Age-Related Differences in Stepping Reactions to a Balance Perturbation: A Functional Near-Infrared Spectroscopy and Surface Electromyography Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
- (1)
- 20 participants aged 20–40 years old, 20 participants over 60 years old;
- (2)
- Being able to stand independently for more than 10 min;
- (3)
- Right-handedness and leg dominance;
- (4)
- Family members and patients signing the informed consent.
- (1)
- A history of neurological lesions, brain tissue damage, vestibular, visual or proprioceptive disorders;
- (2)
- Being suffering from malignant progressive hypertension, severe visceral system disease, and malignant tumor;
- (3)
- A history of organic brain disease, mental disorder, or epilepsy;
- (4)
- Cognitive and communication impairments;
- (5)
- Administration of drugs that affect balance function for 1 week before the test;
- (6)
- Complicated diseases that seriously affect the sensation and movement of the lower extremities, such as rheumatoid arthritis, lumbar disc herniation, lower extremity trauma, severe skin damage, fractures, and peripheral neuropathy.
2.2. Experimental Design
2.2.1. Postural Perturbations
2.2.2. Surface Electromyography
2.2.3. fNIRS Measurement
2.2.4. Experiment Procedures
2.3. Data Processing
2.3.1. sEMG Data Processing
2.3.2. fNIRS Data Processing
2.4. Statistical Analysis
3. Results
3.1. iEMG of CPAs
3.2. β Value of Cortical Activation
4. Discussion
4.1. Differences in sEMG
4.2. Differences in fNIRS
4.3. Limitation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Phelan, E.A.; Ritchey, K. Fall Prevention in Community-Dwelling Older Adults. Ann. Intern. Med. 2018, 169, ITC81–ITC96. [Google Scholar] [CrossRef] [PubMed]
- Inouye, S.K.; Brown, C.J.; Tinetti, M.E. Medicare Nonpayment, Hospital Falls, and Unintended Consequences. N. Engl. J. Med. 2009, 360, 2390–2393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Granacher, U.; Gollhofer, A.; Hortobágyi, T.; Kressig, R.W.; Muehlbauer, T. The Importance of Trunk Muscle Strength for Balance, Functional Performance, and Fall Prevention in Seniors: A Systematic Review. Sports Med. 2013, 43, 627–641. [Google Scholar] [CrossRef] [PubMed]
- Viswanathan, A.; Sudarsky, L. Balance and gait problems in the elderly. Handb. Clin. Neurol. 2012, 103, 623–634. [Google Scholar] [CrossRef] [PubMed]
- Batcir, S.; Shani, G.; Shapiro, A.; Melzer, I. Characteristics of step responses following varying magnitudes of unexpected lateral perturbations during standing among older people—A cross-sectional laboratory-based study. BMC Geriatr. 2022, 22, 400. [Google Scholar] [CrossRef]
- Mansfield, A.; Maki, B.E. Are age-related impairments in change-in-support balance reactions dependent on the method of balance perturbation? J. Biomech. 2009, 42, 1023–1031. [Google Scholar] [CrossRef] [Green Version]
- Hyodo, M.; Saito, M.; Ushiba, J.; Tomita, Y.; Minami, M.; Mosakado, Y. Anticipatory postural adjustments contribute to age-related changes in compensatory steps associated with unilateral perturbations. Gait Posture. 2012, 36, 625–630. [Google Scholar] [CrossRef]
- Rubega, M.; Formaggio, E.; Di Marco, R.; Bertuccelli, M.; Tortora, S.; Menegatti, E.; Cattelan, M.; Bonato, P.; Masiero, S.; Del Felice, A. Cortical correlates in upright dynamic and static balance in the elderly. Sci. Rep. 2021, 11, 14132. [Google Scholar] [CrossRef]
- Cesari, P.; Piscitelli, F.; Pascucci, F.; Bertucco, M. Postural Threat Influences the Coupling Between Anticipatory and Compensatory Postural Adjustments in Response to an External Perturbation. Neuroscience 2022, 490, 25–35. [Google Scholar] [CrossRef]
