Cognitive and Physical Intervention in Metals’ Dysfunction and Neurodegeneration
Abstract
:1. Introduction
2. Psychological Methods of Treatment of Neuropsychiatric Disorders Associated with Storage Disease
3. Physical Activities in Treatment of Neuropsychiatric Disorders Associated with Storage Disease
4. Selected Metal Storage Diseases and Cognitive and Motor Rehabilitation
4.1. Alzheimer’s Disease
4.1.1. Physical Methods of Rehabilitation
4.1.2. Cognitive Therapy
4.2. Parkinson Disease
4.2.1. Physical Methods of Rehabilitation
Aerobic Exercise Training (AET)
Treadmill Training
Body Weight–Supported Treadmill Training
Robot-Assisted Gait Training
Virtual Reality
Balance Training
Progressive-Resistance Training
Complementary Exercise
Tango
Qigong
Tai Chi
Yoga
Summary
4.2.2. Cognitive PD Rehabilitation
4.3. Amyotrophic Lateral Sclerosis
4.4. Huntington’s Disease
4.5. Wilson Disease
4.5.1. Exercises Aimed at Improving Static Balance
4.5.2. Exercises Aimed at Improving Dynamic Balance
4.5.3. Exercises Targeting Functional Capacity Training
4.5.4. Therapy Targeting Dysphagia
5. Conclusions
Limitations and Future Directions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, P.; Miah, M.R.; Aschner, M. Metals and Neurodegeneration. F1000Research 2016, 5, 366. [Google Scholar] [CrossRef] [PubMed]
- Kabir, M.T.; Uddin, M.S.; Zaman, S.; Begum, Y.; Ashraf, G.M.; Bin-Jumah, M.N.; Bungau, S.G.; Mousa, S.A.; Abdel-Daim, M.M. Molecular Mechanisms of Metal Toxicity in the Pathogenesis of Alzheimer’s Disease. Mol. Neurobiol. 2021, 58, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Totten, M.; Zhang, Z.; Bucinca, H.; Erikson, K.; Santamaría, A.; Bowman, A.B.; Aschner, M. Iron and Manganese-Related CNS Toxicity: Mechanisms, Diagnosis and Treatment. Expert Rev. Neurother. 2019, 19, 243–260. [Google Scholar] [CrossRef] [PubMed]
- Ayton, S.; Portbury, S.; Kalinowski, P.; Agarwal, P.; Diouf, I.; Schneider, J.A.; Morris, M.C.; Bush, A.I. Regional Brain Iron Associated with Deterioration in Alzheimer’s Disease: A Large Cohort Study and Theoretical Significance. Alzheimer’s Dement. 2021, 17, 1244–1256. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.L.; Fan, Y.G.; Yang, Z.S.; Wang, Z.Y.; Guo, C. Iron and Alzheimer’s Disease: From Pathogenesis to Therapeutic Implications. Front. Neurosci. 2018, 12, 632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onanong, M.-I.; Zi-Wei, Z.; Yu-Min, K. Physical Exercise Inhibits Inflammation and Microglial Activation. Cells 2019, 8, 691. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, B.K. Physical Activity and Muscle-Brain Crosstalk. Nat. Rev. Endocrinol. 2019, 15, 383–392. [Google Scholar] [CrossRef]
- Arem, H.; Moore, S.C.; Patel, A.; Hartge, P.; Berrington De Gonzalez, A.; Visvanathan, K.; Campbell, P.T.; Freedman, M.; Weiderpass, E.; Adami, H.O.; et al. Leisure Time Physical Activity and Mortality: A Detailed Pooled Analysis of the Dose-Response Relationship. JAMA Intern. Med. 2015, 175, 959–967. [Google Scholar] [CrossRef] [PubMed]
- Santos-Lozano, A.; Pareja-Galeano, H.; Sanchis-Gomar, F.; Quindós-Rubial, M.; Fiuza-Luces, C.; Cristi-Montero, C.; Emanuele, E.; Garatachea, N.; Lucia, A. Physical Activity and Alzheimer Disease: A Protective Association. Mayo Clin. Proc. 2016, 91, 999–1020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aarsland, D.; Sardahaee, F.S.; Anderssen, S.; Ballard, C. Is Physical Activity a Potential Preventive Factor for Vascular Dementia? A Systematic Review. Aging Ment. Health 2010, 14, 386–395. [Google Scholar] [CrossRef] [PubMed]
- Mahalakshmi, B.; Maurya, N.; Lee, S.D.; Kumar, V.B. Possible Neuroprotective Mechanisms of Physical Exercise in Neurodegeneration. Int. J. Mol. Sci. 2020, 21, 5895. [Google Scholar] [CrossRef] [PubMed]
- Hamer, M.; Chida, Y. Physical Activity and Risk of Neurodegenerative Disease: A Systematic Review of Prospective Evidence. Psychol. Med. 2009, 39, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Lu, Y.; Zhao, X.; Zhang, Q.; Li, L. Aerobic Exercise Attenuates Neurodegeneration and Promotes Functional Recovery—Why It Matters for Neurorehabilitation & Neural Repair. Neurochem. Int. 2020, 141, 104862. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, B.K.; Saltin, B. Exercise as Medicine—Evidence for Prescribing Exercise as Therapy in 26 Different Chronic Diseases. Scand. J. Med. Sci. Sports 2015, 25 (Suppl. 3), 1–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffmann, K.; Sobol, N.A.; Frederiksen, K.S.; Beyer, N.; Vogel, A.; Vestergaard, K.; Brændgaard, H.; Gottrup, H.; Lolk, A.; Wermuth, L.; et al. Moderate-to-High Intensity Physical Exercise in Patients with Alzheimer’s Disease: A Randomized Controlled Trial. J. Alzheimers. Dis. 2016, 50, 443–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Groot, C.; Hooghiemstra, A.M.; Raijmakers, P.G.H.M.; van Berckel, B.N.M.; Scheltens, P.; Scherder, E.J.A.; van der Flier, W.M.; Ossenkoppele, R. The Effect of Physical Activity on Cognitive Function in Patients with Dementia: A Meta-Analysis of Randomized Control Trials. Ageing Res. Rev. 2016, 25, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Manto, M. Abnormal Copper Homeostasis: Mechanisms and Roles in Neurodegeneration. Toxics 2014, 2, 327–345. [Google Scholar] [CrossRef]
- Giampietro, R.; Spinelli, F.; Contino, M.; Colabufo, N.A. The Pivotal Role of Copper in Neurodegeneration: A New Strategy for the Therapy of Neurodegenerative Disorders. Mol. Pharm. 2018, 15, 808–820. [Google Scholar] [CrossRef]
- Gromadzka, G.; Tarnacka, B.; Flaga, A.; Adamczyk, A. Copper Dyshomeostasis in Neurodegenerative Diseases—Therapeutic Implications. Int. J. Mol. Sci. 2020, 21, 9259. [Google Scholar] [CrossRef] [PubMed]
- Ward, R.J.; Zucca, F.A.; Duyn, J.H.; Crichton, R.R.; Zecca, L. The Role of Iron in Brain Ageing and Neurodegenerative Disorders. Lancet Neurol. 2014, 13, 1045–1060. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, M.; Toldi, J.; Vécsei, L. Exploring the Etiological Links behind Neurodegenerative Diseases: Inflammatory Cytokines and Bioactive Kynurenines. Int. J. Mol. Sci. 2020, 21, 2431. [Google Scholar] [CrossRef] [Green Version]
