Biomarkers in Neuropsychiatric Systemic Lupus Erythematosus: A Systematic Literature Review of the Last Decade
Abstract
:1. Introduction
2. Methods
2.1. Diagnostic Biomarkers
Biomarker | Sample | Feature | Comparator | Metrics | References |
---|---|---|---|---|---|
Antibodies | |||||
Anti-ribosomal P (+) | Serum/ plasma | Unspecified | Non-NP SLE | AUC: 0.57; OR: 2.0–3.3 | Huang et al., 2020 [24]; Zhang et al., 2021 [21] |
Unspecified; Diffuse | Pooled OR: 1.6–3.1 | Choi et al., 2020 [20] | |||
Anti-Sm (+) | Serum/ plasma | Focal; Unspecified | Non-seizure SLE; Non-NP SLE, MS, NMO and VM | OR: 1.0–3.3 | Mikdashi et al., 2005 [17]; Ushigusa et al., 2016 [25] |
Unspecified | Non-NP SLE, MS, NMO and VM | Adj. OR: 0.9 | Ushigusa et al., 2016 [25] | ||
aCLs * (+) | Serum/ plasma | Unspecified; Focal | Non-NP SLE; Non-seizure SLE | OR: 1.9–7.3 | Govoni et al., 2012 [11]; Karassa et al., 2000 [18]; Hawro et al., 2015 [15]; Mikdashi et al., 2005 [17] |
Unspecified | Non-NP SLE | Adj. OR: 3.1 | Mok et al., 2001 [16] | ||
Focal | Non-seizure SLE | HR: 2.2 | Mikdashi et al., 2005 [17] | ||
Anti-β2GP1 * (+) | Serum/ plasma | Unspecified; Focal | Non-NP SLE; Non-CVD SLE; Non-headache SLE; Non-seizure SLE | OR: 2.5–11.3 | Govoni et al., 2012 [11]; Hawro et al., 2015 [15] |
Anti-GAPDH (levels) | Serum/ plasma | Unspecified | N/A | ρ = 0.57 | Sun et al., 2019 [50] |
Anti-GABAR † (+) | Serum/ plasma | Unspecified | Non-NP SLE | OR: 4.6–5.5 | Tsuchiya et al., 2014 [51] |
Anti-vimentin ‡ (<40.5 NFI) | Serum/ plasma | Unspecified | Non-NP SLE | Sens.: 88%; Spec.: 66%; AUC: 0.81; OR: 13.5 | van der Meulen et al., 2017 [52] |
Anti-heparan sulphate ‡ (>20.5 NFI) | Sens.: 65%; Spec.: 70%; AUC: 0.72; OR: 4.5 | ||||
Anti-nucleoporin 62 ‡ (<26.5 NFI) | Sens.: 81%; Spec.: 55%; AUC: 0.72; OR: 4.5 | ||||
Anti-prothrombin ‡ (<32.5 NFI) | Sens.: 65%; Spec.: 65%; AUC: 0.69; OR: 3.6 | ||||
Anti-glycoprotein 2 ‡ (<34.5 NFI) | Sens.: 68%; Spec.: 65%; AUC: 0.68; OR: 4.0 | ||||
Anti-cardiolipin ‡ (>0.5 NFI) | Sens.: 45%; Spec.: 87%; AUC: 0.66; OR: 5.3 | ||||
Anti-histone H2A ‡ (>189.0 NFI) | Sens.: 61%; Spec.: 64%; AUC: 0.65; OR: 2.7 | ||||
Anti-histone H2B ‡ (>146.5 NFI) | Sens.: 64%; Spec.: 63%; AUC: 0.65; OR: 2.9 | ||||
Anti-collagen II ‡ (>4.5 NFI) | Sens.: 65%; Spec.: 58%; AUC: 0.65; OR: 2.6 | ||||
Anti-heparin ‡ (>174.0 NFI) | Sens.: 65%; Spec.: 61%; AUC: 0.65; OR: 2.8 | ||||
Anti-amyloid ‡ (>1.5 NFI) | Sens.: 70%; Spec.: 58%; AUC: 0.65; OR: 3.2 | ||||
Anti-suprabasin (A.I. ≥1.0) | CSF | Unspecified | Non-NP SLE, MS and NPH | Sens.: 42%; Spec.: 92%; AUC: 0.78 | Ichinose et al., 2018 [42] |
Proteins/cytokines | |||||
C3 (low) | Serum/ plasma | Unspecified | Non-NP SLE | OR: 3.8 | Karassa et al., 2000 [18] |
C3 (levels) | Non-NP SLE, MS, NMO and VM | Adj. OR: 1.1 | Ushigusa et al., 2016 [25] | ||
NfL (↑) | Serum/ plasma | Unspecified | Non-NP SLE | AUC: 0.65 | Engel et al., 2021 [53] |
NSE (levels) | Serum/ plasma | Unspecified | Non-NP SLE | ρ = −0.37 | Hawro et al., 2015 [54] |
HMGB1 (levels) | Serum/ plasma | Unspecified | Non-NP SLE | AUC: 0.84; OR: 1.7 | Huang et al., 2020 [24] |
IL-6 (>74.9 pg/mL; ↑) | Serum/ plasma | Unspecified | Non-NP SLE | Sens.: 75%; Spec.: 100%; AUC: 0.89 | Kitagori et al., 2019 [23] |
CSF | MS and NMO | Sens.: 22%; Spec.: 93%; PPV: 70%; NPV: 61% | Ichinose et al., 2015 [55] | ||
ApoA1 (levels) | Serum/ plasma | Diffuse | N/A | ρ = 0.21 | Lu et al., 2021 [56] |
ApoE (levels) | ρ = −0.21 | ||||