- Claudino, R.; dos Santos, E.C.C.; Santos, M.J. Compensatory but not anticipatory adjustments are altered in older adults during lateral postural perturbations. Clin. Neurophysiol. 2013, 124, 1628–1637. [Google Scholar] [CrossRef]
- Quinzi, F.; Berchicci, M.; Perri, R.L.; Bianco, V.; Labanca, L.; Macaluso, A.; Di Russo, F. Contribution of cognitive functions to postural control in anticipating self-paced and externally-triggered lower-limb perturbations. Behav. Brain Res. 2019, 366, 56–66. [Google Scholar] [CrossRef]
- Xie, L.; Wang, J. Anticipatory and compensatory postural adjustments in response to loading perturbation of unknown magnitude. Exp Brain Res. 2019, 237, 173–180. [Google Scholar] [CrossRef]
- Santos, M.J.; Kanekar, N.; Aruin, A.S. The role of anticipatory postural adjustments in compensatory control of posture: 1. Electromyographic analysis. J. Electromyogr. Kinesiol. 2010, 20, 388–397. [Google Scholar] [CrossRef]
- Tan, H.-X.; Wei, Q.-C.; Chen, Y.; Xie, Y.-J.; Guo, Q.-F.; He, L.; Gao, Q. The Immediate Effects of Intermittent Theta Burst Stimulation of the Cerebellar Vermis on Cerebral Cortical Excitability During a Balance Task in Healthy Individuals: A Pilot Study. Front. Hum. Neurosci. 2021, 15, 689. [Google Scholar] [CrossRef]
- Rurak, B.K.; Rodrigues, J.P.; Power, B.D.; Drummond, P.D.; Vallence, A.M. Reduced SMA-M1 connectivity in older than younger adults measured using dual-site TMS. Eur. J. Neurosci. 2021, 54, 6533–6552. [Google Scholar] [CrossRef]
- Mihara, M.; Miyai, I.; Hatakenaka, M.; Kubota, K.; Sakoda, S. Role of the prefrontal cortex in human balance control. NeuroImage 2008, 43, 329–336. [Google Scholar] [CrossRef]
- Rahman, M.A.; Siddik, A.B.; Ghosh, T.K.; Khanam, F.; Ahmad, M. A Narrative Review on Clinical Applications of fNIRS. J. Digit. Imaging 2020, 33, 1167–1184. [Google Scholar] [CrossRef]
- Scholkmann, F.; Kleiser, S.; Metz, A.J.; Zimmermann, R.; Mata Pavia, J.; Wolf, U.; Wolf, M. A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology. NeuroImage 2014, 85, 6–27. [Google Scholar] [CrossRef]
- Kaplan, L.; Chow, B.W.; Gu, C. Neuronal regulation of the blood–brain barrier and neurovascular coupling. Nat. Rev. Neurosci. 2020, 21, 416–432. [Google Scholar] [CrossRef]
- Vitorio, R.; Stuart, S.; Rochester, L.; Alcock, L.; Pantall, A. fNIRS response during walking—Artefact or cortical activity? A systematic review. Neurosci. Biobehav. Rev. 2017, 83, 160–172. [Google Scholar] [CrossRef]
- Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G. Development of recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [Google Scholar] [CrossRef]
- Jurcak, V.; Tsuzuki, D.; Dan, I. 10/20, 10/10, and 10/5 systems revisited: Their validity as relative head-surface-based positioning systems. NeuroImage 2007, 34, 1600–1611. [Google Scholar] [CrossRef] [PubMed]
- Si, X.; Xiang, S.; Zhang, L.; Li, S.; Zhang, K.; Ming, D. Acupuncture With deqi Modulates the Hemodynamic Response and Functional Connectivity of the Prefrontal-Motor Cortical Network. Front. Neurosci. 2021, 15, 803. [Google Scholar] [CrossRef]
- Ke, P.; Meryem, A.Y.; Cristopher, M.A.; Sarah, C.S.; David, A.B.; David, B.; Becerra, L. Using prerecorded hemodynamic response functions in detecting prefrontal pain response: A functional near-infrared spectroscopy study. Neurophotonics 2017, 5, 1–15. [Google Scholar] [CrossRef]
- Li, Q.; Feng, J.; Guo, J.; Wang, Z.; Li, P.; Liu, H.; Fan, Z. Effects of the multisensory rehabilitation product for home-based hand training after stroke on cortical activation by using NIRS methods. Neurosci. Lett. 2020, 717, 134682. [Google Scholar] [CrossRef]
