Intersubject Variability in Cerebrovascular Hemodynamics and Systemic Physiology during a Verbal Fluency Task under Colored Light Exposure: Clustering of Subjects by Unsupervised Machine Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Experimental Protocol and Measurement Setup
2.3. Signal Processing and Machine Learning
3. Results
4. Discussion
4.1. Red Light Causes Greater Intersubject Variability in the Physiological Reactions Compared to Blue Light Exposure
4.2. Hard Clustering Methods Have Better Clustering Performance
4.3. Changes in Systemic Physiological Activity Help to Classify the Individual Physiological Responses to a Task/Stimulation
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mehta, R.; Zhu, R.J. Blue or red? Exploring the effect of color on cognitive task performances. Science 2009, 323, 1226–1229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Küller, R.; Mikellides, B.; Janssens, J. Color, arousal, and performance—A comparison of three experiments. Color Res. Appl. 2009, 34, 141–152. [Google Scholar] [CrossRef]
- von Castell, C.; Stelzmann, D.; Oberfeld, D.; Welsch, R.; Hecht, H. Cognitive performance and emotion are indifferent to ambient color. Color Res. Appl. 2018, 43, 65–74. [Google Scholar] [CrossRef]
- Al-Ayash, A.; Kane, R.T.; Smith, D.; Green-Armytage, P. The influence of color on student emotion, heart rate, and performance in learning environments. Color Res. Appl. 2016, 41, 196–205. [Google Scholar] [CrossRef]
- Scholkmann, F.; Tachtsidis, I.; Wolf, M.; Wolf, U. Systemic physiology augmented functional near-infrared spectroscopy: A powerful approach to study the embodied human brain. Neurophotonics 2022, 9, 030801. [Google Scholar] [CrossRef]
- Scholkmann, F.; Hafner, T.; Metz, A.J.; Wolf, M.; Wolf, U. Effect of short-term colored-light exposure on cerebral hemodynamics and oxygenation, and systemic physiological activity. Neurophotonics 2017, 4, 045005. [Google Scholar] [CrossRef] [Green Version]
- Metz, A.J.; Klein, S.D.; Scholkmann, F.; Wolf, U. Continuous coloured light altered human brain haemodynamics and oxygenation assessed by systemic physiology augmented functional near-infrared spectroscopy. Sci. Rep. 2017, 7, 10027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zohdi, H.; Egli, R.; Guthruf, D.; Scholkmann, F.; Wolf, U. Color-dependent changes in humans during a verbal fluency task under colored light exposure assessed by SPA-fNIRS. Sci. Rep. 2021, 11, 9654. [Google Scholar] [CrossRef] [PubMed]
- Zohdi, H.; Scholkmann, F.; Wolf, U. Individual Differences in Hemodynamic Responses Measured on the Head Due to a Long-Term Stimulation Involving Colored Light Exposure and a Cognitive Task: A SPA-fNIRS Study. Brain Sci. 2021, 11, 54. [Google Scholar] [CrossRef]
- Shao, Z.; Janse, E.; Visser, K.; Meyer, A.S. What do verbal fluency tasks measure? Predictors of verbal fluency performance in older adults. Front. Psychol. 2014, 5, 772. [Google Scholar] [CrossRef] [Green Version]
- Yeung, M.K. Frontal cortical activation during emotional and non-emotional verbal fluency tests. Sci. Rep. 2022, 12, 8497. [Google Scholar] [CrossRef] [PubMed]
- Sutin, A.R.; Luchetti, M.; Stephan, Y.; Strickhouser, J.E.; Terracciano, A. The association between purpose/meaning in life and verbal fluency and episodic memory: A meta-analysis of >140,000 participants from up to 32 countries. Int. Psychogeriatr. 2021, 34, 263–273. [Google Scholar] [CrossRef] [PubMed]