- Guzman-Martinez, L.; Maccioni, R.B.; Andrade, V.; Navarrete, L.P.; Pastor, M.G.; Ramos-Escobar, N. Neuroinflammation as a Common Feature of Neurodegenerative Disorders. Front. Front. Pharmacol. 2019, 10, 1008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alzheimer’s Association Calcium Hypothesis Workgroup; Khachaturian, Z.S. Calcium Hypothesis of Alzheimer’s Disease and Brain Aging: A Framework for Integrating New Evidence into a Comprehensive Theory of Pathogenesis. Alzheimers Dement. 2017, 13, 178–182.e17. [Google Scholar] [CrossRef]
- Tarnacka, B.; Jopowicz, A.; Maślińska, M. Copper, Iron, and Manganese Toxicity in Neuropsychiatric Conditions. Int. J. Mol. Sci. 2021, 22, 7820. [Google Scholar] [CrossRef]
- Lovell, M.A.; Robertson, J.D.; Teesdale, W.J.; Campbell, J.L.; Markesbery, W.R. Copper, Iron and Zinc in Alzheimer’s Disease Senile Plaques. J. Neurol. Sci. 1998, 158, 47–52. [Google Scholar] [CrossRef]
- Bagheri, S.; Squitti, R.; Haertlé, T.; Siotto, M.; Saboury, A.A. Role of Copper in the Onset of Alzheimer’s Disease Compared to Other Metals. Front. Aging Neurosci. 2018, 9, 446. [Google Scholar] [CrossRef]
- Singh, Y.P.; Pandey, A.; Vishwakarma, S.; Modi, G. A Review on Iron Chelators as Potential Therapeutic Agents for the Treatment of Alzheimer’s and Parkinson’s Diseases. Mol. Divers. 2019, 23, 509–526. [Google Scholar] [CrossRef]
- van Bergen, J.M.G.; Li, X.; Quevenco, F.C.; Gietl, A.F.; Treyer, V.; Meyer, R.; Buck, A.; Kaufmann, P.A.; Nitsch, R.M.; van Zijl, P.C.M.; et al. Simultaneous Quantitative Susceptibility Mapping and Flutemetamol-PET Suggests Local Correlation of Iron and β-Amyloid as an Indicator of Cognitive Performance at High Age. Neuroimage 2018, 174, 308–316. [Google Scholar] [CrossRef]
- Plascencia-Villa, G.; Ponce, A.; Collingwood, J.F.; Josefina Arellano-Jiménez, M.; Zhu, X.; Rogers, J.T.; Betancourt, I.; José-Yacamán, M.; Perry, G. High-Resolution Analytical Imaging and Electron Holography of Magnetite Particles in Amyloid Cores of Alzheimer’s Disease. Sci. Rep. 2016, 6, 24873. [Google Scholar] [CrossRef]
- Wang, B.; Wang, X.-P. Does Ceruloplasmin Defend Against Neurodegenerative Diseases? Curr. Neuropharmacol. 2018, 17, 539–549. [Google Scholar] [CrossRef]
- Myhre, O.; Utkilen, H.; Duale, N.; Brunborg, G.; Hofer, T. Metal Dyshomeostasis and Inflammation in Alzheimer’s and Parkinson’s Diseases: Possible Impact of Environmental Exposures. Oxid. Med. Cell. Longev. 2013, 2013, 726954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dusek, P.; Roos, P.M.; Litwin, T.; Schneider, S.A.; Flaten, T.P.; Aaseth, J. The Neurotoxicity of Iron, Copper and Manganese in Parkinson’s and Wilson’s Diseases. J. Trace Elem. Med. Biol. 2015, 31, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Koski, L.; Ronnevi, C.; Berntsson, E.; Wärmländer, S.K.T.S.; Roos, P.M. Metals in ALS TDP-43 Pathology. Int. J. Mol. Sci. 2021, 22, 12193. [Google Scholar] [CrossRef] [PubMed]
- Tokuda, E.; Okawa, E.; Watanabe, S.; Ono, S.I.; Marklund, S.L. Dysregulation of Intracellular Copper Homeostasis Is Common to Transgenic Mice Expressing Human Mutant Superoxide Dismutase-1s Regardless of Their Copper-Binding Abilities. Neurobiol. Dis. 2013, 54, 308–319. [Google Scholar] [CrossRef]
- Kinney, J.W.; Bemiller, S.M.; Murtishaw, A.S.; Leisgang, A.M.; Salazar, A.M.; Lamb, B.T. Inflammation as a Central Mechanism in Alzheimer’s Disease. Alzheimer’s Dement. 2018, 4, 575–590. [Google Scholar] [CrossRef]
- Severinsen, M.C.K.; Pedersen, B.K. Muscle-Organ Crosstalk: The Emerging Roles of Myokines. Endocr. Rev. 2020, 41, 594–609. [Google Scholar] [CrossRef]
- Kim, S.; Choi, J.Y.; Moon, S.; Park, D.H.; Kwak, H.B.; Kang, J.H. Roles of Myokines in Exercise-Induced Improvement of Neuropsychiatric Function. Pflugers Arch. 2019, 471, 491–505. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Wang, L.; You, W.; Shan, T. Myokines Mediate the Cross Talk between Skeletal Muscle and Other Organs. J. Cell. Physiol. 2021, 236, 2393–2412. [Google Scholar] [CrossRef]
- Dai, Y.; Pang, J.; Gong, H.; Fan, W.; Zhang, T.M. Roles and Tissue Source of Adiponectin Involved in Lifestyle Modifications. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2013, 68, 117–128. [Google Scholar] [CrossRef]
- Cassilhas, R.C.; Tufik, S.; De Mello, M.T. Physical Exercise, Neuroplasticity, Spatial Learning and Memory. Cell. Mol. Life Sci. 2016, 73, 975–983. [Google Scholar] [CrossRef]
- Fernandes, M.; de Sousa, A.; Medeiros, A.R.; Del Rosso, S.; Stults-Kolehmainen, M.; Boullosa, D.A. The Influence of Exercise and Physical Fitness Status on Attention: A Systematic Review. Int. Rev. Sport Exerc. Psychol. 2018, 12, 202–234. [Google Scholar] [CrossRef]
- Maass, A.; Düzel, S.; Goerke, M.; Becke, A.; Sobieray, U.; Neumann, K.; Lövden, M.; Lindenberger, U.; Bäckman, L.; Braun-Dullaeus, R.; et al. Vascular Hippocampal Plasticity after Aerobic Exercise in Older Adults. Mol. Psychiatry 2015, 20, 585–593. [Google Scholar] [CrossRef] [Green Version]
- Erickson, K.I.; Voss, M.W.; Prakash, R.S.; Basak, C.; Szabo, A.; Chaddock, L.; Kim, J.S.; Heo, S.; Alves, H.; White, S.M.; et al. Exercise Training Increases Size of Hippocampus and Improves Memory. Proc. Natl. Acad. Sci. USA 2011, 108, 3017–3022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verstynen, T.D.; Lynch, B.; Miller, D.L.; Voss, M.W.; Prakash, R.S.; Chaddock, L.; Basak, C.; Szabo, A.; Olson, E.A.; Wojcicki, T.R.; et al. Caudate Nucleus Volume Mediates the Link between Cardiorespiratory Fitness and Cognitive Flexibility in Older Adults. J. Aging Res. 2012, 2012, 939285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaire, A.; Becke, A.; Düzel, E. Effects of Physical Exercise on Working Memory and Attention-Related Neural Oscillations. Front. Neurosci. 2020, 14, 239. [Google Scholar] [CrossRef] [PubMed]
- Belaya, I.; Kucháriková, N.; Górová, V.; Kysenius, K.; Hare, D.J.; Crouch, P.J.; Malm, T.; Atalay, M.; White, A.R.; Liddell, J.R.; et al. Regular Physical Exercise Modulates Iron Homeostasis in the 5xfad Mouse Model of Alzheimer’s Disease. Int. J. Mol. Sci. 2021, 22, 8715. [Google Scholar] [CrossRef] [PubMed]