- Shiratori, T.; Latash, M.L. Anticipatory postural adjustments during load catching by standing subjects. Clin. Neurophysiol. 2001, 112, 1250–1265. [Google Scholar] [CrossRef]
- Hu, X.; Zhuang, C.; Wang, F.; Liu, Y.-J.; Im, C.-H.; Zhang, D. fNIRS Evidence for Recognizably Different Positive Emotions. Front. Hum. Neurosci. 2019, 13, 120. [Google Scholar] [CrossRef] [Green Version]
- Felix, S.; Martin, W. General equation for the differential pathlength factor of the frontal human head depending on wavelength and age. J. Biomed. Opt. 2013, 18, 105004. [Google Scholar] [CrossRef] [Green Version]
- Gentile, E.; Brunetti, A.; Ricci, K.; Delussi, M.; Bevilacqua, V.; de Tommaso, M. Mutual interaction between motor cortex activation and pain in fibromyalgia: EEG-fNIRS study. PLoS ONE 2020, 15, e0228158. [Google Scholar] [CrossRef]
- Strangman, G.; Culver, J.P.; Thompson, J.H.; Boas, D.A. A Quantitative Comparison of Simultaneous BOLD fMRI and NIRS Recordings during Functional Brain Activation. NeuroImage 2002, 17, 719–731. [Google Scholar] [CrossRef]
- Kawabata Duncan, K.; Tokuda, T.; Sato, C.; Tagai, K.; Dan, I. Willingness-to-Pay-Associated Right Prefrontal Activation During a Single, Real Use of Cosmetics as Revealed by Functional Near-Infrared Spectroscopy. Front. Hum. Neurosci. 2019, 13, 16. [Google Scholar] [CrossRef] [Green Version]
- Colebatch, J.G.; Govender, S.; Dennis, D.L. Postural responses to anterior and posterior perturbations applied to the upper trunk of standing human subjects. Exp. Brain Res. 2016, 234, 367–376. [Google Scholar] [CrossRef] [Green Version]
- Cano Porras, D.; Jacobs, J.V.; Inzelberg, R.; Bahat, Y.; Zeilig, G.; Plotnik, M. Patterns of whole-body muscle activations following vertical perturbations during standing and walking. J. Neuroeng. Rehabil. 2021, 18, 75. [Google Scholar] [CrossRef]
- Lee, Y.-J.; Chen, B.; Aruin, A.S. Older adults utilize less efficient postural control when performing pushing task. J. Electromyogr. Kinesiol. 2015, 25, 966–972. [Google Scholar] [CrossRef] [Green Version]
- Kanekar, N.; Aruin, A.S. The effect of aging on anticipatory postural control. Exp. Brain Res. 2014, 232, 1127–1136. [Google Scholar] [CrossRef] [Green Version]
- Goodpaster, B.H.; Park, S.W.; Harris, T.B.; Kritchevsky, S.B.; Nevitt, M.; Schwartz, A.V.; Simonsick, E.M.; Tylavsky, F.A.; Visser, M.; Newman, A.B.; et al. The Loss of Skeletal Muscle Strength, Mass, and Quality in Older Adults: The Health, Aging and Body Composition Study. J. Gerontol. Ser. A 2006, 61, 1059–1064. [Google Scholar] [CrossRef]
- da Silva Costa, A.A.; Moraes, R.; Hortobágyi, T.; Sawers, A. Older adults reduce the complexity and efficiency of neuromuscular control to preserve walking balance. Exp. Gerontol. 2020, 140, 111050. [Google Scholar] [CrossRef]
- Brown, L.A.; Gage, W.H.; Polych, M.A.; Sleik, R.J.; Winder, T.R. Central set influences on gait. Exp. Brain Res. 2002, 145, 286–296. [Google Scholar] [CrossRef]
- Bolton, D.A.E. The role of the cerebral cortex in postural responses to externally induced perturbations. Neurosci. Biobehav. Rev. 2015, 57, 142–155. [Google Scholar] [CrossRef]
- Kohl, S.H.; Mehler, D.M.A.; Lührs, M.; Thibault, R.T.; Konrad, K.; Sorger, B. The Potential of Functional Near-Infrared Spectroscopy-Based Neurofeedback—A Systematic Review and Recommendations for Best Practice. Front. Neurosci. 2020, 14, 594. [Google Scholar] [CrossRef]