Free T3 (levels) | ρ = 0.19–0.32 | ||||
Free T4 (levels) | ρ = 0.28–0.42 | ||||
HDL-C (levels) | ρ = 0.05–0.08 | ||||
IGFBP7 (levels) | ρ = −0.22 | ||||
S100B (>0.0218 ng/mL) | Serum/ plasma | Unspecified | Non-NP SLE | Sens.: 81%; Spec.: 67%; PPV: 84%; NPV: 62%; AUC: 0.74 | Noris-García et al., 2018 [57] |
IL-17 (↑) | CSF | Unspecified | MS and NMO | Sens.: 91%; Spec.: 90%; PPV: 88; NPV: 93 | Ichinose et al., 2015 [55] |
IL-2 (↑) | Sens.: 88%; Spec.: 93%; PPV: 90; NPV: 91 | ||||
IFN-γ (↑) | Sens.: 88%; Spec.: 98%; PPV: 97; NPV: 91 | ||||
IL-5 (↑) | Sens.: 88%; Spec.: 98%; PPV: 97; NPV: 91 | ||||
FGF2 (↑) | Sens.: 88%; Spec.: 95%; PPV: 93; NPV: 91 | ||||
IL-15 (↑) | Sens.: 94%; Spec.: 95%; PPV: 94; NPV: 95 | ||||
IL-8 (↑) | Sens.: 22%; Spec.: 93%; PPV: 70; NPV: 61 | ||||
Osteopontin (>963.4 ng/mL) | CSF | Unspecified | Non-NP SLE | Sens.: 70%; Spec.: 100%; AUC: 0.88 | Kitagori et al., 2019 [23] |
Lipocalin 2 (↑, ≥122 pg/mL; ≥126 pg/mL;) | CSF | Unspecified | HC/other neurological diseases | Sens.: 76–94%; Spec.: 80%; PPV: 63–84%; NPV: 88–92%; AUC: 0.80–0.85 | Mike et al., 2019 [35]; Vanarsa et al., 2022 (in print) [34] |
α-Klotho (≤230.2 pg/mL) | CSF | Unspecified | Non-NP SLE, MS, NMO and VM | Sens.: 82%; Spec.: 94%; AUC: 0.94; OR: 0.98 | Ushigusa et al., 2016 [25] |
Angiostatin (≥12 ng/mL) | CSF | Unspecified | HC/other neurological diseases | Sens.: 88%; Spec.: 44%; PPV: 45%; NPV: 88%; AUC: 0.65 | Vanarsa et al., 2022 (in print) [34] |
DAN (≥21,457 pg/mL) | Sens.: 76%; Spec.: 63%; PPV: 52%; NPV: 84%; AUC: 0.75 | ||||
Fibronectin (≥3539 pg/mL) | Sens.: 67%; Spec.: 85%; PPV: 70%; NPV: 83%; AUC: 0.81 | ||||
HCC-1 (≥3665 pg/mL) | Sens.: 52%; Spec.: 85%; PPV: 65%; NPV: 78%; AUC: 0.69 | ||||
M-CSF (≥41 pg/mL, ≥95 pg/mL) | Sens.: 47–80%; Spec.: 94–100%; PPV: 87–100%; NPV: 62–90%; AUC: 0.71–0.91 | ||||
SERPING1 (≥415 ng/mL) | Sens.: 71%; Spec.: 80%; PPV: 65%; NPV: 85%; AUC: 0.78 | ||||
IgM (≥1220 ng/mL, ≥5586 ng/mL) | Sens.: 70–100%; Spec.: 89–100%; PPV: 83–100%; NPV: 75–100%; AUC: 0.78–0.95 | ||||
IC-associated antigens | |||||
Isoform 7 of nesprin-1 (+) | CSF (IC-associated) | Unspecified | HC | Sens.: 8%; Spec.: 100% | Aibara et al., 2018 [41] |
Suprabasin isoform 1 precursor (+) | Sens.: 35%; Spec.: 100% | ||||
Calmodulin-like protein 5 (+) | Sens.: 12%; Spec.: 92% | ||||
cDNA FLJ58075, highly similar to ceruloplasmin (+) | Sens.: 4%; Spec.: 96% | ||||
Desmoglein-1 (+) | Sens.: 15%; Spec.: 96% | ||||
INTS4-like protein 2 (+) | Sens.: 4%; Spec.: 96% | ||||
Isoform 1 of α1-antitrypsin (+) | Sens.: 8%; Spec.: 98% | ||||
Isoform 2 of NUMA1 (+) | Sens.: 4%; Spec.: 96% | ||||
Protein piccolo (+) | Sens.: 8%; Spec.: 98% | ||||
Isoform 3 ofRICTOR (+) | Sens.: 19%; Spec.: 100% | ||||
Genetic/epigenetic markers | |||||
PD-1 (FC) | Blood (gene expression) | Diffuse | Non-psychosis SLE | ρ = 0.24 | Bassiouni et al., 2021 [58] |
TREX1 (relative frequencies) | Blood (SNPs §) | Unspecified; Focal | Non-NP SLE; HC; Non-neurological SLE | OR: 1.6–44.7 | Fredi et al., 2015 [43]; Namjou et al., 2011 [44] |
TRPC6 (relative frequencies) | Blood (SNP rs7925662) | Unspecified | Non-NP SLE | HR: 0.4–3.3 | Ramirez et al., 2015 [59]; Ramirez et al., 2018 [60] |
miR-145 (FC > 0.0041; FC > 0.92; FC > 0.61) | Serum/ plasma (expression) | Unspecified | HC; MS; NMO | Sens.: 60–80%; Spec.: 83–100%; PPV: 57–100%; NPV: 77–94%; AUC: 0.76–0.90 | Sharaf-Eldin et al., 2017 [61] |
