, 12, 062112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hock, C.; Villringer, K.; Müller-Spahn, F.; Wenzel, R.; Heekeren, H.; Schuh-Hofer, S.; Hofmann, M.; Minoshima, S.; Schwaiger, M.; Dirnagl, U.; et al. Decrease in parietal cerebral hemoglobin oxygenation during performance of a verbal fluency task in patients with Alzheimer’s disease monitored by means of near-infrared spectroscopy (NIRS)—correlation with simultaneous rCBF-PET measurements. Brain Res. 1997, 755, 293–303. [Google Scholar] [CrossRef]
- Hoshi, Y.; Kobayashi, N.; Tamura, M. Interpretation of near-infrared spectroscopy signals: A study with a newly developed perfused rat brain model. J. Appl. Physiol. 2001, 90, 1657–1662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strangman, G.; Culver, J.P.; Thompson, J.H.; Boas, D.A. A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation. NeuroImage 2002, 17, 719–731. [Google Scholar] [CrossRef] [PubMed]
- Minagawa-Kawai, Y.; Mori, K.; Furuya, I.; Hayashi, R.; Sato, Y. Assessing cerebral representations of short and long vowel categories by NIRS. NeuroReport 2002, 13, 581–584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aaslid, R.; Markwalder, T.-M.; Nornes, H. Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J. Neurosurg. 1982, 57, 769–774. [Google Scholar] [CrossRef] [Green Version]
- Kawai, Y.; Murthy, G.; Watenpaugh, D.E.; Hargens, A.R. Cerebral blood flow velocity increases with acute head-down tilt of humans. Physiologist 1992, 35, S186–S187. [Google Scholar]
- Satake, H.; Konishi, T.; Kawashima, T.; Matsunami, K.; Uno, T.; Imai, S.; Yamada, H.; Hirakawa, C. Intracranial blood flow measured with single photon emission computer tomography (SPECT) during transient-6 degrees head-down tilt. Aviat. Space Environ. Med. 1994, 65, 117–122. [Google Scholar] [PubMed]
- Small, C.; Scott, K.; Smart, D.; Sun, M.; Christie, C.; Lucke-Wold, B. Microglia and Post-Subarachnoid Hemorrhage Vasospasm: Review of Emerging Mechanisms and Treatment Modalities. Clin. Surg. J. 2022, 3, 1000213. [Google Scholar]
- Motwani, K.; Dodd, W.S.; Laurent, D.; Lucke-Wold, B.; Chalouhi, N. Delayed cerebral ischemia: A look at the role of endothelial dysfunction, emerging endovascular management, and glymphatic clearance. Clin. Neurol. Neurosurg. 2022, 218, 107273. [Google Scholar] [CrossRef] [PubMed]
- Mehagnoul-Schipper, D.J.; Colier, W.N.J.M.; Jansen, R.W.M.M. Reproducibility of orthostatic changes in cerebral oxygenation in healthy subjects aged 70 years or older. Clin. Physiol. 2001, 21, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, K.; Ono, T.; Honda, E.-I.; Maeda, K.; Shinagawa, H.; Tsuiki, S.; Hiyama, S.; Kurabayashi, T.; Ohyama, K. Effects of mandibular advancement on brain activation during inspiratory loading in healthy subjects: A functional magnetic resonance imaging study. J. Appl. Physiol. 2006, 100, 579–586. [Google Scholar] [CrossRef]
- Al-Rawi, P.G.; Smielewski, P.; Kirkpatrick, P.J. Evaluation of a near-infrared spectrometer (NIRO 300) for the detection of intra-cranial oxygenation changes in the adult head. Stroke 2001, 32, 2492–2500. [Google Scholar] [CrossRef]
- Christensen, L.; Johannsen, P.; Petersen, N.C.; Pyndt, H.; Nielsen, J.B. Cerebral activation during bicycle movements in man. Exp. Brain Res. 2000, 135, 66–72. [Google Scholar] [CrossRef]
- Fukuyama, H.; Ouchi, Y.; Matsuzaki, S.; Nagahama, Y.; Yamauchi, H.; Ogawa, M.; Kimura, J.; Shibasaki, H. Brain functional activity during gait in normal subjects: A SPECT study. Neurosci. Lett. 1997, 228, 183–186. [Google Scholar] [CrossRef]
- Miyai, I.; Tanabe, H.C.; Sase, I.; Eda, H.; Oda, I.; Konishi, I.; Tsunazawa, Y.; Suzuki, T.; Yanagida, T.; Kubota, K. Cortical mapping of gait in humans: A near-infrared spectroscopic topography study. NeuroImage 2001, 14, 1186–1192. [Google Scholar] [CrossRef] [PubMed]
- Gholampour, S.; Yamini, B.; Droessler, J.; Frim, D. A New Definition for Intracranial Compliance to Evaluate Adult Hydrocephalus After Shunting. Front. Bioeng. Biotechnol. 2022, 10, 900644. [Google Scholar] [CrossRef] [PubMed]
- Gholampour, S. FSI simulation of CSF hydrodynamic changes in a large population of non-communicating hydrocephalus patients during treatment process with regard to their clinical symptoms. PLoS ONE 2018, 13, e0196216. [Google Scholar] [CrossRef] [PubMed]
Data Entry | Definitions of Covariates |
---|---|
Advanced age | Age > 75 years old |
Obese | Body mass index > 25 kg/m2 |
Hypertriglyceridemia | Triglyceride > 150 mg/dL |
Hypercholesterolemia | Total cholesterol > 220 mg/dL |
Hypo HDL cholesterolemia | High-density lipoprotein cholesterol < 40 mg/dL |
Hyperuricemia | Uric acid > 7.0 mg/dL |
Hypertension | Blood pressure > 140/90 mmHg |
Diabetes | HbA1c > 6.1% |
Carotid artery thickening | Intima-media thickness > 1.1 mm |
Anemia | Hemoglobin < 13.5 g/L in men or <11.5 g/L in women |
Underlying Disease | n |
---|---|
Atheromatous cerebral infarction | 24 |
Lacunar infarction | 12 |
Cerebral embolism | 2 |
Lower extremity fractures | 56 |
Post abdominal surgery | 6 |
Increased Cerebral Oxygenation | Decreased Cerebral Oxygenation | p Value | |
---|---|---|---|
Participants, n | 52 | 48 | |
History of chronic cerebral infarction, n | 9 (17.3) | 29 (60.4) | <0.001 |
Age (year) | 70.0 ± 15.0 | 72.3 ± 12.8 | 0.411 |
Male gender | 19 (36.5) | 26 (54.2) | 0.077 |
Percent change in cerebral oxygenation, % | 4.1 ± 2.2 | −5.9 ± 5.1 | <0.001 |
Participants with cerebral infarction: percent change in cerebral oxygenation on the unaffected side, % | 2.8 ± 2.6 | −6.2 ± 3.8 | <0.001 |
Participants with cerebral infarction: percent change in cerebral oxygenation on the affected side, % | 3.1 ± 2.9 | −6.8 ± 4.2 | <0.001 |
Mean intima-media thickness (mm) | 0.86 ± 0.21 | 1.03 ± 0.36 | 0.006 |
Systolic blood pressure (spine) (mmHg) | 118.1 ± 14.2 | 117.7 ± 13.2 | 0.899 |
Diastolic blood pressure (spine) (mmHg) | 64.5 ± 10.0 | 66.0 ± 10.8 | 0.473 |
Systolic blood pressure (upright) (mmHg) | 116.1 ± 19.3 | 112.1 ± 18.6 | 0.364 |
Diastolic blood pressure (upright) (mmHg) | 65.8 ± 14.2 | 69.6 ± 12.3 | 0.146 |
Body height (cm) | 155.1 ± 9.4 | 157.4 ± 8.5 | 0.191 |
Body weight (kg) | 51.5 ± 9.7 | 53.4 ± 10.6 | 0.346 |
BMI (kg/m2) | 21.3 ± 2.9 | 21.4 ± 3.1 | 0.871 |
Hb (g/dL) | 11.9 ± 1.7 | 12.4 ± 1.8 | 0.171 |
White blood cell count (103/μL) | 5.2 ± 1.2 | 5.7 ± 1.4 | 0.048 |
Platelet count (104/μL) | 22.0 ± 6.8 | 21.6 ± 5.7 | 0.739 |
Triglycerides (mg/dL) | 112.2 ± 37.7 | 120.8 ± 58.9 | 0.385 |
Total cholesterol (mg/dL) | 169.0 ± 25.9 | 172.6 ± 43.9 | 0.626 |
HDL cholesterol (mg/dL) | 43.5 ± 11.4 | 46.7 ± 11.2 | 0.158 |
Uric acid (mg/dL) | 5.1 ± 1.3 | 5.5 ± 1.5 | 0.103 |
HbA1c (%) | 5.5 ± 0.7 | 5.7± 0.7 | 0.261 |
MMSE | 25.9 ± 4.7 | 24.1 ± 5.7 | 0.098 |
Variables | Unstandardized Coefficients (B) | Standardized Coefficients (β) | 95% CI for B | p Value |
---|---|---|---|---|
Chronic cerebral infarction | −0.049 | −0.374 | −0.078, −0.019 | 0.002 |
Age | 1.74 × 10−5 | 0.004 | −0.001, 0.001 | 0.978 |
Male gender | −0.001 | −0.010 | −0.032, 0.030 | 0.935 |
Systolic BP | −3.86 × 10−5 | −0.008 | −0.001, 0.001 | 0.936 |
Hemoglobin | −0.002 | −0.051 | −0.010, 0.008 | 0.707 |
Triglyceride | 1.55 × 10−4 | −0.120 | 4.58 × 10−4, 1.49 × 10−4 | 0.314 |
Total cholesterol | 1.07 × 10−4 | 0.060 | 2.68 × 10−4, 4.83 × 10−4 | 0.571 |
HDL cholesterol | −0.001 | −0.123 | −0.002, 4.84 × 10−4 | 0.247 |
Uric acid | −0.003 | −0.078 | −0.013, 0.006 | 0.483 |
HbA1c | 0.001 | 0.010 | −0.018, 0.020 | 0.927 |
Mean IMT | −0.028 | −0.134 | −0.081, 0.025 | 0.296 |
MMSE | 0.001 | 0.073 | −0.002, 0.003 | 0.500 |
Variables | Adjusted Odds Ratios | 95% CI | p Value |
---|---|---|---|
Decreased cerebral oxygenation | 3.42 | (1.17, 10.02) | 0.025 |
Advanced age | 0.41 | (0.13, 1.28) | 0.124 |
Male gender | 1.10 | (0.39, 3.10) | 0.860 |
Obese | 0.96 | (0.19, 4.93) | 0.963 |
Hypertriglyceridemia | 2.28 | (0.34, 15.47) | 0.398 |
Hypercholesterolemia | 0.68 | (0.16, 2.93) | 0.603 |
Hypo HDL cholesterolemia | 0.28 | (0.98, 0.82) | 0.020 |
Hyperuricemia | 0.76 | (0.13, 4.31) | 0.752 |
Hypertension | 4.21 | (0.49, 36.02) | 0.189 |
Diabetes | 0.65 | (0.12, 3.39) | 0.606 |
Carotid artery thickening | 4.42 | (1.25, 15.58) | 0.021 |
Anemia | 0.36 | (0.13, 1.03) | 0.056 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Irisawa, H.; Inui, N.; Mizushima, T.; Watanabe, H. Cerebral Blood Deoxygenation by a Postural Change Detected by Near-Infrared Spectroscopy Has a Close Association with Cerebral Infarction. Brain Sci. 2022, 12, 1419. https://doi.org/10.3390/brainsci12101419
Irisawa H, Inui N, Mizushima T, Watanabe H. Cerebral Blood Deoxygenation by a Postural Change Detected by Near-Infrared Spectroscopy Has a Close Association with Cerebral Infarction. Brain Sciences. 2022; 12(10):1419. https://doi.org/10.3390/brainsci12101419
Chicago/Turabian StyleIrisawa, Hiroshi, Naoki Inui, Takashi Mizushima, and Hiroshi Watanabe. 2022. "Cerebral Blood Deoxygenation by a Postural Change Detected by Near-Infrared Spectroscopy Has a Close Association with Cerebral Infarction" Brain Sciences 12, no. 10: 1419. https://doi.org/10.3390/brainsci12101419
APA StyleIrisawa, H., Inui, N., Mizushima, T., & Watanabe, H. (2022). Cerebral Blood Deoxygenation by a Postural Change Detected by Near-Infrared Spectroscopy Has a Close Association with Cerebral Infarction. Brain Sciences, 12(10), 1419. https://doi.org/10.3390/brainsci12101419