- Kruer, M.C.; Hiken, M.; Gregory, A.; Malandrini, A.; Clark, D.; Hogarth, P.; Grafe, M.; Hayflick, S.J.; Woltjer, R.L. Novel Histopathologic Findings in Molecularly-Confirmed Pantothenate Kinase-Associated Neurodegeneration. Brain 2011, 134, 947–958. [Google Scholar] [CrossRef] [PubMed]
- Swaiman, K.F. Hallervorden-Spatz Syndrome. Pediatr. Neurol. 2001, 25, 102–108. [Google Scholar] [CrossRef]
- Woltjer, R.L.; Reese, L.C.; Richardson, B.E.; Tran, H.; Green, S.; Pham, T.; Chalupsky, M.; Gabriel, I.; Light, T.; Sanford, L.; et al. Pallidal Neuronal Apolipoprotein E in Pantothenate Kinase-Associated Neurodegeneration Recapitulates Ischemic Injury to the Globus Pallidus. Mol. Genet. Metab. 2015, 116, 289–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Członkowska, A.; Litwin, T.; Dusek, P.; Ferenci, P.; Lutsenko, S.; Medici, V.; Rybakowski, J.K.; Weiss, K.H.; Schilsky, M.L. Nature Reviews Disease Primers Article: Wilson Disease. Nat. Rev. Dis. Prim. 2018, 4, 21. [Google Scholar] [CrossRef]
- Horning, K.J.; Caito, S.W.; Tipps, K.G.; Bowman, A.B.; Aschner, M. Manganese Is Essential for Neuronal Health. Annu. Rev. Nutr. 2015, 35, 71–108. [Google Scholar] [CrossRef] [PubMed]
- Hinarejos, I.; Machuca-Arellano, C.; Sancho, P.; Espinós, C. Mitochondrial Dysfunction, Oxidative Stress and Neuroinflammation in Neurodegeneration with Brain Iron Accumulation (Nbia). Antioxidants 2020, 9, 1020. [Google Scholar] [CrossRef] [PubMed]
- Abraha, I.; Rimland, J.M.; Trotta, F.M.; Dell’Aquila, G.; Cruz-Jentoft, A.; Petrovic, M.; Gudmundsson, A.; Soiza, R.; O’Mahony, D.; Guaita, A.; et al. Systematic review of systematic reviews of non-pharmacological interventions to treat behavioural disturbances in older patients with dementia. BMJ Open 2017, 7, e012759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, M.Y.; Lin, Y.; Sheng, J.Y.; Zhang, X.; Cui, R.J. Exercise Intervention Associated with Cognitive Improvement in Alzheimer’s Disease. Neural Plast. 2018, 2018, 9234105. [Google Scholar] [CrossRef] [PubMed]
- McCollum, L.; Karlawish, J. Cognitive Impairment Evaluation and Management. Med. Clin. N. Am. 2020, 104, 807. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Twamley, E.W. Cognitive Rehabilitation Therapies for Alzheimer’s Disease: A Review of Methods to Improve Treatment Engagement and Self-Efficacy. Neuropsychol. Rev. 2013, 23, 48–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lök, N.; Bademli, K.; Selçuk-Tosun, A. The Effect of Reminiscence Therapy on Cognitive Functions, Depression, and Quality of Life in Alzheimer Patients: Randomized Controlled Trial. Int. J. Geriatr. Psychiatry 2019, 34, 47–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brodaty, H.; Arasaratnam, C. Meta-Analysis of Nonpharmacological Interventions for Neuropsychiatric Symptoms of Dementia. Am. J. Psychiatry 2012, 169, 946–953. [Google Scholar] [CrossRef] [PubMed]
- King, R. Cognitive Therapy of Depression. New York: Guilford, 1979. Aust. N. Z. J. Psychiatry 2002, 36, 272–275. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, S.G.; Gómez, A.F. Mindfulness-Based Interventions for Anxiety and Depression. Psychiatr. Clin. North Am. 2017, 40, 739–749. [Google Scholar] [CrossRef] [PubMed]
- Morris, M.E.; Martin, C.L.; Schenkman, M.L. Striding out with Parkinson Disease: Evidence-Based Physical Therapy for Gait Disorders. Phys. Ther. 2010, 90, 280–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King, L.A.; Horak, F.B. Delaying Mobility Disability in People with Parkinson Disease Using a Sensorimotor Agility Exercise Program. Phys. Ther. 2009, 89, 384–393. [Google Scholar] [CrossRef] [PubMed]
- Ni, M.; Signorile, J.F.; Mooney, K.; Balachandran, A.; Potiaumpai, M.; Luca, C.; Moore, J.G.; Kuenze, C.M.; Eltoukhy, M.; Perry, A.C. Comparative Effect of Power Training and High-Speed Yoga on Motor Function in Older Patients with Parkinson Disease. Arch. Phys. Med. Rehabil. 2016, 97, 345–354.e15. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Fu, Z.; Le, W. Exercise and Parkinson’s Disease. Int. Rev. Neurobiol. 2019, 147, 45–74. [Google Scholar] [CrossRef] [PubMed]
- Mak, M.K.; Wong-Yu, I.S.; Shen, X.; Chung, C.L. Long-Term Effects of Exercise and Physical Therapy in People with Parkinson Disease. Nat. Rev. Neurol. 2017, 13, 689–703. [Google Scholar] [CrossRef]
- Cheng, F.Y.; Yang, Y.R.; Chen, L.M.; Wu, Y.R.; Cheng, S.J.; Wang, R.Y. Positive Effects of Specific Exercise and Novel Turning-Based Treadmill Training on Turning Performance in Individuals with Parkinson’s Disease: A Randomized Controlled Trial. Sci. Rep. 2016, 6, 33242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- da Silva, A.Z.; Israel, V.L. Effects of Dual-Task Aquatic Exercises on Functional Mobility, Balance and Gait of Individuals with Parkinson’s Disease: A Randomized Clinical Trial with a 3-Month Follow-Up. Complement. Ther. Med. 2019, 42, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Bradnam, L.V.; Meiring, R.M.; Boyce, M.; McCambridge, A. Neurorehabilitation in Dystonia: A Holistic Perspective. J. Neural Transm. 2021, 128, 549–558. [Google Scholar] [CrossRef] [PubMed]
- Miyai, I.; Ito, M.; Hattori, N.; Mihara, M.; Hatakenaka, M.; Yagura, H.; Sobue, G.; Nishizawa, M. Cerebellar Ataxia Rehabilitation Trial in Degenerative Cerebellar Diseases. Neurorehabil. Neural. Repair 2012, 26, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Marquer, A.; Barbieri, G.; Pérennou, D. The Assessment and Treatment of Postural Disorders in Cerebellar Ataxia: A Systematic Review. Ann. Phys. Rehabil. Med. 2014, 57, 67–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oyama, G.; Thompson, A.; Foote, K.D.; Limotai, N.; Abd-El-Barr, M.; Maling, N.; Malaty, I.A.; Rodriguez, R.L.; Subramony, S.H.; Ashizawa, T.; et al. Articles Deep Brain Stimulation for Tremor Associated with Underlying Ataxia Syndromes: A Case Series and Discussion of Issues. Tremor Other Hyperkinetic Mov. 2014, 4, 228. [Google Scholar] [CrossRef]
- Heijnen, B.J.; Speyer, R.; Baijens, L.W.J.; Bogaardt, H.C.A. Neuromuscular Electrical Stimulation versus Traditional Therapy in Patients with Parkinson’s Disease and Oropharyngeal Dysphagia: Effects on Quality of Life. Dysphagia 2012, 27, 336–345. [Google Scholar] [CrossRef] [Green Version]