- Teo, W.-P.; Goodwill, A.M.; Hendy, A.M.; Muthalib, M.; Macpherson, M. Sensory manipulation results in increased dorsolateral prefrontal cortex activation during static postural balance in sedentary older adults: An fNIRS study. Brain Behav. 2018, 8, e01109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Rond, V.; Orciolo-Silva, D.; Dijkstra, B.W.; Orban de Xivry, J.-J.; Pantall, A.; Nieuwboer, A. Compromised Brain Activity with Age During a Game-Like Dynamic Balance Task: Single- vs. Dual-Task Performance. Front. Aging Neurosci. 2021, 13, 657308. [Google Scholar] [CrossRef] [PubMed]
- Pelicioni, P.H.S.; Lord, S.R.; Sturnieks, D.L.; Halmy, B.; Menant, J.C. Cognitive and Motor Cortical Activity During Cognitively Demanding Stepping Tasks in Older People at Low and High Risk of Falling. Front. Med. 2021, 8, 554231. [Google Scholar] [CrossRef] [PubMed]
- Cabeza, R.; Albert, M.; Belleville, S.; Craik, F.I.M.; Duarte, A.; Grady, C.L.; Lindenberger, U.; Nyberg, L.; Park, D.C.; Reuter-Lorenz, P.A.; et al. Maintenance, reserve and compensation: The cognitive neuroscience of healthy ageing. Nat. Rev. Neurosci. 2018, 19, 701–710. [Google Scholar] [CrossRef] [PubMed]
- Seidler, R.D.; Bernard, J.A.; Burutolu, T.B.; Fling, B.W.; Gordon, M.T.; Gwin, J.T.; Kwak, Y.; Lipps, D.B. Motor control and aging: Links to age-related brain structural, functional, and biochemical effects. Neurosci. Biobehav. Rev. 2010, 34, 721–733. [Google Scholar] [CrossRef] [Green Version]
- Zanto, T.P.; Gazzaley, A. Aging of the frontal lobe. In Handbook of Clinical Neurology; D’Esposito, M., Grafman, J.H., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; Chapter 20; Volume 163, pp. 369–389. [Google Scholar]
- Bates, J.F.; Goldman-Rakic, P.S. Prefrontal connections of medial motor areas in the rhesus monkey. J. Comp. Neurol. 1993, 336, 211–228. [Google Scholar] [CrossRef]
- Coelho, D.B.; Bazan, P.R.; Zimeo Morais, G.A.; Balardin, J.B.; Batista, A.X.; de Oliveira, C.E.N.; Los Angeles, E.; Bernardo, C.; Sato, J.R.; de Lima-Pardini, A.C. Frontal Hemodynamic Response During Step Initiation Under Cognitive Conflict in Older and Young Healthy People. J. Gerontol. A Biol. Sci. Med. Sci. 2021, 76, 216–223. [Google Scholar] [CrossRef]
- Reuter-Lorenz, P.A.; Cappell, K.A. Neurocognitive Aging and the Compensation Hypothesis. Curr. Dir. Psychol. Sci. 2008, 17, 177–182. [Google Scholar] [CrossRef]
- Tyagi, O.; Hopko, S.; Kang, J.; Shi, Y.; Du, J.; Mehta, R.K. Modeling Brain Dynamics During Virtual Reality-Based Emergency Response Learning Under Stress. Hum. Factors 2021, 00187208211054894. [Google Scholar] [CrossRef]
- Qin, S.; Hermans, E.J.; van Marle, H.J.G.; Luo, J.; Fernandez, G. Acute Psychological Stress Reduces Working Memory-Related Activity in the Dorsolateral Prefrontal Cortex. Biol. Psychiatry 2009, 66, 25–32. [Google Scholar] [CrossRef]
- Mehta, R.K. Stunted PFC activity during neuromuscular control under stress with obesity. Eur. J. Appl. Physiol. 2016, 116, 319–326. [Google Scholar] [CrossRef]
- Koric, L.; Volle, E.; Seassau, M.; Bernard, F.A.; Mancini, J.; Dubois, B.; Pelissolo, A.; Levy, R. How cognitive performance-induced stress can influence right VLPFC activation: An fMRI study in healthy subjects and in patients with social phobia. Hum. Brain Mapp. 2012, 33, 1973–1986. [Google Scholar] [CrossRef]
- Nachev, P.; Kennard, C.; Husain, M. Functional role of the supplementary and pre-supplementary motor areas. Nat. Rev. Neurosci. 2008, 9, 856–869. [Google Scholar] [CrossRef]
- Jacobs, J.V.; Lou, J.S.; Kraakevik, J.A.; Horak, F.B. The supplementary motor area contributes to the timing of the anticipatory postural adjustment during step initiation in participants with and without Parkinson’s disease. Neuroscience 2009, 164, 877–885. [Google Scholar] [CrossRef] [Green Version]
