Continuous Neurophysiologic Data Accurately Predict Mood and Energy in the Elderly
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
ML | Parameter | Values |
---|---|---|
Logit | C Regularization | 1, 10, 100 L1,l2, elasticnet |
RF | Minimum sample split Minimum samples per leaf Maximum features per tree | 2, 5, 10 2, 5, 10, 15 Square root, log2 |
SVM | C Kernal method | 1, 10, 100 Linear, polynomial, radial, sigmoid |
Distribution | Mood | Energy |
---|---|---|
Statistic (p Value) | Statistic (p Value) | |
Inverse Chi2 (36) | 92.69 (0.000) | 57.19 (0.014) |
Inverse Normal | −2.14 (0.016) | −2.63 (0.004) |
Inverse Logit t (89) | −4.319 (0.000) | −2.70 (0.004) |
Mod. Inv. Chi2 | 6.682 (0.000) | 2.49 (0.006) |
Mood | Immersion | PS | PI | |
---|---|---|---|---|
Male | 12.36 | 1.76 | 0.005 | |
Female | 26.50 | 1.76 | 0.005 |
Variable | Principal Components Analysis (PCA) | ||
---|---|---|---|
PC 1 | PC 2 | PC 3 | |
Immersion | 0.402 | 0.011 | −0.125 |
Immersion (−1) | 0.398 | −0.047 | 0.058 |
Immersion (−2) | 0.385 | −0.003 | −0.207 |
Peak | 0.071 | 0.564 | −0.346 |
Peak (−1) | 0.059 | 0.559 | 0.801 |
Peak (−2) | 0.064 | 0.591 | −0.389 |
Safety | 0.399 | −0.063 | 0.090 |
Safety (−1) | 0.423 | −0.069 | 0.112 |
Safety (−2) | 0.425 | −0.097 | 0.061 |
% Variance Explained | 46.45% | 15.70% | 9.05% |
Variable | OLS | VIF | Logit | Odd Ratio |
---|---|---|---|---|
PC 1 | 0.0599 ** (0.018) | 1.1 | 0.319 (0.079) | 1.375 |
PC 2 | 0.142 (0.037) | 1.03 | 0.674 (0.171) | 1.963 |
PC 3 | −0.095 (0.043) | 1.03 | −0.443 (0.199) | 0.642 |
Sick | −0.917 (0.172) | 1.01 | −5.04 (1.58) | 0.006 |
Male Intercept | 0.297 (0.093) 3.84 *** (0.043) | 1.12 | 2.06 (0.430) 0.285 (0.162) | 7.86 |
F-value | 11.59 | |||
p-value | (0.000) | |||
R-squared | 0.182 |
Energy | Immersion | PS | PI | |
---|---|---|---|---|
Male | 40.17 | 1.76 | 0.005 | |
Female | 35.80 | 1.76 | 0.005 |
Variable | OLS | VIF | Logit | Odd Ratio |
---|---|---|---|---|
PC 1 | 0.143 * (0.028) | 1.1 | 0.389 (0.081) | 1.48 |
PC 2 | 0.266 (0.056) | 1.03 | 0.816 (0.161) | 2.26 |
PC 3 | −0.116 (0.065) | 1.03 | −0.117 (0.167) | 0.889 |
Sick | −0.918 (0.258) | 1.01 | −2.09 (1.15) | 0.123 |
Male Intercept | 0.134 (0.140) 3.078 *** (0.065) | 1.12 | −0.775 (0.457) −0.736 (0.173) | 0.461 |
F-value | 2.420 | |||
p-value | (0.081) | |||
R-squared | 0.316 |
Immersion | AUC | Accuracy | Precision | Recall | |
---|---|---|---|---|---|
Test | Logit | 0.93 | 0.93 | 0.91 | 0.95 |
RF | 1.00 | 1.00 | 1.00 | 1.00 | |
SVM | 0.93 | 0.91 | 1.00 | 0.83 | |