- López-Liria, R.; Parra-Egeda, J.; Vega-Ramírez, F.A.; Aguilar-Parra, J.M.; Trigueros-Ramos, R.; Morales-Gázquez, M.J.; Rocamora-Pérez, P. Treatment of Dysphagia in Parkinson’s Disease: A Systematic Review. Int. J. Environ. Res. Public Health 2020, 17, 4104. [Google Scholar] [CrossRef] [PubMed]
- Nagaya, M.; Kachi, T.; Yamada, T.; Igata, A. Videofluorographic Study of Swallowing in Parkinson’s Disease. Dysphagia 1998, 13, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.K.; Roddam, H.; Sheldrick, H. Rehabilitation or Compensation: Time for a Fresh Perspective on Speech and Language Therapy for Dysphagia and Parkinson’s Disease? Int. J. Lang. Commun. Disord. 2012, 47, 351–364. [Google Scholar] [CrossRef] [PubMed]
- Gadenz, C.D.; Moreira, T.D.C.; Capobianco, D.M.; Cassol, M. Effects of Repetitive Transcranial Magnetic Stimulation in the Rehabilitation of Communication and Deglutition Disorders: Systematic Review of Randomized Controlled Trials. Folia Phoniatr. Logop. 2015, 67, 97–105. [Google Scholar] [CrossRef]
- Atri, A. The Alzheimer’s Disease Clinical Spectrum: Diagnosis and Management. Med. Clin. N. Am. 2019, 103, 263–293. [Google Scholar] [CrossRef] [PubMed]
- Julayanont, P.; Phillips, N.; Chertkow, H.; Nasreddine, Z.S. The Montreal Cognitive Assessment (MoCA): Concept and Clinical Review. In Cognitive Screening Instruments; Springer: Cham, Switzerland, 2012; pp. 111–152. [Google Scholar]
- Di Pucchio, A.; Vanacore, N.; Marzolini, F.; Lacorte, E.; Di Fiandra, T.; Gasparini, M.; Bacigalupo, I.; Bolli, M.; Canevelli, M.; Carbonari, P.; et al. Use of Neuropsychological Tests for the Diagnosis of Dementia: A Survey of Italian Memory Clinics. BMJ Open 2018, 8, e017847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- PubMed. Neuropsychological Evaluations in Adults. Available online: https://pubmed.ncbi.nlm.nih.gov/30633479/ (accessed on 19 February 2022).
- Nay, K.; Smiles, W.J.; Kaiser, J.; McAloon, L.M.; Loh, K.; Galic, S.; Oakhill, J.S.; Gundlach, A.L.; Scott, J.W. Molecular Mechanisms Underlying the Beneficial Effects of Exercise on Brain Function and Neurological Disorders. Int. J. Mol. Sci. 2021, 22, 4052. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Liang, F.; Ding, X.; Yan, Q.; Zhao, Y.; Zhang, X.; Bai, Y.; Huang, T.; Xu, B. Interval and Continuous Exercise Overcome Memory Deficits Related to β-Amyloid Accumulation through Modulating Mitochondrial Dynamics. Behav. Brain Res. 2019, 376, 112171. [Google Scholar] [CrossRef] [PubMed]
- Kouloutbani, K.; Karteroliotis, K.; Politis, A. The Effect of Physical Activity on Dementia. Psychiatrike 2019, 30, 142–155. [Google Scholar] [CrossRef] [PubMed]
- Memon, A.A.; Coleman, J.J.; Amara, A.W. Effects of Exercise on Sleep in Neurodegenerative Disease. Neurobiol. Dis. 2020, 140, 104859. [Google Scholar] [CrossRef] [PubMed]
- Farina, N.; Rusted, J.; Tabet, N. The Effect of Exercise Interventions on Cognitive Outcome in Alzheimer’s Disease: A Systematic Review. Int. Psychogeriatr. 2014, 26, 9–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, Q.; Lin, M.S.; Tzeng, I.S. Relationship Between Exercise and Alzheimer’s Disease: A Narrative Literature Review. Front. Neurosci. 2020, 14, 131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aboulafia-Brakha, T.; Suchecki, D.; Gouveia-Paulino, F.; Nitrini, R.; Ptak, R. Cognitive-Behavioural Group Therapy Improves a Psychophysiological Marker of Stress in Caregivers of Patients with Alzheimer’s Disease. Aging Ment. Health 2014, 18, 801–808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brueggen, K.; Kasper, E.; Ochmann, S.; Pfaff, H.; Webel, S.; Schneider, W.; Teipel, S. Cognitive Rehabilitation in Alzheimer’s Disease: A Controlled Intervention Trial. J. Alzheimers Dis. 2017, 57, 1315–1324. [Google Scholar] [CrossRef]
- Giovagnoli, A.R.; Manfredi, V.; Parente, A.; Schifano, L.; Oliveri, S.; Avanzini, G. Cognitive Training in Alzheimer’s Disease: A Controlled Randomized Study. Neurol. Sci. 2017, 38, 1485–1493. [Google Scholar] [CrossRef]
- García-Casares, N.; Moreno-Leiva, R.M.; García-Arnés, J.A. Music Therapy as a Non-Pharmacological Treatment in Alzheimer’s Disease. A Systematic Review. Rev. Neurol. 2017, 65, 529–538. [Google Scholar] [CrossRef]
- Germain, S.; Wojtasik, V.; Lekeu, F.; Quittre, A.; Olivier, C.; Godichard, V.; Salmon, E. Efficacy of Cognitive Rehabilitation in Alzheimer Disease: A 1-Year Follow-Up Study. J. Geriatr. Psychiatry Neurol. 2019, 32, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Thams, F.; Kuzmina, A.; Backhaus, M.; Li, S.C.; Grittner, U.; Antonenko, D.; Flöel, A. Cognitive Training and Brain Stimulation in Prodromal Alzheimer’s Disease (AD-Stim)-Study Protocol for a Double-Blind Randomized Controlled Phase IIb (Monocenter) Trial. Alzheimers Res. Ther. 2020, 12, 142. [Google Scholar] [CrossRef]
- Tysnes, O.-B.; Storstein, A. Epidemiology of Parkinson’s Disease. J. Neural Transm. 2017, 124, 901–905. [Google Scholar] [CrossRef] [PubMed]
- Kumaresan, M.; Khan, S. Spectrum of Non-Motor Symptoms in Parkinson’s Disease. Cureus 2021, 13, e13275. [Google Scholar] [CrossRef] [PubMed]
- Opara, J.A.; Małecki, A.; Małecka, E.; Socha, T. Motor assessment in Parkinson’s disease. Ann. Agric. Environ. Med. 2017, 24, 411–415. [Google Scholar] [CrossRef]
- Voss, M.W.; Nagamatsu, L.S.; Liu-Ambrose, T.; Kramer, A.F. Exercise, Brain, and Cognition across the Life Span. J. Appl. Physiol. 2011, 111, 1505–1513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rafferty, M.R.; Schmidt, P.N.; Luo, S.T.; Li, K.; Marras, C.; Davis, T.L.; Guttman, M.; Cubillos, F.; Simuni, T. Regular Exercise, Quality of Life, and Mobility in Parkinson’s Disease: A Longitudinal Analysis of National Parkinson Foundation Quality Improvement Initiative Data. J. Parkinsons Dis. 2017, 7, 193–202. [Google Scholar] [CrossRef] [Green Version]