miR-223 (FC > 0.925; FC > 0.325; FC > 0.61) | Sens.: 90%; Spec.: 87–100%; PPV: 75–100%; NPV: 90–97%; AUC: 0.91–0.99 | ||||
miR-326 (FC > 0.0037; FC > 0.505; FC > 0.61) | Sens.: 90%; Spec.: 78–90%; PPV: 64–90%; NPV: 90–97%; AUC: 0.82–0.90 | ||||
SMAD3 (FC > 0.052) | Serum/ plasma (gene expression) | Unspecified | HC | Sens.: 70%; Spec.: 78%; PPV: 58%; NPV: 86%; AUC: 0.73 | Sharaf-Eldin et al., 2017 [61] |
SP1 (FC > 0.795) | MS | Sens.: 80%; Spec.: 76%; PPV: 47%; NPV: 93%; AUC: 0.82 | |||
miR-23a (FC ≥ 0.1; FC ≥ 7.3) | Serum/ plasma (expression) | Unspecified | HC; MS | Sens.: 90–100%; Spec.: 96–100%; AUC: 0.95–0.98 | Sharaf-Eldin et al., 2020 [46] |
miR-155 (FC ≥ 0.1; FC ≥ 7.3) | HC; NMO; MS | Sens.: 60–90%; Spec.: 88–90%; AUC: 0.76–0.92 | |||
miR-572 (FC ≥ 4.5) | HC | Sens.: 90%; Spec.: 68%; AUC: 0.80 |
2.2. Biomarkers of Disease Activity
2.3. Biomarkers of Response to Therapy
2.4. Prognostic Biomarkers
3. Perspective
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Unterman, A.; Nolte, J.E.; Boaz, M.; Abady, M.; Shoenfeld, Y.; Zandman-Goddard, G. Neuropsychiatric Syndromes in Systemic Lupus Erythematosus: A Meta-Analysis. Semin. Arthritis Rheum. 2011, 41, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Hanly, J.G.; Urowitz, M.B.; Su, L.; Bae, S.-C.; Gordon, C.; Wallace, D.J.; Clarke, A.; Bernatsky, S.; Isenberg, D.; Rahman, A.; et al. Prospective analysis of neuropsychiatric events in an international disease inception cohort of patients with systemic lupus erythematosus. Ann. Rheum. Dis. 2009, 69, 529–535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The American College of Rheumatology nomenclature and case definitions for neuropsychiatric lupus syndromes. Arthritis Rheum. 1999, 42, 599–608. [CrossRef]
- Schwartz, N.; Stock, A.D.; Putterman, C. Neuropsychiatric lupus: New mechanistic insights and future treatment directions. Nat. Rev. Rheumatol. 2019, 15, 137–152. [Google Scholar] [CrossRef]
- Barilefabris, A.L.; Ariza-Andraca, R.; Olguín-Ortega, L.; Jara, L.J.; Fraga-Mouret, A.; Miranda-Limón, J.M.; De La Mata, J.F.; Clark, A.P.; Vargas, F.S.; Alocer-Varela, J. Controlled clinical trial of IV cyclophosphamide versus IV methylprednisolone in severe neurological manifestations in systemic lupus erythematosus. Ann. Rheum. Dis. 2005, 64, 620–625. [Google Scholar] [CrossRef] [PubMed]
- Mok, C.C.; Lau, C.S.; Wong, R.W. Treatment of lupus psychosis with oral cyclophosphamide followed by azathioprine maintenance: An open-label study. Am. J. Med. 2003, 115, 59–62. [Google Scholar] [CrossRef]
- Tokunaga, M.; Saito, K.; Kawabata, D.; Imura, Y.; Fujii, T.; Nakayamada, S.; Tsujimura, S.; Nawata, M.; Iwata, S.; Azuma, T.; et al. Efficacy of rituximab (anti-CD20) for refractory systemic lupus erythematosus involving the central nervous system. Ann. Rheum. Dis. 2006, 66, 470–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertsias, G.K.; Ioannidis, J.P.A.; Aringer, M.; Bollen, E.; Bombardieri, S.; Bruce, I.N.; Cervera, R.; Dalakas, M.; Doria, A.; Hanly, J.G.; et al. EULAR recommendations for the management of systemic lupus erythematosus with neuropsychiatric manifestations: Report of a task force of the EULAR standing committee for clinical affairs. Ann. Rheum. Dis. 2010, 69, 2074–2082. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, 71. [Google Scholar] [CrossRef]
- JBI Critical Appraisal Tools. Available online: https://jbi.global/critical-appraisal-tools (accessed on 19 January 2022).