Observed | Logit | 0.71 | 0.91 | 0.99 | 0.91 |
RF | 1.00 | 1.00 | 1.00 | 1.00 | |
SVM | 0.82 | 0.96 | 1.00 | 0.96 | |
CV | Logit | 0.94 | 0.88 | 0.91 | 0.84 |
0.032 | 0.024 | 0.04 | 0.014 | ||
RF | 1.00 | 0.97 | 0.99 | 0.96 | |
0.004 | 0.018 | 0.024 | 0.031 | ||
SVM | 1.00 | 0.96 | 0.99 | 0.92 | |
0.006 | 0.023 | 0.012 | 0.051 | ||
PS | |||||
Test | Logit | 0.76 | 0.76 | 0.8 | 0.68 |
RF | 0.9 | 0.89 | 0.94 | 0.83 | |
SVM | 0.94 | 0.94 | 0.97 | 0.9 | |
Observed | Logit | 0.59 | 0.75 | 0.98 | 0.75 |
RF | 0.78 | 0.94 | 1.00 | 0.94 | |
SVM | 0.81 | 0.95 | 1.00 | 0.95 | |
CV | Logit | 0.85 | 0.79 | 0.81 | 0.75 |
0.064 | 0.065 | 0.072 | 0.099 | ||
RF | 0.96 | 0.91 | 0.96 | 0.86 | |
0.033 | 0.037 | 0.042 | 0.095 | ||
SVM | 0.95 | 0.92 | 0.99 | 0.85 | |
0.018 | 0.03 | 0.013 | 0.065 |
Immersion | AUC | Accuracy | Precision | Recall | |
---|---|---|---|---|---|
Test | Logit | 0.73 | 0.74 | 0.67 | 0.74 |
RF | 0.80 | 0.80 | 0.73 | 0.81 | |
SVM | 0.78 | 0.78 | 0.78 | 0.67 | |
Observed | Logit | 0.78 | 0.82 | 0.9 | 0.85 |
RF | 0.93 | 0.95 | 0.97 | 0.96 | |
SVM | 0.86 | 0.90 | 0.97 | 0.88 | |
CV | Logit | 0.81 | 0.78 | 0.83 | 0.7 |
0.081 | 0.084 | 0.095 | 0.089 | ||
RF | 0.88 | 0.8 | 0.84 | 0.74 | |
0.088 | 0.083 | 0.118 | 0.101 | ||
SVM | 0.89 | 0.8 | 0.88 | 0.71 | |
0.076 | 0.074 | 0.1 | 0.083 | ||
PS | |||||
Test | Logit | 0.7 | 0.71 | 0.65 | 0.63 |
RF | 0.83 | 0.83 | 0.75 | 0.89 | |
SVM | 0.83 | 0.82 | 0.86 | 0.67 | |
Observed | Logit | 0.63 | 0.65 | 0.85 | 0.63 |
RF | 0.93 | 0.94 | 0.96 | 0.96 | |
SVM | 0.84 | 0.88 | 0.97 | 0.86 | |
CV | Logit | 0.75 | 0.65 | 0.68 | 0.58 |
0.044 | 0.049 | 0.052 | 0.073 | ||
RF | 0.87 | 0.79 | 0.81 | 0.81 | |
0.05 | 0.033 | 0.095 | 0.106 | ||
SVM | 0.87 | 0.81 | 0.87 | 0.75 | |
0.05 | 0.028 | 0.06 | 0.079 |
Immersion | AUC | Accuracy | Precision | Recall | |
---|---|---|---|---|---|
Test | Logit | 0.94 | 0.94 | 0.97 | 0.89 |
RF | 1.00 | 1.001 | 1.00 | 1.00 | |
SVM | 0.99 | 0.99 | 1.00 | 0.97 | |
Observed | Logit | 0.74 | 0.92 | 0.99 | 0.93 |
RF | 0.96 | 0.99 | 1.00 | 0.99 | |
SVM | 0.96 | 0.99 | 1.00 | 0.99 | |
CV | Logit | 0.96 | 0.93 | 0.96 | 0.89 |
0.037 | 0.034 | 0.028 | 0.081 | ||
RF | 0.99 | 0.98 | 1.00 | 0.95 | |
0.002 | 0.029 | 0 | 0.058 | ||
SVM | 0.99 | 0.98 | 1.00 | 0.95 | |
0.002 | 0.021 | 0 | 0.042 | ||
PS | |||||
Test | Logit | 0.67 | 0.63 | 0.55 | 0.83 |
RF | 0.91 | 0.91 | 0.89 | 0.91 | |
SVM | 0.96 | 0.95 | 1.00 | 0.89 | |
Observed | Logit | 0.57 | 0.76 | 0.97 | 0.76 |
RF | 0.79 | 0.95 | 0.98 | 0.96 | |
SVM | 0.88 | 0.98 | 1.00 | 0.98 | |