- Duchesne, C.; Gheysen, F.; Bore, A.; Albouy, G.; Nadeau, A.; Robillard, M.E.; Bobeuf, F.; Lafontaine, A.L.; Lungu, O.; Bherer, L.; et al. Influence of Aerobic Exercise Training on the Neural Correlates of Motor Learning in Parkinson’s Disease Individuals. NeuroImage Clin. 2016, 12, 559–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, Y.S.; Yang, S.D.; Tan, Z.X.; Wang, M.M.; Xing, Y.; Dong, F.; Zhang, F. The Benefits and Mechanisms of Exercise Training for Parkinson’s Disease. Life Sci. 2020, 245, 117345. [Google Scholar] [CrossRef] [PubMed]
- Snijders, A.H.; Toni, I.; Ružička, E.; Bloem, B.R. Bicycling Breaks the Ice for Freezers of Gait. Mov. Disord. 2011, 26, 367–371. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, G.O.; Otto, M.W.; Ellis, T.D.; Cronin-Golomb, A. The Therapeutic Potential of Exercise to Improve Mood, Cognition, and Sleep in Parkinson’s Disease. Mov. Disord. 2016, 31, 23–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sacheli, M.A.; Murray, D.K.; Vafai, N.; Cherkasova, M.V.; Dinelle, K.; Shahinfard, E.; Neilson, N.; McKenzie, J.; Schulzer, M.; Appel-Cresswell, S.; et al. Habitual Exercisers versus Sedentary Subjects with Parkinson’s Disease: Multimodal PET and FMRI Study. Mov. Disord. 2018, 33, 1945–1950. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.L.; Lee, M.; Huang, T.T. Effectiveness of Physical Activity on Patients with Depression and Parkinson’s Disease: A Systematic Review. PLoS ONE 2017, 12, e0181515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiorelli, C.M.; Ciolac, E.G.; Simieli, L.; Silva, F.A.; Fernandes, B.; Christofoletti, G.; Barbieri, F.A. Differential Acute Effect of High-Intensity Interval or Continuous Moderate Exercise on Cognition in Individuals With Parkinson’s Disease. J. Phys. Act. Health 2019, 16, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Cruise, K.E.; Bucks, R.S.; Loftus, A.M.; Newton, R.U.; Pegoraro, R.; Thomas, M.G. Exercise and Parkinson’s: Benefits for Cognition and Quality of Life. Acta Neurol. Scand. 2011, 123, 13–19. [Google Scholar] [CrossRef] [PubMed]
- So, K.-F.; Yao, S. Exercise on Brain Health; Elsevier: Amsterdam, The Netherlands, 2019; Available online: https://books.google.pl/books?id=T7G1DwAAQBAJ&pg=PA45&lpg=PA45&dq=Xiaojiao+Xua,b,%E2%80%A0,+Zhenfa+Fua,b,%E2%80%A0,+Weidong+Lea,b,*&source=bl&ots=i7XNpF0L9O&sig=ACfU3U0C5PwV6gL0w74_k4oXIPoaIORZpA&hl=pl&sa=X&ved=2ahUKEwjC7uPi7sX0AhVoo4sKHZSuDxEQ6AF6BAgCEAM#v=onepage&q=Xiaojiao%20Xua%2Cb%2C%E2%80%A0%2C%20Zhenfa%20Fua%2Cb%2C%E2%80%A0%2C%20Weidong%20Lea%2Cb%2C*&f=false (accessed on 2 December 2021).
- Frazzitta, G.; Maestri, R.; Ferrazzoli, D.; Riboldazzi, G.; Bera, R.; Fontanesi, C.; Rossi, R.P.; Pezzoli, G.; Ghilardi, M.F. Multidisciplinary Intensive Rehabilitation Treatment Improves Sleep Quality in Parkinson’s Disease. J. Clin. Mov. Disord. 2015, 2, 11. [Google Scholar] [CrossRef] [PubMed]
- Kredlow, M.A.; Capozzoli, M.C.; Hearon, B.A.; Calkins, A.W.; Otto, M.W. The Effects of Physical Activity on Sleep: A Meta-Analytic Review. J. Behav. Med. 2015, 38, 427–449. [Google Scholar] [CrossRef] [PubMed]
- Shin, M.S.; Kim, T.W.; Lee, J.M.; Ji, E.S.; Lim, B.V. Treadmill Exercise Alleviates Nigrostriatal Dopaminergic Loss of Neurons and Fibers in Rotenone-Induced Parkinson Rats. J. Exerc. Rehabil. 2017, 13, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Chul Jang, Y.; Hwang, D.J.; Koo, J.H.; Um, H.S.; Lee, N.H.; Yeom, D.C.; Lee, Y.; Cho, J.Y. Association of Exercise-Induced Autophagy Upregulation and Apoptosis Suppression with Neuroprotection against Pharmacologically Induced Parkinson’s Disease. J. Exerc. Nutr. Biochem. 2018, 22, 1–8. [Google Scholar] [CrossRef]
- Cotman, C.W.; Berchtold, N.C.; Christie, L.A. Exercise Builds Brain Health: Key Roles of Growth Factor Cascades and Inflammation. Trends Neurosci. 2007, 30, 464–472. [Google Scholar] [CrossRef] [PubMed]
- Berra, E.; De Icco, R.; Avenali, M.; Dagna, C.; Cristina, S.; Pacchetti, C.; Fresia, M.; Sandrini, G.; Tassorelli, C. Body Weight Support Combined with Treadmill in the Rehabilitation of Parkinsonian Gait: A Review of Literature and New Data from a Controlled Study. Front. Neurol. 2018, 9, 1066. [Google Scholar] [CrossRef] [Green Version]
- Ganesan, M.; Sathyaprabha, T.N.; Gupta, A.; Pal, P.K. Effect of Partial Weight-Supported Treadmill Gait Training on Balance in Patients with Parkinson Disease. PM R 2014, 6, 22–33. [Google Scholar] [CrossRef] [PubMed]
- Ustinova, K.; Chernikova, L.; Bilimenko, A.; Telenkov, A.; Epstein, N. Effect of Robotic Locomotor Training in an Individual with Parkinson’s Disease: A Case Report. Disabil. Rehabil. Assist. Technol. 2011, 6, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Galli, M.; Cimolin, V.; De Pandis, M.F.; Le Pera, D.; Sova, I.; Albertini, G.; Stocchi, F.; Franceschini, M. Robot-Assisted Gait Training versus Treadmill Training in Patients with Parkinson’s Disease: A Kinematic Evaluation with Gait Profile Score. Funct. Neurol. 2016, 31, 163. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Li, C.; Liu, J.; Wang, L.; Ma, J.; Li, G.; Gan, L.; Shang, X.; Wu, Z. Virtual Reality Rehabilitation Versus Conventional Physical Therapy for Improving Balance and Gait in Parkinson’s Disease Patients: A Randomized Controlled Trial. Med. Sci. Monit. 2019, 25, 4186–4192. [Google Scholar] [CrossRef] [PubMed]
- Keshner, E.A.; Fung, J. The Quest to Apply VR Technology to Rehabilitation: Tribulations and Treasures. J. Vestib. Res. 2017, 27, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirelman, A.; Maidan, I.; Deutsch, J.E. Virtual Reality and Motor Imagery: Promising Tools for Assessment and Therapy in Parkinson’s Disease. Mov. Disord. 2013, 28, 1597–1608. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Wong-Yu, I.S.K.; Mak, M.K.Y. Effects of Exercise on Falls, Balance, and Gait Ability in Parkinson’s Disease: A Meta-Analysis. Neurorehabil. Neural Repair 2016, 30, 512–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yen, C.Y.; Lin, K.H.; Hu, M.H.; Wu, R.M.; Lu, T.W.; Lin, C.H. Effects of Virtual Reality-Augmented Balance Training on Sensory Organization and Attentional Demand for Postural Control in People with Parkinson Disease: A Randomized Controlled Trial. Phys. Ther. 2011, 91, 862–874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conradsson, D.; Löfgren, N.; Ståhle, A.; Hagströmer, M.; Franzén, E. A Novel Conceptual Framework for Balance Training in Parkinson’s Disease-Study Protocol for a Randomised Controlled Trial. BMC Neurol. 2012, 12, 111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conradsson, D.; Löfgren, N.; Nero, H.; Hagströmer, M.; Ståhle, A.; Lökk, J.; Franzén, E. The Effects of Highly Challenging Balance Training in Elderly with Parkinson’s Disease: A Randomized Controlled Trial. Neurorehabil. Neural Repair 2015, 29, 827–836. [Google Scholar] [CrossRef] [Green Version]