- Govoni, M.; Bombardieri, S.; Bortoluzzi, A.; Caniatti, L.; Casu, C.; Conti, F.; De Vita, S.; Doria, A.; Farina, I.; Ferraccioli, G.; et al. Factors and comorbidities associated with first neuropsychiatric event in systemic lupus erythematosus: Does a risk profile exist? A large multicentre retrospective cross-sectional study on 959 Italian patients. Rheumatology 2011, 51, 157–168. [Google Scholar] [CrossRef] [Green Version]
- Hanly, J.G.; Urowitz, M.B.; Su, L.; Bae, S.-C.; Gordon, C.; Clarke, A.; Bernatsky, S.; Vasudevan, A.; Isenberg, D.; Rahman, A.; et al. Autoantibodies as biomarkers for the prediction of neuropsychiatric events in systemic lupus erythematosus. Ann. Rheum. Dis. 2011, 70, 1726–1732. [Google Scholar] [CrossRef] [PubMed]
- Hanly, J.G.; Urowitz, M.B.; Siannis, F.; Farewell, V.; Gordon, C.; Bae, S.-C.; Isenberg, D.; Dooley, M.A.; Clarke, A.; Bernatsky, S.; et al. Autoantibodies and neuropsychiatric events at the time of systemic lupus erythematosus diagnosis: Results from an international inception cohort study. Arthritis Care Res. 2008, 58, 843–853. [Google Scholar] [CrossRef] [PubMed]
- Hanly, J.G.; Urowitz, M.B.; Su, L.; Gordon, C.; Bae, S.-C.; Sanchez-Guerrero, J.; Romero-Diaz, J.; Wallace, D.J.; Clarke, A.E.; Ginzler, E.; et al. Seizure disorders in systemic lupus erythematosus results from an international, prospective, inception cohort study. Ann. Rheum. Dis. 2012, 71, 1502–1509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hawro, T.; Bogucki, A.; Krupińska-Kun, M.; Maurer, M.; Woźniacka, A. Intractable Headaches, Ischemic Stroke, and Seizures Are Linked to the Presence of Anti-β2GPI Antibodies in Patients with Systemic Lupus Erythematosus. PLoS ONE 2015, 10, e0119911. [Google Scholar] [CrossRef]
- Mok, C.C.; Lau, C.S.; Wong, R.W. Neuropsychiatric manifestations and their clinical associations in southern Chinese patients with systemic lupus erythematosus. J. Rheumatol. 2001, 28, 766–771. [Google Scholar]
- Mikdashi, J.; Krumholz, A.; Handwerger, B. Factors at diagnosis predict subsequent occurrence of seizures in systemic lupus erythematosus. Neurology 2005, 64, 2102–2107. [Google Scholar] [CrossRef]
- Karassa, F.; Ioannidis, J.; Touloumi, G.; Boki, K.; Moutsopoulos, H. Risk factors for central nervous system involvement in systemic lupus erythematosus. QJM: Int. J. Med. 2000, 93, 169–174. [Google Scholar] [CrossRef] [Green Version]
- Leal Rato, M.; Bandeira, M.; Romão, V.C.; Aguiar de Sousa, D. Neurologic Manifestations of the Antiphospholipid Syndrome-an Update. Curr. Neurol. Neurosci. Rep. 2021, 21, 41. [Google Scholar] [CrossRef]
- Choi, M.Y.; Fitz, P.R.D.; Buhler, K.; Mahler, M.; Fritzler, M.J. A review and meta-analysis of anti-ribosomal P autoantibodies in systemic lupus erythematosus. Autoimmun. Rev. 2020, 19, 102463. [Google Scholar] [CrossRef]
- Zhang, S.; Li, M.; Zhang, L.; Wang, Z.; Wang, Q.; You, H.; Wang, Y.; Li, M.; Zeng, X. Clinical Features and Outcomes of Neuropsychiatric Systemic Lupus Erythematosus in China. J. Immunol. Res. 2021, 2021, 1–10. [Google Scholar] [CrossRef]
- Bravo-Zehnder, M.; Toledo, E.; Segovia-Miranda, F.; Serrano, F.; Benito, M.J.; Metz, C.; Retamal, C.; Álvarez, A.; Massardo, L.; Inestrosa, N.C.; et al. Anti-Ribosomal P Protein Autoantibodies from Patients With Neuropsychiatric Lupus Impair Memory in Mice. Arthritis Rheumatol. 2015, 67, 204–214. [Google Scholar] [CrossRef] [PubMed]
- Kitagori, K.; Yoshifuji, H.; Oku, T.; Ayaki, T.; Kuzuya, A.; Nakajima, T.; Akizuki, S.; Nakashima, R.; Murakami, K.; Ohmura, K.; et al. Utility of osteopontin in cerebrospinal fluid as a diagnostic marker for neuropsychiatric systemic lupus erythematosus. Lupus 2019, 28, 414–422. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Shen, S.; Qu, H.; Huang, Y.; Wu, D.; Jiang, H.; Yuan, C. Expression of HMGB1 and TLR4 in neuropsychiatric systemic lupus erythematosus patients with seizure disorders. Ann. Transl. Med. 2020, 8, 9. [Google Scholar] [CrossRef] [PubMed]