CV | Logit | 0.78 | 0.69 | 0.68 | 0.68 |
0.055 | 0.044 | 0.03 | 0.102 | ||
RF | 0.99 | 0.95 | 0.97 | 0.93 | |
0.016 | 0.031 | 0.056 | 0.023 | ||
SVM | 0.97 | 0.96 | 0.99 | 0.93 | |
0.02 | 0.008 | 0.012 | 0.016 |
Immersion | AUC | Accuracy | Precision | Recall | |
---|---|---|---|---|---|
Test | Logit | 0.84 | 0.84 | 0.87 | 0.82 |
RF | 0.85 | 0.85 | 0.88 | 0.85 | |
SVM | 0.89 | 0.89 | 0.93 | 0.85 | |
Observed | Logit | 0.75 | 0.79 | 0.90 | 0.80 |
RF | 0.93 | 0.95 | 0.97 | 0.96 | |
SVM | 0.94 | 0.96 | 0.98 | 0.96 | |
CV | Logit | 0.83 | 0.78 | 0.82 | 0.71 |
0.07 | 0.07 | 0.08 | 0.08 | ||
RF | 0.89 | 0.81 | 0.87 | 0.74 | |
0.09 | 0.09 | 0.13 | 0.09 | ||
SVM | 0.89 | 0.85 | 0.91 | 0.78 | |
0.09 | 0.081 | 0.12 | 0.073 | ||
Safety | |||||
Test | Logit | 0.78 | 0.71 | 0.94 | 0.48 |
RF | 0.74 | 0.74 | 0.76 | 0.76 | |
SVM | 0.80 | 0.74 | 0.95 | 0.55 | |
Observed | Logit | 0.62 | 0.57 | 0.86 | 0.48 |
RF | 0.83 | 0.87 | 0.95 | 0.86 | |
SVM | 0.70 | 0.68 | 0.94 | 0.59 | |
CV | Logit | 0.71 | 0.65 | 0.72 | 0.49 |
0.07 | 0.06 | 0.10 | 0.12 | ||
RF | 0.75 | 0.71 | 0.71 | 0.71 | |
0.07 | 0.07 | 0.08 | 0.06 | ||
SVM | 0.71 | 0.68 | 0.78 | 0.50 | |
0.06 | 0.07 | 0.08 | 0.12 |
References
- Boima, V.; Tetteh, J.; Yorke, E.; Archampong, T.; Mensah, G.; Biritwum, R.; Yawson, A.E. Older adults with hypertension have increased risk of depression compared to their younger counterparts: Evidence from the World Health Organization study of Global Ageing and Adult Health Wave 2 in Ghana. J. Affect. Disord. 2020, 277, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Meeks, T.W.; Vahia, I.V.; Lavretsky, H.; Kulkarni, G.; Jeste, D.V. A tune in “a minor” can “b major”: A review of epidemiology, illness course, and public health implications of subthreshold depression in older adults. J. Affect. Disord. 2011, 129, 126–142. [Google Scholar] [CrossRef] [PubMed]
- National Academies of Sciences, Engineering, and Medicine. Social Isolation and Loneliness in Older Adults Opportunities for the Health Care System; The National Academies Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Nakagomi, A.; Shiba, K.; Kondo, K.; Kawachi, I. Can online communication prevent depression among older people? A longitudinal analysis. J. Appl. Gerontol. 2022, 41, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Santini, Z.I.; Fiori, K.L.; Feeney, J.; Tyrovolas, S.; Haro, J.M.; Koyanagi, A. Social relationships, loneliness, and mental health among older men and women in ireland: A prospective community-based study. J. Affect. Disord. 2016, 204, 59–69. [Google Scholar] [CrossRef]