- Fiorini, L.; Mancioppi, G.; Semeraro, F.; Fujita, H.; Cavallo, F. Unsupervised emotional state classification through physiological parameters for social robotics applications. Knowl.-Based Syst. 2020, 190, 105217. [Google Scholar] [CrossRef]
- Usama, M.; Qadir, J.; Raza, A.; Arif, H.; Yau, K.L.A.; Elkhatib, Y.; Hussain, A.; Al-Fuqaha, A. Unsupervised Machine Learning for Networking: Techniques, Applications and Research Challenges. IEEE Access 2019, 7, 65579–65615. [Google Scholar] [CrossRef]
- Coombes, C.E.; Abrams, Z.B.; Li, S.; Abruzzo, L.V.; Coombes, K.R. Unsupervised machine learning and prognostic factors of survival in chronic lymphocytic leukemia. J. Am. Med. Inform. Assoc. 2020, 27, 1019–1027. [Google Scholar]
- Baştanlar, Y.; Özuysal, M. Introduction to machine learning. miRNomics MicroRNA Biol. Comput. Anal. 2014, 1107, 105–128. [Google Scholar]
- Fantini, S.; Sassaroli, A. Frequency-Domain Techniques for Cerebral and Functional Near-Infrared Spectroscopy. Front. Neurosci. 2020, 14, 300. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.; Wolf, M.; Toronov, V.; Wolf, U.; Polzonetti, C.; Hueber, D.; Safonova, L.P.; Gupta, R.; Michalos, A.; Mantulin, W.; et al. Noninvasive determination of the optical properties of adult brain: Near-infrared spectroscopy approach. J. Biomed. Opt. 2004, 9, 221–229. [Google Scholar]
- Franceschini, M.A.; Fantini, S.; Paunescu, L.A.; Maier, J.S.; Gratton, E. Influence of a superficial layer in the quantitative Spectroscopic Study of Strongly Scattering Media. Appl. Opt. 1998, 37, 7447–7458. [Google Scholar] [CrossRef] [Green Version]
- Toronov, V.; Webb, A.; Choi, J.H.; Wolf, M.; Michalos, A.; Gratton, E.; Hueber, D. Investigation of human brain hemodynamics by simultaneous near-infrared spectroscopy and functional magnetic resonance imaging. Med. Phys. 2001, 28, 521–527. [Google Scholar]
- Yücel, M.A.; von Lühmann, A.; Scholkmann, F.; Gervain, J.; Dan, I.; Ayaz, H.; Boas, D.; Cooper, R.J.; Culver, J.; Elwell, C.E.; et al. Best Practices for fNIRS publications. Neurophotonics 2021, 8, 012101. [Google Scholar] [CrossRef] [PubMed]
- Jayalakshmi, T.; Santhakumaran, A. Statistical Normalization and Back Propagationfor Classification. Int. J. Comput. Theory Eng. 2011, 3, 1793–8201. [Google Scholar] [CrossRef]
- Singh, D.; Singh, B. Investigating the impact of data normalization on classification performance. Appl. Soft Comput. 2020, 97, 105524. [Google Scholar] [CrossRef]
- Santello, M.; Flanders, M.; Soechting, J.F. Postural hand synergies for tool use. J. Neurosci. 1998, 18, 10105–10115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delmas, M.A.; Etzion, D.; Nairn-Birch, N. Triangulating environmental performance: What do corporate social responsibility ratings really capture? Acad. Manag. Perspect. 2013, 27, 255–267. [Google Scholar] [CrossRef] [Green Version]
- Silverman, B.G.; Bharathy, G.; Pourdehnad, J.; Green, M.; Lowe, D.; Riley, D.; Salisbury, J. Individual Consumer Differences and Design Implications for Web-Based Decision Support; Philadelphia, PA, USA, 2006; Available online: http://www.seas.upenn.edu/~barryg/PersonalityConsumers.pdf (accessed on 20 October 2022).