- Ushigusa, T.; Ichinose, K.; Sato, S.; Michitsuji, T.; Shimizu, T.; Umeda, M.; Fukui, S.; Nishino, A.; Nakashima, Y.; Koga, T.; et al. Soluble α-klotho is a potential biomarker associated with neuropsychiatric systemic lupus erythematosus. Clin. Immunol. 2016, 165, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Hirohata, S.; Miyamoto, T. Elevated levels of interleukin-6 in cerebrospinal fluid from patients with systemic lupus erythematosus and central nervous system involvement. Arthritis Rheum. 1990, 33, 644–649. [Google Scholar] [CrossRef] [PubMed]
- Hirano, T.; Yasukawa, K.; Harada, H.; Taga, T.; Watanabe, Y.; Matsuda, T.; Kashiwamura, S.-I.; Nakajima, K.; Koyama, K.; Iwamatsu, A.; et al. Complementary DNA for a novel human interleukin (BSF-2) that induces B lymphocytes to produce immunoglobulin. Nature 1986, 324, 73–76. [Google Scholar] [CrossRef]
- Harris, H.E.; Andersson, U.; Pisetsky, D.S. HMGB1: A multifunctional alarmin driving autoimmune and inflammatory disease. Nat. Rev. Rheumatol. 2012, 8, 195–202. [Google Scholar] [CrossRef]
- Li, J.; Xie, H.; Wen, T.; Liu, H.; Zhu, W.; Chen, X. Expression of High Mobility Group Box Chromosomal Protein 1 and Its Modulating Effects on Downstream Cytokines in Systemic Lupus Erythematosus. J. Rheumatol. 2010, 37, 766–775. [Google Scholar] [CrossRef]
- Maroso, M.; Balosso, S.; Ravizza, T.; Liu, J.; Aronica, E.; Iyer, A.M.; Rossetti, C.; Molteni, M.; Casalgrandi, M.; Manfredi, A.A.; et al. Toll-like receptor 4 and high-mobility group box-1 are involved in ictogenesis and can be targeted to reduce seizures. Nat. Med. 2010, 16, 413–419. [Google Scholar] [CrossRef] [Green Version]
- Abraham, C.R.; Chen, C.; Cuny, G.D.; Glicksman, A.M.; Zeldich, E. Small-molecule Klotho enhancers as novel treatment of neurodegeneration. Futur. Med. Chem. 2012, 4, 1671–1679. [Google Scholar] [CrossRef] [Green Version]
- Shiozaki, M.; Yoshimura, K.; Shibata, M.; Koike, M.; Matsuura, N.; Uchiyama, Y.; Gotow, T. Morphological and biochemical signs of age-related neurodegenerative changes in klotho mutant mice. Neuroscience 2008, 152, 924–941. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Wu, S.; Ren, H.; Gu, J. Klotho suppresses RIG-I-mediated senescence-associated inflammation. Nat. Cell Biol. 2011, 13, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Vanarsa, K.; Sasidharan, P.; Duran, V.; Gokaraju, S.; Nidhi, M.; Titus, A.S.C.L.S.; Soomro, S.; Putterman, C.; Greenberg, B.; Mok, C.C.; et al. Comprehensive aptamer-based screen of cerebrospinal fluid from Neuropsychiatric Lupus reveals potential biomarkers that overlap with the choroid plexus transcriptome. Arthritis Rheumatol. 2022, in print. [Google Scholar]
- Mike, E.V.; Makinde, H.M.; Gulinello, M.; Vanarsa, K.; Herlitz, L.; Gadhvi, G.; Winter, D.R.; Mohan, C.; Hanly, J.G.; Mok, C.; et al. Lipocalin-2 is a pathogenic determinant and biomarker of neuropsychiatric lupus. J. Autoimmun. 2019, 96, 59–73. [Google Scholar] [CrossRef] [PubMed]
- Lindblom, J.; Mohan, C.; Parodis, I. Diagnostic, predictive and prognostic biomarkers in systemic lupus erythematosus: Current insights. Curr. Opin. Rheumatol. 2022, 34, 139–149. [Google Scholar] [CrossRef]
- Mucha, M.; Skrzypiec, A.E.; Schiavon, E.; Attwood, B.K.; Kucerova, E.; Pawlak, R. Lipocalin-2 controls neuronal excitability and anxiety by regulating dendritic spine formation and maturation. Proc. Natl. Acad. Sci. USA 2011, 108, 18436–18441. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, S.; Kaur, S.; Guha, S.; Batra, S.K. The multifaceted roles of neutrophil gelatinase associated lipocalin (NGAL) in inflammation and cancer. Biochim. Biophys. Acta BBA Rev. Cancer 2012, 1826, 129–169. [Google Scholar] [CrossRef] [Green Version]
- Klein, A.; Selter, R.C.; Hapfelmeier, A.; Berthele, A.; Müller-Myhsok, B.; Pongratz, V.; Gasperi, C.; Zimmer, C.; Mühlau, M.; Hemmer, B. CSF parameters associated with early MRI activity in patients with MS. Neurol. Neuroimmunol. Neuroinflammation 2019, 6, e573. [Google Scholar] [CrossRef] [Green Version]