- Cacioppo, J.T.; Patrick, W. Loneliness: Human Nature and the Need for Social Connection; WW Norton & Company: New York, NY, USA, 2008. [Google Scholar]
- Miller, K.J.; Gonçalves-Bradley, D.C.; Areerob, P.; Hennessy, D.; Mesagno, C.; Grace, F. Comparative effectiveness of three exercise types to treat clinical depression in older adults: A systematic review and network meta-analysis of randomised controlled trials. Ageing Res. Rev. 2020, 58, 100999. [Google Scholar] [CrossRef]
- Garland, E.J.; Solomons, K. Early detection of depression in young and elderly people. Br. Columbia Med. J. 2002, 44, 469–472. [Google Scholar]
- Sau, A.; Bhakta, I. Predicting anxiety and depression in elderly patients using machine learning technology. Healthc. Technol. Lett. 2017, 4, 238–243. [Google Scholar] [CrossRef]
- Bader, C.S.; Skurla, M.; Vahia, I.V. Technology in the assessment, treatment, and management of depression. Harv. Rev. Psychiatry 2020, 28, 60–66. [Google Scholar] [CrossRef]
- Van den Berg, K.S.; Wiersema, C.; Hegeman, J.M.; van den Brink, R.H.S.; Rhebergen, D.; Marijnissen, R.M.; Oude, V.R.C. Clinical characteristics of late-life depression predicting mortality. Aging Ment. Health 2021, 25, 476–483. [Google Scholar] [CrossRef]
- Mroczek, D.K.; Stawski, R.S.; Turiano, N.A.; Chan, W.; Almeida, D.M.; Neupert, S.D.; Spiro, A. Emotional reactivity and mortality: Longitudinal findings from the VA normative aging study. J. Gerontol. Ser. B Psychol. Sci. Soc. Sci. 2015, 70, 398–406. [Google Scholar] [CrossRef]
- National Institute of Mental Health. Depression. 2018. Available online: https://www.nimh.nih.gov/health/topics/depression (accessed on 3 August 2022).
- Lim, G.Y.; Tam, W.W.; Lu, Y.; Ho, C.S.; Zhang, M.W.; Ho, R.C. Prevalence of depression in the community from 30 countries between 1994 and 2014. Sci. Rep. 2018, 8, 2861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuehner, C. Why is depression more common among women than among men? Lancet Psychiatry 2017, 4, 146–158. [Google Scholar] [CrossRef]
- Byers, A.L.; Yaffe, K.; Covinsky, K.E.; Friedman, M.B.; Bruce, M.L. High occurrence of mood and anxiety disorders among older adults: The national comorbidity survey replication. Arch. Gen. Psychiatry 2010, 67, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Explore Depression in the United States: 2021 Senior Report. Available online: https://www.americashealthrankings.org/explore/senior/measure/depression_sr/state/ALL (accessed on 3 August 2022).
- Rodda, J.; Walker, Z.; Carter, J. Depression in older adults. BMJ Br. Med. J. 2011, 343, 683–687. [Google Scholar] [CrossRef] [PubMed]
- Matos, Q.A.; von Gunten, A.; Martins, M.; Wellens, N.I.H.; Verloo, H. The forgotten psychopathology of depressed long-term care facility residents: A call for evidence-based practice. Dement Geriatr. Cogn. Disord. Extra 2021, 11, 38–44. [Google Scholar]
- Cheruvu, V.K.; Chiyaka, E.T. Prevalence of depressive symptoms among older adults who reported medical cost as a barrier to seeking health care: Findings from a nationally representative sample. BMC Geriatr. 2019, 19, 192. [Google Scholar] [CrossRef]
- Bekhet, A.K.; Zauszniewski, J.A. Mental health of elders in retirement communities: Is loneliness a key factor? Arch. Psychiatr. Nurs. 2012, 26, 214–224. [Google Scholar] [CrossRef]
- Valiengo, L.; Stella, F.; Forlenza, O.V. Mood disorders in the elderly: Prevalence, functional impact, and management challenges. Neuropsychiatr. Dis. Treat. 2016, 12, 2105–2114. [Google Scholar]
- Maier, A.; Riedel-Heller, S.G.; Pabst, A.; Luppa, M. Risk factors and protective factors of depression in older people 65+. A systematic review. PLoS ONE 2021, 16, e0251326. [Google Scholar]
- Dockray, S.; Steptoe, A. Positive affect and psychobiological processes. Neurosci. Biobehav. Rev. 2010, 35, 69–75. [Google Scholar] [CrossRef]
- Zautra, A.J.; Johnson, L.M.; Davis, M.C. Positive affect as a source of resilience for women in chronic pain. J. Consult. Clin. Psychol. 2005, 73, 212–220. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Graham-Engeland, J.E.; Mogle, J.; Martire, L.M. The effects of daily mood and couple interactions on the sleep quality of older adults with chronic pain. J. Behav. Med. 2015, 38, 944–955. [Google Scholar] [CrossRef] [PubMed]
- Khazaee-pool, M.; Sadeghi, R.; Majlessi, F.; Rahimi Foroushani, A. Effects of physical exercise programme on happiness among older people. J. Psychiatr. Ment. Health Nurs. 2015, 22, 47–57. [Google Scholar] [CrossRef]
- Okely, J.A.; Weiss, A.; Gale, C.R. The interaction between stress and positive affect in predicting mortality. J. Psychosom. Res. 2017, 100, 53–60. [Google Scholar] [CrossRef]
- Steptoe, A.; Dockray, S.; Wardle, J. Positive affect and psychobiological processes relevant to health. J. Personal. 2009, 77, 1747–1776. [Google Scholar] [CrossRef] [PubMed]
- Uchino, B.N.; Rook, K.S. Emotions, relationships, health and illness into old age. Maturitas 2020, 139, 42–48. [Google Scholar] [CrossRef]
- Golden, J.; Conroy, R.M.; Bruce, I.; Denihan, A.; Greene, E.; Kirby, M.; Lawlor, B.A. Loneliness, social support networks, mood and wellbeing in community-dwelling elderly. Int. J. Geriatr. Psychiatry 2009, 24, 694–700. [Google Scholar] [CrossRef]
- Menezes, I.C.; von Werne Baes, C.; Lacchini, R.; Juruena, M.F. Genetic biomarkers for differential diagnosis of major depressive disorder and bipolar disorder: A systematic and critical review. Behav. Brain Res. 2019, 357, 29–38. [Google Scholar] [CrossRef]
- Caracciolo, B.; Bäckman, L.; Monastero, R.; Winblad, B.; Fratiglioni, L. The symptom of low mood in the prodromal stage of mild cognitive impairment and dementia: A cohort study of a community dwelling elderly population. J. Neurol. Neurosurg. Psychiatry 2011, 82, 788–793. [Google Scholar] [CrossRef]
- Mauss, I.B.; Robinson, M.D. Measures of emotion: A review. Cogn. Emot. 2009, 23, 209–237. [Google Scholar] [CrossRef]
- Brown, L.J.E.; Astell, A.J. Assessing mood in older adults: A conceptual review of methods and approaches. Int. Psychogeriatr. 2012, 24, 1197–1206. [Google Scholar] [CrossRef] [PubMed]
- Ahrens, T.; Deuschle, M.; Krumm, B.; van der Pompe, G.; den Boer, J.A.; Lederbogen, F. Pituitary-adrenal and sympathetic nervous system responses to stress in women remitted from recurrent major depression. Psychosom. Med. 2008, 70, 461–467. [Google Scholar] [CrossRef]
- Taggart, P.; Lambiase, P. Anger, emotion, and arrhythmias: From brain to heart. Front. Physiol. 2011, 2, 67. [Google Scholar] [CrossRef] [PubMed]
- Saviola, F.; Pappaianni, E.; Monti, A.; Grecucci, A.; Jovicich, J.; De Pisapia, N. Trait and state anxiety are mapped differently in the human brain. