The Aetiology of Tourette Syndrome and Chronic Tic Disorder in Children and Adolescents: A Comprehensive Systematic Review of Case-Control Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Information Sources and Research Strategies
2.2. Inclusion and Exclusion Criteria
2.3. Assessment of Literature Quality
3. Results
3.1. Characteristics of Studies
3.2. Quality of Studies
3.3. Etiological Factors
3.3.1. Genetic Factors
3.3.2. Immunological Factors
3.3.3. Environmental Factors
3.3.4. Psychological Factors
3.3.5. Other Factors
4. General Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Szejko, N.; Robinson, S.; Hartmann, A.; Ganos, C.; Debes, N.; Skov, L.; Haas, M.; Rizzo, R.; Stern, J.; Münchau, A.; et al. European clinical guidelines for Tourette syndrome and other tic disorders—version 2.0. Part I: Assessment. Eur. Child Adolesc. Psychiatry 2022, 31, 383–402. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, T.V.; State, M.W.; Pittenger, C. Tourette disorder and other tic disorders. Handb. Clin. Neurol. 2018, 147, 343–354. [Google Scholar] [PubMed]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Washington, DC, USA, 2018. [Google Scholar]
- Liu, Z.-S.; Cui, Y.-H.; Sun, D.; Lu, Q.; Jiang, Y.-W.; Jiang, L.; Wang, J.-Q.; Luo, R.; Fang, F.; Zhou, S.-Z.; et al. Current Status, Diagnosis, and Treatment Recommendation for Tic Disorders in China. Front. Psychiatry 2020, 11, 774. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; The PRISMA Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. J. Clin. Epidemiol. 2009, 62, 1006–1012. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. PLoS Med. 2021, 18, e1003583. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 3rd ed.; American Psychiatric Association: Washington, DC, USA, 1980. [Google Scholar]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 3rd ed.; Revised; American Psychiatric Association: Washington, DC, USA, 1987. [Google Scholar]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 4th ed.; American Psychiatric Association: Washington, DC, USA, 1994. [Google Scholar]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 4th ed.; Revised; American Psychiatric Association: Washington, DC, USA, 2000. [Google Scholar]
- Stang, A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur. J. Epidemiol. 2010, 25, 603–605. [Google Scholar] [CrossRef]
- Jakovljevic, A.; Jakovljevic, T.S.; Duncan, H.F.; Nagendrababu, V.; Jacimovic, J.; Aminoshariae, A.; Milasin, J.; Dummer, P.M.H. The association between apical periodontitis and adverse pregnancy outcomes: A systematic review. Int. Endod. J. 2021, 54, 1527–1537. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, M.; Termine, C.; Franciotta, D.; Castiglioni, E.; Pagani, A.; Lanzi, G.; Marino, F.; Lecchini, S.; Cosentino, M.; Balottin, U. Dopaminergic receptor D5 mRNA expression is increased in circulating lymphocytes of Tourette syndrome patients. J. Psychiatr. Res. 2008, 43, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Su, L.; Zhang, J.; Lei, J.; Deng, X.; Xu, H.; Yang, Z.; Kuang, S.; Tang, J.; Luo, Z.; et al. Analysis of the BTBD9 and HTR2C variants in Chinese Han patients with Tourette syndrome. Psychiatr. Genet. 2012, 22, 300–303. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Zheng, Y.; Cheng, Y.H.; Liang, Y.Z.; Yang, J.H.; Cui, Y.H.; Jia, J.P. Association between Tourette syndrome curative effects and the dopamine transporter gene. Chin. J. Psychiatry 2011, 44, 10–13. [Google Scholar]
- He, F.; Zheng, Y.; Huang, H.-H.; Cheng, Y.-H.; Wang, C.-Y. Association between Tourette Syndrome and the Dopamine D3 Receptor Gene Rs6280. Chin. Med. J. 2015, 128, 654–658. [Google Scholar] [CrossRef]
- Ji, W.D.; Zhou, J.X.; Yang, C.; Huang, X.Q.; Yao, J.; Guo, T.Y.; Guo, L.T.; Liu, X.H. The executive function in Han Chinese children with Tourette’s syndrome and it’s association with polymorphism of DRD4 VNTR. Chin. Ment. Health J. 2010, 24, 568–573. [Google Scholar]
- Lei, J.; Xu, H.; Liang, H.; Su, L.; Zhang, J.; Huang, X.; Song, Z.; Le, W.; Deng, H. Gene expression changes in peripheral blood from Chinese Han patients with Tourette syndrome. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2012, 159B, 977–980. [Google Scholar] [CrossRef] [PubMed]
- Lit, L.; Enstrom, A.; Sharp, F.R.; Gilbert, D. Age-related gene expression in Tourette syndrome. J. Psychiatr. Res. 2009, 43, 319–330. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wang, X.F.; Zhang, B.S. Study on the dopamine beta-hydroxylase gene Taq I digestion polymorphism and Tourette syndrome: A case-control study. Chin. J. Contemp. Neurol. Neurosurg. 2009, 9, 60–64. [Google Scholar]
- Lu, Y.; Ma, H.-W.; Xi, C.-Y.; Zhang, Y.; Wang, Y.; Yao, L.; Gao, J.; Wang, W.; Zhou, M. Association between the polymorphism in the promoter region of dopamine D4 receptor gene and chronic tic disorder. Chin. J. Contemp. Pediatr. 2006, 8, 357–360. [Google Scholar]
- Mirabella, F.; Gulisano, M.; Capelli, M.; Lauretta, G.; Cirnigliaro, M.; Palmucci, S.; Stella, M.; Barbagallo, D.; Di Pietro, C.; Purrello, M.; et al. Enrichment and Correlation Analysis of Serum miRNAs in Comorbidity Between Arnold-Chiari and Tourette Syndrome Contribute to Clarify Their Molecular Bases. Front. Mol. Neurosci. 2021, 13, 608355. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, R.; Ragusa, M.; Barbagallo, C.; Sammito, M.; Gulisano, M.; Calì, P.V.; Pappalardo, C.; Barchitta, M.; Granata, M.; Condorelli, A.G.; et al. Circulating miRNAs profiles in Tourette syndrome: Molecular data and clinical implications. Mol. Brain 2015, 8, 44. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Liao, I.H.; Zhan, X.; Gunther, J.R.; Ander, B.P.; Liu, D.; Lit, L.; Jickling, G.C.; Corbett, B.A.; Bos-Veneman, N.G.; et al. Exon expression and alternatively spliced genes in Tourette syndrome. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2011, 156, 72–78. [Google Scholar] [CrossRef]
- Yuan, L.; Zheng, W.; Yang, Z.; Deng, X.; Song, Z.; Deng, H. Association of the AADAC gene and Tourette syndrome in a Han Chinese cohort. Neurosci. Lett. 2018, 666, 24–27. [Google Scholar] [CrossRef]
- Chang, J.; Li, H.B.; Liang, D.; Chen, Y.B.; Lu, J.R.; Zhao, H.X. Association between Mycoplasma pneumoniae infection and children with Tourette syndrome. Chin. J. Nerv. Ment. Dis. 2006, 32, 349–350. [Google Scholar]
- Cheng, Y.H.; Li, W.B.; Wang, L.F.; Liu, R.M.; Zheng, Y. Increased expression of autoantibody protein and soluble IL-6 receptor in serum of patients with Tourette’s syndrome patients. J. Neurosci. Ment. Health 2009, 9, 207–209. [Google Scholar]
- Dong, L.X.; Hao, Y.Q. Study on the relationship between Tourette syndrome and the changes of ASO. J. Chifeng Univ. (Nat. Sci. Ed.) 2009, 25, 63–64. [Google Scholar]
- Ji, W.D.; Li, N.; Guo, B.Y.; Zhou, J.X.; Huang, X.Q. Determination of T-cell subpopulations, ASO, IL-6, and IL-8 in children with Tourette’s syndrome. J. Zhengzhou Univ. (Med. Sci.) 2005, 40, 337–339. [Google Scholar]
- Rizzo, R.; Gulisano, M.; Pavone, P.; Fogliani, F.; Robertson, M.M. Increased Antistreptococcal Antibody Titers and Anti—Basal Ganglia Antibodies in Patients with Tourette Syndrome: Controlled Cross-Sectional Study. J. Child Neurol. 2006, 21, 747–753. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Wang, Y.J.; Qin, F.L. Association between Mycoplasma pneumoniae infection and children with Tourette syndrome. Chin. J. Mod. Drug Appl. 2010, 4, 48–49. [Google Scholar]
- Yuce, M.; Guner, S.N.; Karabekiroglu, K.; Baykal, S.; Kilic, M.; Sancak, R.; Karabekiroglu, A. Association of Tourette syndrome and obsessive-compulsive disorder with allergic diseases in children and adolescents: A preliminary study. Eur. Rev. Med. Pharmacol. Sci. 2014, 18, 303–310. [Google Scholar] [PubMed]
- Zhao, R.X.; Luo, Y.J.; Ren, D. Analysis of risk factors of children with Tourette Syndrome. Chin. J. Obstet. Gynecol. Pediatr. (Electron. Ed.) 2017, 13, 177–182. [Google Scholar]
- Gu, H.L.; Chen, H.; Ji, J.P.; Kang, J.J.; Zhang, Y. Behavior problems and family environment of children with Tourette syndrome. Matern. Child Health Care China 2013, 28, 3943–3945. [Google Scholar]
- Khalifa, N.; von Knorring, A.-L. Tourette syndrome and other tic disorders in a total population of children: Clinical assessment and background. Acta Paediatr. 2005, 94, 1608–1614. [Google Scholar] [CrossRef] [PubMed]
- Klug, M.G.; Burd, L.; Kerbeshian, J.; Benz, B.; Martsolf, J.T. A comparison of the effects of parental risk markers on pre- and perinatal variables in multiple patient cohorts with fetal alcohol syndrome, autism, Tourette syndrome, and sudden infant death syndrome: An enviromic analysis. Neurotoxicol. Teratol. 2003, 25, 707–717. [Google Scholar] [CrossRef]
- Li, D.; Li, Y.R.; He, L.Y. Analysis of risk factors of children with Tourette Syndrome. Guangdong Med. J. 2010, 31, 2698–2699. [Google Scholar]
- Liu, X.M.; Wang, Y.W.; Yi, M.J.; Chu, Q.; Li, L.X. Family environment and rearing styles of parents of children with Tourette syndrome and obsessive compulsive disorder. Chin. Ment. Health J. 2007, 21, 595–597. [Google Scholar]
- Horesh, N.; Zimmerman, S.; Steinberg, T.; Yagan, H.; Apter, A. Is onset of Tourette syndrome influenced by life events? J. Neural Transm. 2008, 115, 787–793. [Google Scholar] [CrossRef]
- Motlagh, M.G.; Katsovich, L.; Thompson, N.; Lin, H.; Kim, Y.-S.; Scahill, L.; Lombroso, P.J.; King, R.A.; Peterson, B.S.; Leckman, J.F. Severe psychosocial stress and heavy cigarette smoking during pregnancy: An examination of the pre- and perinatal risk factors associated with ADHD and Tourette syndrome. Eur. Child Adolesc. Psychiatry 2010, 19, 755–764. [Google Scholar] [CrossRef] [PubMed]
- Horesh, N.; Shmuel-Baruch, S.; Farbstein, D.; Ruhrman, D.; Milshtein, N.B.A.; Fennig, S.; Apter, A.; Steinberg, T. Major and minor life events, personality and psychopathology in children with Tourette syndrome. Psychiatry Res. 2018, 260, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Corbett, B.; Mendoza, S.; Baym, C.; Bunge, S.; Levine, S. Examining cortisol rhythmicity and responsivity to stress in children with Tourette syndrome. Psychoneuroendocrinology 2008, 33, 810–820. [Google Scholar] [CrossRef]
- Erbay, L.G.; Kartalci, Ş.; Ozcan, O.O.; Demir, A.; Uyumlu, A.B.; Kutuk, M.O. Testosterone and DHEA-S levels with chronic tic disorder in children. J. Obs.-Compuls. Relat. Disord. 2016, 9, 73–76. [Google Scholar] [CrossRef]
- Liu, Z.S.; Yang, L.Z.; Wang, F.L.; Lin, Q.; Zuo, Q.H. Changes in plasma prolactin levels in children with Tourette syndrome. J. Brain Nerv. Dis. 1998, 6, 182. [Google Scholar]
- Liu, K.X.; Zhong, Y.; Liu, X.X. Analysis on the family environment of children with Tourette syndrome. J. Clin. Res. 2008, 25, 211–213. [Google Scholar]
- Rivière, J.-B.; Xiong, L.; Levchenko, A.; St-Onge, J.; Gaspar, C.; Dion, Y.; Lespérance, P.; Tellier, G.; Richer, F.; Chouinard, S.; et al. Association of Intronic Variants of the BTBD9 Gene with Tourette Syndrome. Arch. Neurol. 2009, 66, 1267–1272. [Google Scholar] [CrossRef] [PubMed]
- DeAndrade, M.; Johnson, R.L.; Unger, E.L.; Zhang, L.; Van Groen, T.; Gamble, K.; Li, Y. Motor restlessness, sleep disturbances, thermal sensory alterations and elevated serum iron levels in Btbd9 mutant mice. Hum. Mol. Genet. 2012, 21, 3984–3992. [Google Scholar] [CrossRef] [PubMed]
- Lyu, S.; Xing, H.; DeAndrade, M.P.; Liu, Y.; Perez, P.D.; Yokoi, F.; Febo, M.; Walters, A.S.; Li, Y. The Role of BTBD9 in Striatum and Restless Legs Syndrome. Eneuro 2019, 6, 0277-19.2019. [Google Scholar] [CrossRef] [PubMed]
- Pagliaroli, L.; Vereczkei, A.; Padmanabhuni, S.S.; Tarnok, Z.; Farkas, L.; Nagy, P.; Rizzo, R.; Wolanczyk, T.; Szymanska, U.; Kapisyzi, M.; et al. Association of Genetic Variation in the 3′UTR of LHX6, IMMP2L, and AADAC with Tourette Syndrome. Front. Neurol. 2020, 11, 803. [Google Scholar] [CrossRef]
- Bertelsen, B.; Stefánsson, H.; Jensen, L.R.; Melchior, L.; Debes, N.M.; Groth, C.; Skov, L.; Werge, T.; Karagiannidis, I.; Tarnok, Z.; et al. Association of AADAC Deletion and Gilles de la Tourette Syndrome in a Large European Cohort. Biol. Psychiatry 2016, 79, 383–391. [Google Scholar] [CrossRef]
- Lein, E.S.; Hawrylycz, M.J.; Ao, N.; Ayres, M.; Bensinger, A.; Bernard, A.; Boe, A.F.; Boguski, M.S.; Brockway, K.S.; Byrnes, E.J.; et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 2007, 445, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Pringsheim, T.; Holler-Managan, Y.; Okun, M.S.; Jankovic, J.; Piacentini, J.; Cavanna, A.E.; Martino, D.; Müller-Vahl, K.; Woods, D.W.; Robinson, M.; et al. Comprehensive systematic review summary: Treatment of tics in people with Tourette syndrome and chronic tic disorders. Neurology 2019, 92, 907–915. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Li, X.-B.; Xiang, Y.-Q.; Zhong, B.-L.; Chiu, H.F.; Ungvari, G.S.; Ng, C.H.; Lok, G.K.; Xiang, Y.-T. Aripiprazole for Tourette’s syndrome: A systematic review and meta-analysis. Hum. Psychopharmacol. 2016, 31, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, D.L.; Murphy, T.K.; Jankovic, J.; Budman, C.L.; Black, K.J.; Kurlan, R.M.; Coffman, K.A.; McCracken, J.T.; Juncos, J.; Grant, J.E.; et al. Ecopipam, a D1 receptor antagonist, for treatment of Tourette syndrome in children: A randomized, placebo-controlled crossover study. Mov. Disord. 2018, 33, 1272–1280. [Google Scholar] [CrossRef] [PubMed]
- Schuhfried, G.; Stanek, G. Gilles de la Tourette Syndrome Caused by Mycoplasma pneumoniae Successfully Treated with Macrolides. Klin. Pädiatrie 2014, 226, 295–296. [Google Scholar] [CrossRef]
- Müller, N.; Riedel, M.; Blendinger, C.; Oberle, K.; Jacobs, E.; Abele-Horn, M. Mycoplasma pneumoniae infection and Tourette’s syndrome. Psychiatry Res. 2004, 129, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Lamothe, H.; Tamouza, R.; Hartmann, A.; Mallet, L. Immunity and Gilles de la Tourette syndrome: A systematic review and meta-analysis of evidence for immune implications in Tourette syndrome. Eur. J. Neurol. 2021, 28, 3187–3200. [Google Scholar] [CrossRef] [PubMed]
- Chao, T.-K.; Hu, J.; Pringsheim, T. Prenatal risk factors for Tourette Syndrome: A systematic review. BMC Pregnancy Childbirth 2014, 14, 53. [Google Scholar] [CrossRef]
- Bennett, S.M.; Capriotti, M.; Bauer, C.; Chang, S.; Keller, A.E.; Walkup, J.; Woods, D.; Piacentini, J. Development and Open Trial of a Psychosocial Intervention for Young Children with Chronic Tics: The CBIT-JR Study. Behav. Ther. 2020, 51, 659–669. [Google Scholar] [CrossRef]
- Buse, J.; Kirschbaum, C.; Leckman, J.; Münchau, A.; Roessner, V. The Modulating Role of Stress in the Onset and Course of Tourette’s Syndrome: A Review. Behav. Modif. 2014, 38, 184–216. [Google Scholar] [CrossRef] [Green Version]
- Yap, S.C.; Anusic, I.; Lucas, R.E. Does personality moderate reaction and adaptation to major life events? Evidence from the British Household Panel Survey. J. Res. Pers. 2012, 46, 477–488. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.-H.; Zhang, S.-X.; Chen, Y.-C.; Tan, K.-Y.; Zhang, J.-S.; Zhao, Y.; Kakaer, A.; Chen, Y.-J. Role of psychotherapy strategy for the management of patients with Tourette syndrome—A Bayesian network meta-analysis. J. Psychiatr. Res. 2021, 143, 451–461. [Google Scholar] [CrossRef]
- Andrén, P.; Jakubovski, E.; Murphy, T.L.; Woitecki, K.; Tarnok, Z.; Zimmerman-Brenner, S.; van de Griendt, J.; Debes, N.M.; Viefhaus, P.; Robinson, S.; et al. European clinical guidelines for Tourette syndrome and other tic disorders-version 2.0. Part II: Psychological interventions. Eur. Child Adolesc. Psychiatry 2022, 31, 403–423. [Google Scholar] [CrossRef] [PubMed]
Results | Study Quality | NOS Values | Categories | Cases/Controls (N) | Diagnosis | Country | Studies |
---|---|---|---|---|---|---|---|
Higher DRD5 mRNA levels in TS compared to healthy controls. No differences in DRD2, DRD3, or DRD4. mRNA. | Fair | 4 | genetic | 15/15 | TS | Italy | [13] |
A significant association between TS and the variant rs9296249 of BTBD9. No differences in the other four variants. | High | 7 | genetic | 110/440 | TS | China | [14] |
No significant differences in polymorphisms of DAT1 between groups. | High | 8 | genetic | 115/57 | TS | China | [15] |
No statistical differences in the allele and genotype frequencies of DRD3 rs6280 SNPs between TS and controls. | High | 7 | genetic | 160/90 | TS | China | [16] |
No significant in DRD4 exon III 48 bp variable number of tandem repeats. | Fair | 6 | genetic | 86/51 | TS | China | [17] |
Significant differences in APBA2 expression between TS and NC. | Fair | 5 | genetic | 84/100 | TS | China | [18] |
No global expression differences between TS and controls. Within each age strata (5–9, 10–12, and 13–16), the expression of many genes differed between TS and controls. | High | 7 | genetic | 30/28 | TS | the United States | [19] |
No significant differences in the polymorphism of DBH Taq1 digestion between TS and NC. | High | 7 | genetic | 106/80 | CTD | China | [20] |
Significant differences in both genotype and allele frequencies of DRD4 616C/G between CTD and controls. | Fair | 4 | genetic | 85/100 | CTD | China | [21] |
miR-23a-3p upregulated in TS compared to NC. miR-130a-3p downregulated in ACTS and TS compared to NC. miR-222-3p and miR-451a upregulated in ACTS compared to NC. | High | 7 | genetic | 17/8 | TS | Italy | [22] |
MiR-429 significantly downregulated in TS to normal controls. | High | 7 | genetic | 58/28 | TS | Italy | [23] |
Expressions of 376 exon probe set significantly different between TS and NC, but no exon with multiple comparisons corrected p < 0.05. 90 genes (transcripts) differently expressed of one exon in TS compared to NC, while three genes with a corrected p < 0.05 based on the Benjamini and Hochberg FDR for multiple comparison correction. | Fair | 6 | genetic | 26/23 | TS | the United States | [24] |
Two variants of AADAC, including c.361 + 1G > A, and c.744A > T, identified in two unrelated TS patients. The c.361 + 1G > A variant absent in controls, the c.744A > T variant identified in two NC. | Fair | 6 | genetic | 200/300 | TS | China | [25] |
Significantly higher MP antibody (titers ≥ 1:160) and MP-specific antibody IgA in TS than in NC. | Fair | 6 | immunological | 60/60 | TS | China | [26] |
ASO titers raised (≥250 IU/L) in 13/66 (19.7%) TS and 0 NC. | Fair | 4 | immunological | 67/64 | TS | China | [27] |
ASO titers raised (≥200 IU/L) in 27/48 (56.3%) TS and 2/20 (10.0%) NC. | Fair | 6 | immunological | 48/20 | TS | China | [28] |
Significantly higher titers of ASO in TS than in NC. | Fair | 6 | immunological | 32/30 | TS | China | [29] |
Raised anti-streptolysin titers in 41 of 69 (59%) TS and 14 of 72 (19%) controls. Positive anti-basal ganglia antibodies in 22 of 69 (32%) TS compared with 7 of 72 (10%) controls. | High | 7 | immunological, | 69/72 | TS | Italy | [30] |
Significant differences in the positive rates of MP antibody and MP-specific antibody IgA in TS compared to NC. | Fair | 6 | immunological | 50/50 | TS | China | [31] |
More comorbid allergic diseases in TS compared to controls. No significant differences in IgE levels and eosinophil counts. | Fair | 6 | immunological | 25/25 | TS | Turkey | [32] |
Significant differences in frequencies of recurrent respiratory infections within one year, history of perinatal diseases, and family history of neurological and psychiatric diseases. No significant differences in the other variables. | Fair | 6 | Immunological, environmental | 206/125 | TS | China | [33] |
Low intimacy and high conflict in TS. No significant differences in emotional expression or independence. | High | 7 | environmental | 60/60 | TS | China | [34] |
First-degree relative with psychiatric disorders in eighty per cent of TS. Non-significant of reduced optimality score in the prenatal, perinatal or neonatal periods in TS compared to controls. No differences in socio-economic status. | Fair | 5 | environmental | 25/25 | TS, CTD | Sweden | [35] |
Significant differences in prior terminations between TS and controls. | High | 7 | environmental | 72/460 | TS | the United States | [36] |
According to multiple-factors analysis, threatened abortion and birth injuries, food preference, exposure to games and television, strict discipline, and anorexia related to TS. | Fair | 5 | environmental | 160/100 | TS | China | [37] |
Higher conflict, rejection, and denial from father, overprotection from father, over-intervention and overprotection from mother, and lower emotional warmth from father in both TS only and TS plus OCD. | High | 7 | environmental | 73/40 | TS | China | [38] |
Five (conflict, recreational orientation, independence, organization, and control) over ten family environmental factors of TS significantly different from those of matched controls. | Fair | 6 | environmental | 55/55 | TS | China | [39] |
Higher frequencies of heavy maternal smoking and the levels of severe maternal psychosocial stress during pregnancy in TS only and TS plus ADHD compared to NC, but without significant differences. | High | 7 | environmental | 105/65 | TS | the United States | [40] |
No significant differences in life events between TS and NC. | Fair | 6 | psychological | 41/24 | TS | Israel | [39] |
Major life events correlated with TS. Minor life events correlated with more severe symptomatology. | Fair | 6 | psychological | 132/49 | TS | Israel | [41] |
Lower evening cortisol for TS. Higher levels of cortisol in response to MRI environment for TS. | Fair | 6 | other | 20/16 | TS | the United States | [42] |
Higher testosterone and DHEA-S levels in TS than in controls. No statistical differences between the cortisol levels. | Fair | 6 | other | 26/25 | TS, CTD | Turkey | [43] |
Significantly higher soluble IL-6 receptor and soluble glycoprotein 130 in TS than in NC. | Fair | 4 | other | 22/18 | TS | China | [44] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, J.; Chen, M.; Huang, H.; Chen, Y. The Aetiology of Tourette Syndrome and Chronic Tic Disorder in Children and Adolescents: A Comprehensive Systematic Review of Case-Control Studies. Brain Sci. 2022, 12, 1202. https://doi.org/10.3390/brainsci12091202
Jiang J, Chen M, Huang H, Chen Y. The Aetiology of Tourette Syndrome and Chronic Tic Disorder in Children and Adolescents: A Comprehensive Systematic Review of Case-Control Studies. Brain Sciences. 2022; 12(9):1202. https://doi.org/10.3390/brainsci12091202
Chicago/Turabian StyleJiang, Jilong, Mengxin Chen, Huifang Huang, and Yanhui Chen. 2022. "The Aetiology of Tourette Syndrome and Chronic Tic Disorder in Children and Adolescents: A Comprehensive Systematic Review of Case-Control Studies" Brain Sciences 12, no. 9: 1202. https://doi.org/10.3390/brainsci12091202
APA StyleJiang, J., Chen, M., Huang, H., & Chen, Y. (2022). The Aetiology of Tourette Syndrome and Chronic Tic Disorder in Children and Adolescents: A Comprehensive Systematic Review of Case-Control Studies. Brain Sciences, 12(9), 1202. https://doi.org/10.3390/brainsci12091202