- Galli, E.; Hartmann, F.; Schreiner, B.; Ingelfinger, F.; Arvaniti, E.; Diebold, M.; Mrdjen, D.; Van Der Meer, F.; Krieg, C.; Al Nimer, F.; et al. GM-CSF and CXCR4 define a T helper cell signature in multiple sclerosis. Nat. Med. 2019, 25, 1290–1300. [Google Scholar] [CrossRef]
- Aibara, N.; Ichinose, K.; Baba, M.; Nakajima, H.; Satoh, K.; Atarashi, R.; Kishikawa, N.; Nishida, N.; Kawakami, A.; Kuroda, N.; et al. Proteomic approach to profiling immune complex antigens in cerebrospinal fluid samples from patients with central nervous system autoimmune diseases. Clin. Chim. Acta 2018, 484, 26–31. [Google Scholar] [CrossRef] [Green Version]
- Ichinose, K.; Ohyama, K.; Furukawa, K.; Higuchi, O.; Mukaino, A.; Satoh, K.; Nakane, S.; Shimizu, T.; Umeda, M.; Fukui, S.; et al. Novel anti-suprabasin antibodies may contribute to the pathogenesis of neuropsychiatric systemic lupus erythematosus. Clin. Immunol. 2018, 193, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Fredi, M.; Bianchi, M.; Andreoli, L.; Greco, G.; Olivieri, I.; Orcesi, S.; Fazzi, E.; Cereda, C.; Tincani, A. Typing TREX1 gene in patients with systemic lupus erythematosus. Reumatismo 2015, 67, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Namjou, B.; Kothari, P.H.; Kelly, J.; Glenn, S.B.; Ojwang, O.J.; Adler, A.; Riquelme, M.E.A.; Gallant, C.J.; Boackle, S.A.; Criswell, A.L.; et al. Evaluation of the TREX1 gene in a large multi-ancestral lupus cohort. Genes Immun. 2011, 12, 270–279. [Google Scholar] [CrossRef] [PubMed]
- Kavanagh, D.; Spitzer, D.; Kothari, P.H.; Shaikh, A.; Liszewski, M.K.; Richards, A.; Atkinson, J.P. New roles for the major human 3’-5’ exonuclease TREX1 in human disease. Cell Cycle 2008, 7, 1718–1725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharaf-Eldin, W.; Kishk, N.; Sakr, B.; El-Hariri, H.; Refeat, M.; ElBagoury, N.; Essawi, M. Potential Value of miR-23a for Discriminating Neuromyelitis Optica Spectrum Disorder from Multiple Sclerosis. Arch. Iran. Med. 2020, 23, 678–687. [Google Scholar] [CrossRef]
- Wu, L.; Belasco, J.G. Let Me Count the Ways: Mechanisms of Gene Regulation by miRNAs and siRNAs. Mol. Cell 2008, 29, 1–7. [Google Scholar] [CrossRef]
- Zhu, S.; Pan, W.; Song, X.; Liu, Y.; Shao, X.; Tang, Y.; Liang, D.; He, D.; Wang, H.; Liu, W.; et al. The microRNA miR-23b suppresses IL-17-associated autoimmune inflammation by targeting TAB2, TAB3 and IKK-α. Nat. Med. 2012, 18, 1077–1086. [Google Scholar] [CrossRef]
- Costa-Reis, P.; Russo, P.A.; Zhang, Z.; Colonna, L.; Maurer, K.; Gallucci, S.; Schulz, S.W.; Kiani, A.N.; Petri, M.; Sullivan, K.E. The Role of MicroRNAs and Human Epidermal Growth Factor Receptor 2 in Proliferative Lupus Nephritis. Arthritis Rheumatol. 2015, 67, 2415–2426. [Google Scholar] [CrossRef]
- Sun, J.; Li, X.; Zhou, H.; Liu, X.; Jia, J.; Xie, Q.; Peng, S.; Sun, X.; Wang, Q.; Yi, L. Anti-GAPDH Autoantibody Is Associated with Increased Disease Activity and Intracranial Pressure in Systemic Lupus Erythematosus. J. Immunol. Res. 2019, 2019, 7430780. [Google Scholar] [CrossRef]
- Tsuchiya, H.; Haga, S.; Takahashi, Y.; Kano, T.; Ishizaka, Y.; Mimori, A. Identification of novel autoantibodies to GABA(B) receptors in patients with neuropsychiatric systemic lupus erythematosus. Rheumatology 2014, 53, 1219–1228. [Google Scholar] [CrossRef] [Green Version]
- van der Meulen, P.M.; Barendregt, A.M.; Cuadrado, E.; Magro-Checa, C.; Steup-Beekman, G.M.; Schonenberg-Meinema, D.; Van den Berg, J.M.; Li, Q.Z.; Baars, P.A.; Wouters, D.; et al. Protein array autoantibody profiles to determine diagnostic markers for neuropsychiatric systemic lupus erythematosus. Rheumatology 2017, 56, 1407–1416. [Google Scholar] [CrossRef] [Green Version]
- Engel, S.; Boedecker, S.; Marczynski, P.; Bittner, S.; Steffen, F.; Weinmann, A.; Schwarting, A.; Zipp, F.; Weinmann-Menke, J.; Luessi, F. Association of serum neurofilament light chain levels and neuropsychiatric manifestations in systemic lupus erythematosus. Ther. Adv. Neurol. Disord. 2021, 14, 17562864211051497. [Google Scholar] [CrossRef] [PubMed]
- Hawro, T.; Bogucki, A.; Krupińska-Kun, M.; Maurer, M.; Woźniacka, A. Serum neuron specific enolase–a novel indicator for neuropsychiatric systemic lupus erythematosus? Lupus 2015, 24, 1492–1497. [Google Scholar] [CrossRef] [PubMed]
- Ichinose, K.; Arima, K.; Ushigusa, T.; Nishino, A.; Nakashima, Y.; Suzuki, T.; Horai, Y.; Nakajima, H.; Kawashiri, S.-Y.; Iwamoto, N.; et al. Distinguishing the cerebrospinal fluid cytokine profile in neuropsychiatric systemic lupus erythematosus from other autoimmune neurological diseases. Clin. Immunol. 2015, 157, 114–120. [Google Scholar] [CrossRef] [Green Version]
- Lu, L.; Kong, W.; Zhou, K.; Chen, J.; Hou, Y.; Dou, H.; Liang, J. Association of lipoproteins and thyroid hormones with cognitive dysfunction in patients with systemic lupus erythematosus. BMC Rheumatol. 2021, 5, 18. [Google Scholar] [CrossRef] [PubMed]
- Noris-García, E.; Arce, S.; Nardin, P.; Lanigan, E.M.; Acuña, V.; Gutierrez, F.; Robinson-Agramonte, A.M.; Gonçalves, C.-A. Peripheral levels of brain-derived neurotrophic factor and S100B in neuropsychiatric systemic lupus erythematous. Lupus 2018, 27, 2041–2049. [Google Scholar] [CrossRef] [PubMed]
- Bassiouni, S.A.; Abdeen, H.M.; Morsi, H.K.; Zaki, M.E.; Abdelsalam, M.; Gharbia, O.M. Programmed death 1 (PD-1) serum level and gene expression in recent onset systemic lupus erythematosus patients. Egypt. Rheumatol. 2021, 43, 213–218. [Google Scholar] [CrossRef]
- Ramirez, G.A.; Lanzani, C.; Bozzolo, E.P.; Citterio, L.; Zagato, L.; Casamassima, N.; Canti, V.; Sabbadini, M.G.; Rovere-Querini, P.; Manunta, P.; et al. TRPC6 gene variants and neuropsychiatric lupus. J. Neuroimmunol. 2015, 288, 21–24. [Google Scholar] [CrossRef]
- Ramirez, G.A.; Coletto, L.A.; Bozzolo, E.P.; Citterio, L.; Carpini, S.D.; Zagato, L.; Rovere-Querini, P.; Lanzani, C.; Manunta, P.; Manfredi, A.A.; et al. The TRPC6 intronic polymorphism, associated with the risk of neurological disorders in systemic lupus erythematous, influences immune cell function. J. Neuroimmunol. 2018, 325, 43–53. [Google Scholar] [CrossRef]
- Sharaf-Eldin, W.E.; Kishk, N.A.; Gad, Y.Z.; Hassan, H.A.; Ali, M.A.; Zaki, M.S.; Mohamed, M.R.; Essawi, M.L. Extracellular miR-145, miR-223 and miR-326 expression signature allow for differential diagnosis of immune-mediated neuroinflammatory diseases. J. Neurol. Sci. 2017, 383, 188–198. [Google Scholar] [CrossRef]
- Gladman, D.D.; Ibañez, D.; Urowitz, M.B. Systemic lupus erythematosus disease activity index. J. Rheumatol. 2002, 29, 288–291. [Google Scholar]
- Fragoso-Loyo, H.; Atisha-Fregoso, Y.; Núñez-Alvarez, C.A.; Llorente, L.; Sánchez-Guerrero, J. Utility of Interferon-α as a Biomarker in Central Neuropsychiatric Involvement in Systemic Lupus Erythematosus. J. Rheumatol. 2012, 39, 504–509. [Google Scholar] [CrossRef] [PubMed]
- Postal, M.; Vivaldo, J.F.; Fernandez-Ruiz, R.; Paredes, J.L.; Appenzeller, S.; Niewold, T.B. Type I interferon in the pathogenesis of systemic lupus erythematosus. Curr. Opin. Immunol. 2020, 67, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Furie, A.R.; Morand, E.F.; Bruce, I.N.; Manzi, S.; Kalunian, K.C.; Vital, E.M.; Ford, T.L.; Gupta, R.; Hiepe, F.; Santiago, M.; et al. Type I interferon inhibitor anifrolumab in active systemic lupus erythematosus (TULIP-1): A randomised, controlled, phase 3 trial. Lancet Rheumatol. 2019, 1, e208–e219. [Google Scholar] [CrossRef]
- Morand, E.F.; Furie, R.; Tanaka, Y.; Bruce, I.N.; Askanase, A.D.; Richez, C.; Bae, S.-C.; Brohawn, P.Z.; Pineda, L.; Berglind, A.; et al. Trial of Anifrolumab in Active Systemic Lupus Erythematosus. N. Engl. J. Med. 2020, 382, 211–221. [Google Scholar] [CrossRef]
- Mullard, A. FDA approves AstraZeneca’s anifrolumab for lupus. Nat. Rev. Drug Discov. 2021, 20, 658. [Google Scholar] [CrossRef]
- Liang, M.H.; Socher, S.A.; Roberts, W.N.; Esdaile, J.M. Measurement of systemic lupus erythematosus activity in clinical research. Arthritis Care Res. 1988, 31, 817–825. [Google Scholar] [CrossRef] [PubMed]
- Marangos, P.J.; Schmechel, D.; Parma, A.M.; Clark, R.L.; Goodwin, F.K. Measurement of Neuron-Specific (Nse) And Non-Neuronal (Nne) Isoenzymes Of Enolase In Rat, Monkey And Human Nervous Tissue. J. Neurochem. 1979, 33, 319–329. [Google Scholar] [CrossRef]
- Jauch, E.C.; Lindsell, C.; Broderick, J.; Fagan, S.C.; Tilley, B.C.; Levine, S.R. Association of serial biochemical markers with acute ischemic stroke: The National Institute of Neurological Disorders and Stroke recombinant tissue plasminogen activator Stroke Study. Stroke 2006, 37, 2508–2513. [Google Scholar] [CrossRef] [Green Version]
- Koch, M.; Mostert, J.; Heersema, D.; Teelken, A.; De Keyser, J. Plasma S100beta and NSE levels and progression in multiple sclerosis. J Neurol Sci. 2007, 252, 154–158. [Google Scholar] [CrossRef]
- Teepker, M.; Munk, K.; Mylius, V.; Haag, A.; Möller, J.C.; Oertel, W.H.; Schepelmann, K. Serum Concentrations of s100b and NSE in Migraine. Headache J. Head Face Pain 2009, 49, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Hein Née Maier, K.; Köhler, A.; Diem, R.; Sättler, M.B.; Demmer, I.; Lange, P.; Bähr, M.; Otto, M. Biological markers for axonal degeneration in CSF and blood of patients with the first event indicative for multiple sclerosis. Neurosci Lett. 2008, 436, 72–76. [Google Scholar] [CrossRef] [PubMed]
- Dey, M.; Parodis, I.; Nikiphorou, E. Fatigue in Systemic Lupus Erythematosus and Rheumatoid Arthritis: A Comparison of Mechanisms, Measures and Management. J. Clin. Med. 2021, 10, 3566. [Google Scholar] [CrossRef] [PubMed]
- Kozora, E.; Ellison, M.C.; West, S. Depression, fatigue, and pain in systemic lupus erythematosus (SLE): Relationship to the American College of Rheumatology SLE neuropsychological battery. Arthritis Care Res. 2006, 55, 628–635. [Google Scholar] [CrossRef] [PubMed]
- Hopia, L.; Thangarajh, M.; Khademi, M.; Laveskog, A.; Wallstrom, E.; Svenungsson, E.; Andersson, M. Cerebrospinal fluid levels of a proliferation-inducing ligand (APRIL) are increased in patients with neuropsychiatric systemic lupus erythematosus. Scand. J. Rheumatol. 2011, 40, 363–372. [Google Scholar] [CrossRef]
- Krupp, L.B.; LaRocca, N.G.; Muir-Nash, J.; Steinberg, A.D. The fatigue severity scale. Application to patients with multiple sclerosis and systemic lupus erythematosus. Arch Neurol. 1989, 46, 1121–1123. [Google Scholar] [CrossRef]
- Ichinose, K.; Arima, K.; Umeda, M.; Fukui, S.; Nishino, A.; Nakashima, Y.; Suzuki, T.; Horai, Y.; Koga, T.; Kawashiri, S.-Y.; et al. Predictors of clinical outcomes in patients with neuropsychiatric systemic lupus erythematosus. Cytokine 2016, 79, 31–37. [Google Scholar] [CrossRef]
- Huang, X.; Magder, L.S.; Petri, M. Predictors of Incident Seizure in Systemic Lupus Erythematosus. J. Rheumatol. 2016, 43, 565–575. [Google Scholar] [CrossRef]
CNS | PNS | |
---|---|---|
Diffuse | Focal | |
Acute confusional state | Aseptic meningitis | Acute inflammatory demyelinating polyradiculoneuropathy |
Anxiety disorders | Cerebrovascular disease | Autonomic disorder |
Cognitive dysfunction | Demyelinating syndromes | Mononeuropathy (single/multiplex) |
Mood disorders | Headache | Myasthenia gravis |
Psychosis | Movement disorder | Cranial neuropathy |
Myelopathy | Plexopathy | |
Seizure disorders | Polyneuropathy |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lindblom, J.; Mohan, C.; Parodis, I. Biomarkers in Neuropsychiatric Systemic Lupus Erythematosus: A Systematic Literature Review of the Last Decade. Brain Sci. 2022, 12, 192. https://doi.org/10.3390/brainsci12020192
Lindblom J, Mohan C, Parodis I. Biomarkers in Neuropsychiatric Systemic Lupus Erythematosus: A Systematic Literature Review of the Last Decade. Brain Sciences. 2022; 12(2):192. https://doi.org/10.3390/brainsci12020192
Chicago/Turabian StyleLindblom, Julius, Chandra Mohan, and Ioannis Parodis. 2022. "Biomarkers in Neuropsychiatric Systemic Lupus Erythematosus: A Systematic Literature Review of the Last Decade" Brain Sciences 12, no. 2: 192. https://doi.org/10.3390/brainsci12020192
APA StyleLindblom, J., Mohan, C., & Parodis, I. (2022). Biomarkers in Neuropsychiatric Systemic Lupus Erythematosus: A Systematic Literature Review of the Last Decade. Brain Sciences, 12(2), 192. https://doi.org/10.3390/brainsci12020192