- Halsband, U.; Ito, N.; Tanji, J.; Freund, H.J. The role of premotor cortex and the supplementary motor area in the temporal control of movement in man. Brain 1993, 116, 243–266. [Google Scholar] [CrossRef]
- MacKinnon, C.D. Chapter 1—Sensorimotor anatomy of gait, balance, and falls. In Handbook of Clinical Neurology; Day, B.L., Lord, S.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; Volume 159, pp. 3–26. [Google Scholar]
- Pfefferbaum, A.; Rohlfing, T.; Rosenbloom, M.J.; Chu, W.; Colrain, I.M.; Sullivan, E.V. Variation in longitudinal trajectories of regional brain volumes of healthy men and women (ages 10 to 85years) measured with atlas-based parcellation of MRI. NeuroImage 2013, 65, 176–193. [Google Scholar] [CrossRef] [Green Version]
- Davis, S.W.; Dennis, N.A.; Buchler, N.G.; White, L.E.; Madden, D.J.; Cabeza, R. Assessing the effects of age on long white matter tracts using diffusion tensor tractography. NeuroImage 2009, 46, 530–541. [Google Scholar] [CrossRef]
OG | YG | p | |
---|---|---|---|
Age (year) | 68.566 (5.480) | 27.313 (4.936) | <0.001 |
Sex (male/female) | 8/10 | 12/4 | NA |
BMI (kg/m2) | 23.639 (3.242) | 23.873 (3.154) | 0.833 |
MMSE (score) | 28.222 (1.957) | 30.000 (0) | 0.001 |
BBS (score) | 56 (0) | 56 (0) | NA |
ROI | Channel |
---|---|
Right PFC | 29, 30, 37, 39, 43, 44 |
Left PFC | 35, 36, 40, 41, 45, 46 |
Right PMC | 14, 17, 18, 31, 32 |
Left PMC | 21, 22, 25, 33, 34 |
Right SMC | 2, 3, 4, 10, 11, 12, 13, 15, 16 |
Left SMC | 5, 6, 19, 20, 23, 24, 26, 28 |
Right Wernicke | 1, 9 |
Left Wernicke | 7, 8, 21 |
Right Broca | 38 |
Left Broca | 42 |
OG | YG | p | t/U | |
---|---|---|---|---|
LG | 16.363 (6.754) | 9.289 (4.380) | 0.001 | 3.662 |
TA | 16.748 (10.402) | 12.954 (6.294) | 0.211 | 107 |
BF | 10.093 (5.832) | 6.560 (4.570) | 0.06 | 1.949 |
MG | 18.807 (13.928) | 15.804 (10.214) | 0.551 | 126 |
PM | 15.172 (8.013) | 7.640 (5.080) | 0.00 | 3.225 |
GM | 4.253 (3.032) | 2.788 (3.279) | 0.020 | 77 |
RF | 8.432 (6.055) | 8.904 (6.793) | 1 | 144 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhuang, R.; Zhu, S.; Sui, Y.; Zhou, M.; Yang, T.; Wang, C.; Zhang, T.; Wang, J.; Kan, C.; Shen, Y.; et al. Age-Related Differences in Stepping Reactions to a Balance Perturbation: A Functional Near-Infrared Spectroscopy and Surface Electromyography Study. Brain Sci. 2022, 12, 1479. https://doi.org/10.3390/brainsci12111479
Zhuang R, Zhu S, Sui Y, Zhou M, Yang T, Wang C, Zhang T, Wang J, Kan C, Shen Y, et al. Age-Related Differences in Stepping Reactions to a Balance Perturbation: A Functional Near-Infrared Spectroscopy and Surface Electromyography Study. Brain Sciences. 2022; 12(11):1479. https://doi.org/10.3390/brainsci12111479
Chicago/Turabian StyleZhuang, Ren, Shizhe Zhu, Youxin Sui, Mengye Zhou, Ting Yang, Chaolan Wang, Tianjiao Zhang, Jin Wang, Chaojie Kan, Ying Shen, and et al. 2022. "Age-Related Differences in Stepping Reactions to a Balance Perturbation: A Functional Near-Infrared Spectroscopy and Surface Electromyography Study" Brain Sciences 12, no. 11: 1479. https://doi.org/10.3390/brainsci12111479
APA StyleZhuang, R., Zhu, S., Sui, Y., Zhou, M., Yang, T., Wang, C., Zhang, T., Wang, J., Kan, C., Shen, Y., Wang, T., & Guo, C. (2022). Age-Related Differences in Stepping Reactions to a Balance Perturbation: A Functional Near-Infrared Spectroscopy and Surface Electromyography Study. Brain Sciences, 12(11), 1479. https://doi.org/10.3390/brainsci12111479