- Wallén, M.B.; Hagströmer, M.; Conradsson, D.; Sorjonen, K.; Franzén, E. Long-Term Effects of Highly Challenging Balance Training in Parkinson’s Disease-a Randomized Controlled Trial. Clin. Rehabil. 2018, 32, 1520–1529. [Google Scholar] [CrossRef] [PubMed]
- Pompeu, J.E.; Arduini, L.A.; Botelho, A.R.; Fonseca, M.B.F.; Pompeu, S.M.A.A.; Torriani-Pasin, C.; Deutsch, J.E. Feasibility, Safety and Outcomes of Playing Kinect Adventures!TM for People with Parkinson’s Disease: A Pilot Study. Physiotherapy 2014, 100, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Barry, G.; Galna, B.; Rochester, L. The Role of Exergaming in Parkinson’s Disease Rehabilitation: A Systematic Review of the Evidence. J. Neuroeng. Rehabil. 2014, 11, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poletti, M.; Frosini, D.; Pagni, C.; Baldacci, F.; Nicoletti, V.; Tognoni, G.; Lucetti, C.; Del Dotto, P.; Ceravolo, R.; Bonuccelli, U. Mild Cognitive Impairment and Cognitive-Motor Relationships in Newly Diagnosed Drug-Naive Patients with Parkinson’s Disease. J. Neurol. Neurosurg. Psychiatry 2012, 83, 601–606. [Google Scholar] [CrossRef]
- Saltychev, M.; Bärlund, E.; Paltamaa, J.; Katajapuu, N.; Laimi, K. Progressive Resistance Training in Parkinson’s Disease: A Systematic Review and Meta-Analysis. BMJ Open 2016, 6, e008756. [Google Scholar] [CrossRef]
- Silva-Batista, C.; De Brito, L.C.; Corcos, D.M.; Roschel, H.; De Mello, M.T.; Piemonte, M.E.P.; Tricoli, V.; Ugrinowitsch, C. Resistance Training Improves Sleep Quality in Subjects with Moderate Parkinson’s Disease. J. Strength Cond. Res. 2017, 31, 2270–2277. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, M.A.; Toole, T.; Maitland, C.G.; Rider, R.A. The Effects of Balance Training and High-Intensity Resistance Training on Persons with Idiopathic Parkinson’s Disease. Arch. Phys. Med. Rehabil. 2003, 84, 1109–1117. [Google Scholar] [CrossRef]
- Hackney, M.E.; Earhart, G.M. Effects of Dance on Balance and Gait in Severe Parkinson Disease: A Case Study. Disabil. Rehabil. 2010, 32, 679–684. [Google Scholar] [CrossRef] [PubMed]
- McKee, K.E.; Hackney, M.E. The Effects of Adapted Tango on Spatial Cognition and Disease Severity in Parkinson’s Disease. J. Mot. Behav. 2013, 45, 519–529. [Google Scholar] [CrossRef]
- Koch, S.C.; Mergheim, K.; Raeke, J.; Machado, C.B.; Riegner, E.; Nolden, J.; Diermayr, G.; von Moreau, D.; Hillecke, T.K. The Embodied Self in Parkinson’s Disease: Feasibility of a Single Tango Intervention for Assessing Changes in Psychological Health Outcomes and Aesthetic Experience. Front. Neurosci. 2016, 10, 287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Zhuang, J.; Jiang, Y.; Xiao, G.; Jie, K.; Wang, T.; Yin, W.; Zhang, Y.; Wang, Z. Study Protocol for a Single-Blind Randomised Controlled Trial to Evaluate the Clinical Effects of an Integrated Qigong Exercise Intervention on Freezing of Gait in Parkinson’s Disease. BMJ Open 2019, 9, e028869. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.L.; Chen, S.; Wang, Y. Effects of Health Qigong Exercises on Relieving Symptoms of Parkinson’s Disease. Evid. Based. Complement. Alternat. Med. 2016, 2016, 5935782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hogarth, P.; Kurian, M.A.; Gregory, A.; Csányi, B.; Zagustin, T.; Kmiec, T.; Wood, P.; Klucken, A.; Scalise, N.; Sofia, F.; et al. Consensus Clinical Management Guideline for Pantothenate Kinase-Associated Neurodegeneration (PKAN). Mol. Genet. Metab. 2017, 120, 278–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, F.; Harmer, P.; McAuley, E.; John Fisher, K.; Duncan, T.E.; Duncan, S.C. Tai Chi, Self-Efficacy, and Physical Function in the Elderly. Prev. Sci. 2001, 2, 229–239. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Harmer, P.; Fitzgerald, K.; Eckstrom, E.; Stock, R.; Galver, J.; Maddalozzo, G.; Batya, S.S. Tai Chi and Postural Stability in Patients with Parkinson’s Disease. N. Engl. J. Med. 2012, 366, 511–519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.D.; Jae, H.D.; Jeong, J.H. Tai Chi Exercise Can Improve the Obstacle Negotiating Ability of People with Parkinson’s Disease: A Preliminary Study. J. Phys. Ther. Sci. 2014, 26, 1025–1030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nocera, J.R.; Amano, S.; Vallabhajosula, S.; Hass, C.J. Tai Chi Exercise to Improve Non-Motor Symptoms of Parkinson’s Disease. J. Yoga Phys. Ther. 2013, 3. [Google Scholar] [CrossRef] [Green Version]
- Luskin, F.M.; Newell, K.A.; Griffith, M.; Holmes, M.; Telles, S.; Marvasti, F.F.; Pelletier, K.R.; Haskell, W.L. A Review of Mind-Body Therapies in the Treatment of Cardiovascular Disease: Part 1: Implications for the Elderly. Altern. Ther. Health Med. 1998, 4, 46–61. [Google Scholar]
- Tran, M.D.; Holly, R.G.; Lashbrook, J.; Amsterdam, E.A. Effects of Hatha Yoga Practice on the Health-Related Aspects of Physical Fitness. Prev. Cardiol. 2001, 4, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Kwok, J.J.Y.Y.; Kwan, J.C.Y.; Auyeung, M.; Mok, V.C.T.; Chan, H.Y.L. The Effects of Yoga versus Stretching and Resistance Training Exercises on Psychological Distress for People with Mild-to-Moderate Parkinson’s Disease: Study Prxotocol for a Randomized Controlled Trial. Trials 2017, 18, 509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Puymbroeck, M.; Payne, L.L.; Hsieh, P.C. A Phase I Feasibility Study of Yoga on the Physical Health and Coping of Informal Caregivers. Evid. Based. Complement. Alternat. Med. 2007, 4, 519–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbruzzese, G.; Marchese, R.; Avanzino, L.; Pelosin, E. Rehabilitation for Parkinson’s Disease: Current Outlook and Future Challenges. Parkinsonism Relat. Disord. 2016, 22 (Suppl. 1), S60–S64. [Google Scholar] [CrossRef]
- Frazzitta, G.; Gabriella, B.; Uccellini, D.; Maestri, R. Parkinson’s Disease Rehabilitation: A Pilot Study with 1 Year Follow Up. Mov. Disord. 2010, 25, 1762–1763. [Google Scholar] [CrossRef] [PubMed]
- Abbruzzese, G.; Trompetto, C.; Mori, L.; Pelosin, E. Proprioceptive Rehabilitation of Upper Limb Dysfunction in Movement Disorders: A Clinical Perspective. Front. Hum. Neurosci. 2014, 8, 961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gasca-Salas, C.; Duff-Canning, S.; Armstrong, M.J.; Eslinger, P.J.; Schneider, R.B.; Kennedy, N.; Chou, K.L.; Persad, C.; Litvan, I.; Weintraub, S.; et al. Parkinson Disease with Mild Cognitive Impairment: Domain-Specific Cognitive Complaints Predict Dementia. Acta Neurol. Scand. 2020, 142, 585–596. [Google Scholar] [CrossRef] [PubMed]
- Walton, C.C.; Naismith, S.L.; Lampit, A.; Mowszowski, L.; Lewis, S.J.G. Cognitive Training in Parkinson’s Disease. Neurorehabil. Neural Repair 2017, 31, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Díez-Cirarda, M.; Ibarretxe-Bilbao, N.; Peña, J.; Ojeda, N. Neurorehabilitation in Parkinson’s Disease: A Critical Review of Cognitive Rehabilitation Effects on Cognition and Brain. Neural Plast. 2018, 2018, 2651918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orgeta, V.; McDonald, K.R.; Poliakoff, E.; Hindle, J.V.; Clare, L.; Leroi, I. Cognitive Training Interventions for Dementia and Mild Cognitive Impairment in Parkinson’s Disease. Cochrane Database Syst. Rev. 2020, 2, CD011961. [Google Scholar] [CrossRef]
- San Martín Valenzuela, C.; Moscardó, L.D.; López-Pascual, J.; Serra-Añó, P.; Tomás, J.M. Effects of Dual-Task Group Training on Gait, Cognitive Executive Function, and Quality of Life in People with Parkinson Disease: Results of Randomized Controlled DUALGAIT Trial. Arch. Phys. Med. Rehabil. 2020, 101, 1849–1856.e1. [Google Scholar] [CrossRef] [PubMed]
- Dobkin, R.D.; Mann, S.L.; Gara, M.A.; Interian, A.; Rodriguez, K.M.; Menza, M. Telephone-Based Cognitive Behavioral Therapy for Depression in Parkinson Disease: A Randomized Controlled Trial. Neurology 2020, 94, E1764–E1773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zečević, I. Clinical Practice Guidelines Based on Evidence for Cognitive-Behavioural Therapy in Parkinson’s Disease Comorbidities: A Literature Review. Clin. Psychol. Psychother. 2020, 27, 504–514. [Google Scholar] [CrossRef] [PubMed]
- Dobkin, R.D.; Mann, S.L.; Interian, A.; Gara, M.A.; Menza, M. Cognitive Behavioral Therapy Improves Diverse Profiles of Depressive Symptoms in Parkinson’s Disease. Int. J. Geriatr. Psychiatry 2019, 34, 722–729. [Google Scholar] [CrossRef]
- Reynolds, G.O.; Saint-Hilaire, M.; Thomas, C.A.; Barlow, D.H.; Cronin-Golomb, A. Cognitive-Behavioral Therapy for Anxiety in Parkinson’s Disease. Behav. Modif. 2020, 44, 552–579. [Google Scholar] [CrossRef] [PubMed]
- Ghielen, I.; Rutten, S.; Boeschoten, R.E.; Houniet-de Gier, M.; van Wegen, E.E.H.; van den Heuvel, O.A.; Cuijpers, P. The Effects of Cognitive Behavioral and Mindfulness-Based Therapies on Psychological Distress in Patients with Multiple Sclerosis, Parkinson’s Disease and Huntington’s Disease: Two Meta-Analyses. J. Psychosom. Res. 2019, 122, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Bresch, S.; Delmont, E.; Soriani, M.H.; Desnuelle, C. Electrodiagnostic Criteria for Early Diagnosis of Bulbar-Onset ALS: A Comparison of El Escorial, Revised El Escorial and Awaji Algorithm. Rev. Neurol. 2014, 170, 134–139. [Google Scholar] [CrossRef] [PubMed]
- Hulisz, D. Amyotrophic Lateral Sclerosis: Disease State Overview. Am. J. Manag. Care 2018, 24, S320–S326. [Google Scholar] [PubMed]
- PubMed. The Review of Questionnaires and Scales Evaluating Patients with Amyotrophic Lateral Sclerosis. Available online: https://pubmed.ncbi.nlm.nih.gov/29564907/ (accessed on 12 February 2022).
- Tsitkanou, S.; Della Gatta, P.; Foletta, V.; Russell, A. The Role of Exercise as a Non-Pharmacological Therapeutic Approach for Amyotrophic Lateral Sclerosis: Beneficial or Detrimental? Front. Neurol. 2019, 10, 783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pollock, M.L.; Gaesser, G.A.; Butcher, J.D.; Després, J.P.; Dishman, R.K.; Franklin, B.A.; Garber, C.E. American College of Sports Medicine Position Stand. The Recommended Quantity and Quality of Exercise for Developing and Maintaining Cardiorespiratory and Muscular Fitness, and Flexibility in Healthy Adults. Med. Sci. Sports Exerc. 1998, 30, 975–991. [Google Scholar] [CrossRef]
- Bohannon, R.W. Results of Resistance Exercise on a Patient with Amyotrophic Lateral Sclerosis. A Case Report. Phys. Ther. 1983, 63, 965–968. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Li, X.; Li, C.; Tsang, R.C.C.; Chen, Y.; Ge, Y.; Gao, Q. Effects of Exercise in Patients with Amyotrophic Lateral Sclerosis: A Systematic Review and Meta-Analysis. Am. J. Phys. Med. Rehabil. 2020, 99, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Oskarsson, B.; Horton, D.K.; Mitsumoto, H. Potential Environmental Factors in Amyotrophic Lateral Sclerosis. Neurol. Clin. 2015, 33, 877–888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drory, V.E.; Goltsman, E.; Goldman Reznik, J.; Mosek, A.; Korczyn, A.D. The Value of Muscle Exercise in Patients with Amyotrophic Lateral Sclerosis. J. Neurol. Sci. 2001, 191, 133–137. [Google Scholar] [CrossRef]
- Hübner, J.; Hübner, I.; Kroczka, S. Mood Disorders and Cognitive Impairment in the Course of Increasing Disability in Patients Suffering from Amyotrophic Lateral Sclerosis. Psychiatr. Pol. 2020, 54, 289–302. [Google Scholar] [CrossRef] [PubMed]
- Masrori, P.; Van Damme, P. Amyotrophic Lateral Sclerosis: A Clinical Review. Eur. J. Neurol. 2020, 27, 1918–1929. [Google Scholar] [CrossRef] [PubMed]
- Lou, J.S. Mindfulness, Depression and Quality of Life in Amyotrophic Lateral Sclerosis. Eur. J. Neurol. 2017, 24, 881–882. [Google Scholar] [CrossRef]
- Zarotti, N.; Mayberry, E.; Ovaska-Stafford, N.; Eccles, F.; Simpson, J. Psychological Interventions for People with Motor Neuron Disease: A Scoping Review. Amyotroph. Lateral Scler. Front. Degener. 2021, 22, 1–11. [Google Scholar] [CrossRef] [PubMed]
- McColgan, P.; Tabrizi, S.J. Huntington’s Disease: A Clinical Review. Eur. J. Neurol. 2018, 25, 24–34. [Google Scholar] [CrossRef]
- Mestre, T.A.; Busse, M.; Davis, A.M.; Quinn, L.; Rodrigues, F.B.; Burgunder, J.M.; Carlozzi, N.E.; Walker, F.; Ho, A.K.; Sampaio, C.; et al. Rating Scales and Performance-Based Measures for Assessment of Functional Ability in Huntington’s Disease: Critique and Recommendations. Mov. Disord. Clin. Pract. 2018, 5, 361–372. [Google Scholar] [CrossRef] [Green Version]
- Mielcarek, M. Huntington’s Disease Is a Multi-System Disorder. Rare Dis. 2015, 3, e1058464. [Google Scholar] [CrossRef]
- Fritz, N.; Rao, A.K.; Kegelmeyer, D.; Kloos, A.; Busse, M.; Hartel, L.; Carrier, J.; Quinn, L. Physical Therapy and Exercise Interventions in Huntington’s Disease: A Mixed Methods Systematic Review. J. Huntingtons Dis. 2017, 6, 217–236. [Google Scholar] [CrossRef] [Green Version]
- Reyes, A.; Cruickshank, T.; Nosaka, K.; Ziman, M. Respiratory Muscle Training on Pulmonary and Swallowing Function in Patients with Huntington’s Disease: A Pilot Randomised Controlled Trial. Clin. Rehabil. 2015, 29, 961–973. [Google Scholar] [CrossRef] [PubMed]
- Jones, U.; Busse, M.; Enright, S.; Rosser, A.E. Respiratory Decline Is Integral to Disease Progression in Huntington’s Disease. Eur. Respir. J. 2016, 48, 585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quinn, L.; Hamana, K.; Kelson, M.; Dawes, H.; Collett, J.; Townson, J.; Roos, R.; van der Plas, A.A.; Reilmann, R.; Frich, J.C.; et al. A Randomized, Controlled Trial of a Multi-Modal Exercise Intervention in Huntington’s Disease. Parkinsonism Relat. Disord. 2016, 31, 46–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fritz, N.E.; Busse, M.; Jones, K.; Khalil, H.; Quinn, L. A Classification System to Guide Physical Therapy Management in Huntington Disease: A Case Series. J. Neurol. Phys. Ther. 2017, 41, 156–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quinn, L.; Kegelmeyer, D.; Kloos, A.; Rao, A.K.; Busse, M.; Fritz, N.E. Clinical Recommendations to Guide Physical Therapy Practice for Huntington Disease. Neurology 2020, 94, 217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kloos, A.D.; Kegelmeyer, D.A.; White, S.E.; Kostyk, S.K. The Impact of Different Types of Assistive Devices on Gait Measures and Safety in Huntington’s Disease. PLoS ONE 2012, 7, e0030903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quinn, L.; Busse, M. The Role of Rehabilitation Therapy in Huntington Disease. Handb. Clin. Neurol. 2017, 144, 151–165. [Google Scholar] [CrossRef] [PubMed]
- Plecash, A.R.; Leavitt, B.R. Aquatherapy for Neurodegenerative Disorders. J. Huntingtons Dis. 2014, 3, 5–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burnip, E.; Wallace, E.; Gozdzikowska, K.; Huckabee, M.L. A Systematic Review of Rehabilitation for Corticobulbar Symptoms in Adults with Huntington’s Disease. J. Huntingtons Dis. 2020, 9, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ross, C.A.; Tabrizi, S.J. Huntington’s Disease: From Molecular Pathogenesis to Clinical Treatment. Lancet. Neurol. 2011, 10, 83–98. [Google Scholar] [CrossRef]
- Ishihara, L.; Oliveri, D.; Wild, E.J. Neuropsychiatric Comorbidities in Huntington’s and Parkinson’s Disease: A United States Claims Database Analysis. Ann. Clin. Transl. Neurol. 2021, 8, 126–137. [Google Scholar] [CrossRef] [PubMed]
- Chen, I.W.; Chen, C.M.; Wu, Y.R.; Hua, M.S. Patterns of False Memory in Patients with Huntington’s Disease. Arch. Clin. Neuropsychol. 2017, 32, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Van Walsem, M.R.; Piira, A.; Mikalsen, G.; Fossmo, H.L.; Howe, E.I.; Knutsen, S.F.; Frich, J.C. Cognitive Performance After a One-Year Multidisciplinary Intensive Rehabilitation Program for Huntington’s Disease: An Observational Study. J. Huntingtons Dis. 2018, 7, 379–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fisher, C.A.; Brown, A. Sensory Modulation Intervention and Behaviour Support Modification for the Treatment of Severe Aggression in Huntington’s Disease. A Single Case Experimental Design. Neuropsychol. Rehabil. 2017, 27, 891–903. [Google Scholar] [CrossRef] [PubMed]
- Ferenci, P. Diagnosis of Wilson Disease. Handb. Clin. Neurol. 2017, 142, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Maiarú, M.; Garcete, A.; Drault, M.; Mendelevich, A.; Modica, M.; Peralta, F. Physical Therapy in Wilson’s Disease: Case Report. Available online: https://www.researchgate.net/publication/316141431_Physical_Therapy_in_Wilson’s_Disease_Case_Report (accessed on 12 January 2022).
- Chaudhry, H.S.; Anilkumar, A.C. Wilson Disease; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Da Silva-Júnior, F.P.; Carrasco, A.E.A.B.; Da Silva Mendes, A.M.; Lopes, A.J.T.; Nobre E Souza, M.A.; De Bruin, V.M.S. Swallowing Dysfunction in Wilson’s Disease: A Scintigraphic Study. Neurogastroenterol. Motil. 2008, 20, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Yang, E.; Yang, H.S.; Lee, H.; Jeung, H.W.; Park, Y.O. Neuromuscular Electrical Stimulation Th Erapy for Dysphagia Caused by Wilson’s Disease. Ann. Rehabil. Med. 2012, 36, 409. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jopowicz, A.; Wiśniowska, J.; Tarnacka, B. Cognitive and Physical Intervention in Metals’ Dysfunction and Neurodegeneration. Brain Sci. 2022, 12, 345. https://doi.org/10.3390/brainsci12030345
Jopowicz A, Wiśniowska J, Tarnacka B. Cognitive and Physical Intervention in Metals’ Dysfunction and Neurodegeneration. Brain Sciences. 2022; 12(3):345. https://doi.org/10.3390/brainsci12030345
Chicago/Turabian StyleJopowicz, Anna, Justyna Wiśniowska, and Beata Tarnacka. 2022. "Cognitive and Physical Intervention in Metals’ Dysfunction and Neurodegeneration" Brain Sciences 12, no. 3: 345. https://doi.org/10.3390/brainsci12030345
APA StyleJopowicz, A., Wiśniowska, J., & Tarnacka, B. (2022). Cognitive and Physical Intervention in Metals’ Dysfunction and Neurodegeneration. Brain Sciences, 12(3), 345. https://doi.org/10.3390/brainsci12030345