- Kontaki, M.; Papadopoulos, A.N.; Manolopoulos, Y. Continuous trend-based clustering in data streams. In International Conference on Data Warehousing and Knowledge Discovery; Springer: Berlin/Heidelberg, Germany, 2008; pp. 251–262. [Google Scholar]
- Severeyn, E.; Wong, S.; Velásquez, J.; Perpiñán, G.; Herrera, H.; Altuve, M.; Díaz, J. Diagnosis of Type 2 Diabetes and Pre-diabetes Using Machine Learning. In Latin American Conference on Biomedical Engineering; Springer: Cham, Switzerland, 2019; pp. 792–802. [Google Scholar]
- Rousseeuw, P.J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 1987, 20, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Caliński, T.; Harabasz, J. A dendrite method for cluster analysis. Commun. Stat. 1974, 3, 1–27. [Google Scholar]
- Davies, D.L.; Bouldin, D.W. A clustering separation measure. IEEE Trans. Pattern Anal. Mach. Intell. 1979, 2, 224–227. [Google Scholar] [CrossRef]
- Arbelaitz, O.; Gurrutxaga, I.; Muguerza, J.; Pérez, J.M.; Perona, I. An extensive comparative study of cluster validity indices. Pattern Recognit. 2013, 46, 243–256. [Google Scholar] [CrossRef]
- Dael, N.; Perseguers, M.N.; Marchand, C.; Antonietti, J.P.; Mohr, C. Put on that colour, it fits your emotion: Colour appropriateness as a function of expressed emotion. Q. J. Exp. Psychol. 2016, 69, 1619–1630. [Google Scholar] [CrossRef] [Green Version]
- Jonauskaite, D.; Dael, N.; Chèvre, L.; Althaus, B.; Tremea, A.; Charalambides, L.; Mohr, C. Pink for Girls, Red for Boys, and Blue for Both Genders: Colour Preferences in Children and Adults. Sex Roles 2019, 80, 630–642. [Google Scholar] [CrossRef] [Green Version]
- Soldat, A.S.; Sinclair, R.C.; Mark, M.M. Color as an environmental processing cue: External affective cues can directly affect processing strategy without affecting mood. Soc. Cogn. 1997, 15, 55–71. [Google Scholar] [CrossRef]
- Jiang, A.; Yao, X.; Hemingray, C.; Westland, S. Young people’s colour preference and the arousal level of small apartments. Color Res. Appl. 2022, 47, 783–795. [Google Scholar] [CrossRef]
- Tofle, R.; Schwartz, B.; Yoon, S.; Max-Royale, A. Color In Healthcare Environments—A Research Report; Health Environments Research (CHER): San Francisco, CA, USA, 2004. [Google Scholar]
- Jonauskaite, D.; Althaus, B.; Dael, N.; Dan-Glauser, E.; Mohr, C. What color do you feel? Color choices are driven by mood. Color Res. Appl. 2019, 44, 272–284. [Google Scholar] [CrossRef]
- Elliot, A.J.; Maier, M.A. Color Psychology: Effects of Perceiving Color on Psychological Functioning in Humans. Annu. Rev. Psychol. 2014, 65, 95–120. [Google Scholar] [CrossRef]
- Dudik, J.M.; Kurosu, A.; Coyle, J.L.; Sejdić, E. A comparative analysis of DBSCAN, K-means, and quadratic variation algorithms for automatic identification of swallows from swallowing accelerometry signals. Comput. Biol. Med. 2015, 59, 10–18. [Google Scholar] [CrossRef] [Green Version]
- Zanna, K.; Neal, T.; Canavan, S. Clustering of Physiological Signals by Emotional State, Race, and Sex. In Proceedings of the Companion Publication of the 2021 International Conference on Multimodal Interaction, Montreal, QC, Canada, 18–22 October 2021; pp. 312–316. [Google Scholar]
- Badillo, S.; Banfai, B.; Birzele, F.; Davydov, I.I.; Hutchinson, L.; Kam-Thong, T.; Siebourg-Polster, J.; Steiert, B.; Zhang, J.D. An Introduction to Machine Learning. Clin. Pharmacol. Ther. 2020, 107, 871–885. [Google Scholar] [CrossRef] [Green Version]
- Pikoula, M.; Quint, J.K.; Nissen, F.; Hemingway, H.; Smeeth, L.; Denaxas, S. Identifying clinically important COPD sub-types using data-driven approaches in primary care population based electronic health records. BMC Med. Inform. Decis. Mak. 2019, 19, 86. [Google Scholar] [CrossRef] [Green Version]
- Chitrakar, R.; Chuanhe, H. Anomaly detection using Support Vector Machine classification with k-Medoids clustering. In Proceedings of the 2012 Third Asian Himalayas International Conference on Internet, Kathmandu, Nepal, 23–25 November 2012; pp. 1–5. [Google Scholar]
- Castaldi, P.J.; Benet, M.; Petersen, H.; Rafaels, N.; Finigan, J.; Paoletti, M.; Marike Boezen, H.; Vonk, J.M.; Bowler, R.; Pistolesi, M.; et al. Do COPD subtypes really exist? COPD heterogeneity and clustering in 10 independent cohorts. Thorax 2017, 72, 998–1006. [Google Scholar] [CrossRef] [Green Version]
- Mangiameli, P.; Chen, S.K.; West, D. A comparison of SOM neural network and hierarchical clustering methods. Eur. J. Oper. Res. 1996, 93, 402–417. [Google Scholar] [CrossRef]
- Borthakur, D.; Peltier, A.; Dubey, H.; Gyllinsky, J.; Mankodiya, K. SmartEAR: Smartwatch-based unsupervised learning for multi-modal signal analysis in opportunistic sensing framework. In Proceedings of the 2018 IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies, Washington DC, USA, 26–28 September 2018; pp. 75–80. [Google Scholar]
- Maaoui, C.; Pruski, A. Unsupervised stress detection from remote physiological signal. In Proceedings of the 2018 IEEE International Conference on Industrial Technology (ICIT), Lyon, France, 20–22 February 2018; pp. 1538–1543. [Google Scholar]
- Katarya, R.; Saini, R. Enhancing the wine tasting experience using greedy clustering wine recommender system. Multimed. Tools Appl. 2022, 81, 807–840. [Google Scholar]
- Scholkmann, F.; Gerber, U.; Wolf, M.; Wolf, U. End-tidal CO2: An important parameter for a correct interpretation in functional brain studies using speech tasks. Neuroimage 2013, 66, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Scholkmann, F.; Klein, S.D.; Gerber, U.; Wolf, M.; Wolf, U. Cerebral hemodynamic and oxygenation changes induced by inner and heard speech: A study combining functional near-infrared spectroscopy and capnography. J. Biomed. Opt. 2014, 19, 017002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Critchley, H.D.; Elliott, R.; Mathias, C.J.; Dolan, R.J. Neural activity relating to generation and representation of galvanic skin conductance responses: A functional magnetic resonance imaging study. J. Neurosci. 2000, 20, 3033–3040. [Google Scholar]
- Zhang, S.; Hu, S.; Chao, H.H.; Luo, X.; Farr, O.M.; Li, C.S.R. Cerebral correlates of skin conductance responses in a cognitive task. Neuroimage 2012, 62, 1489–1498. [Google Scholar] [CrossRef] [Green Version]
- Nagai, Y.; Critchley, H.D.; Featherstone, E.; Trimble, M.R.; Dolan, R.J. Activity in ventromedial prefrontal cortex covaries with sympathetic skin conductance level: A physiological account of a “default mode” of brain function. Neuroimage 2004, 22, 243–251. [Google Scholar]
- Patterson, J.C.; Ungerleider, L.G.; Bandettini, P.A. Task-independent functional brain activity correlation with skin conductance changes: An fMRI study. Neuroimage 2002, 17, 1797–1806. [Google Scholar] [CrossRef] [Green Version]
- MacIntosh, B.J.; Mraz, R.; McIlroy, W.E.; Graham, S.J. Brain activity during a motor learning task: An fMRI and skin conductance study. Hum. Brain Mapp. 2007, 28, 1359–1367. [Google Scholar]
- Tachtsidis, I.; Leung, T.S.; Tisdall, M.M.; Devendra, P.; Smith, M.; Delpy, D.T.; Elwell, C.E. Investigation of frontal cortex, motor cortex and systemic haemodynamic changes during anagram solving. Adv. Exp. Med. Biol. 2008, 614, 21–28. [Google Scholar]
- Caldwell, M.; Scholkmann, F.; Wolf, U.; Wolf, M.; Elwell, C.; Tachtsidis, I. Modelling confounding effects from extracerebral contamination and systemic factors on functional near-infrared spectroscopy. Neuroimage 2016, 143, 91–105. [Google Scholar] [CrossRef]
- Bell, E.C.; Willson, M.C.; Wilman, A.H.; Dave, S.; Silverstone, P.H. Males and females differ in brain activation during cognitive tasks. Neuroimage 2006, 30, 529–538. [Google Scholar] [CrossRef] [PubMed]
- Tanida, M.; Katsuyama, M.; Sakatani, K. Relation between mental stress-induced prefrontal cortex activity and skin conditions: A near-infrared spectroscopy study. Brain Res. 2007, 1184, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Gruber, O.; Indefrey, P.; Steinmetz, H.; Kleinschmidt, A. Dissociating neural correlates of cognitive components in mental calculation. Cereb. Cortex 2001, 11, 350–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Houdé, O.; Tzourio-mazoyer, N. Neural foundations of logical and mathematical cognition. Nat. Rev. Neurosci. 2003, 4, 507–514. [Google Scholar] [CrossRef] [PubMed]
Features | Optimal Number of Clusters (Blue Light Exposure) | Silhouette Index (Blue Light Exposure) | Optimal Number of Clusters (Red Light Exposure) | Silhouette Index (Red Light Exposure) |
---|---|---|---|---|
[HHb]-PFC, [O2Hb]-VC, PETCO2, SC, SpO2 | 3 | 0.77 | 5 | 0.88 |
[O2Hb]-PFC, [HHb]-VC, SC, MAP, SpO2 | 3 | 0.75 | 5 | 0.87 |
[HHb]-PFC, [HHb]-VC, RR, SC, SpO2 | 3 | 0.76 | 5 | 0.85 |
[HHb]-PFC, [HHb]-VC, PETCO2, SC, HR | 3 | 0.72 | 7 | 0.86 |
[O2Hb]-PFC, [O2Hb]-VC, SC, HR, MAP | 4 | 0.70 | 6 | 0.87 |
Condition | Clustering Criteria | k-Means | k-Medoids | Hierarchical Clustering | GMM | SOM | DBSCAN |
---|---|---|---|---|---|---|---|
Blue light exposure | Silhouette index | 3 | 3 | 3 | 2 | 3 | 2 |
Calinski–Harabasz index | 7 | 7 | 3 | 3 | 6 | 8 | |
Davies–Bouldin index | 3 | 3 | 2 | 3 | 3 | 2 | |
Red light exposure | Silhouette index | 5 | 5 | 5 | 4 | 5 | 5 |
Calinski–Harabasz index | 7 | 7 | 5 | 5 | 7 | 5 | |
Davies–Bouldin index | 5 | 5 | 4 | 5 | 5 | 9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zohdi, H.; Natale, L.; Scholkmann, F.; Wolf, U. Intersubject Variability in Cerebrovascular Hemodynamics and Systemic Physiology during a Verbal Fluency Task under Colored Light Exposure: Clustering of Subjects by Unsupervised Machine Learning. Brain Sci. 2022, 12, 1449. https://doi.org/10.3390/brainsci12111449
Zohdi H, Natale L, Scholkmann F, Wolf U. Intersubject Variability in Cerebrovascular Hemodynamics and Systemic Physiology during a Verbal Fluency Task under Colored Light Exposure: Clustering of Subjects by Unsupervised Machine Learning. Brain Sciences. 2022; 12(11):1449. https://doi.org/10.3390/brainsci12111449
Chicago/Turabian StyleZohdi, Hamoon, Luciano Natale, Felix Scholkmann, and Ursula Wolf. 2022. "Intersubject Variability in Cerebrovascular Hemodynamics and Systemic Physiology during a Verbal Fluency Task under Colored Light Exposure: Clustering of Subjects by Unsupervised Machine Learning" Brain Sciences 12, no. 11: 1449. https://doi.org/10.3390/brainsci12111449
APA StyleZohdi, H., Natale, L., Scholkmann, F., & Wolf, U. (2022). Intersubject Variability in Cerebrovascular Hemodynamics and Systemic Physiology during a Verbal Fluency Task under Colored Light Exposure: Clustering of Subjects by Unsupervised Machine Learning. Brain Sciences, 12(11), 1449. https://doi.org/10.3390/brainsci12111449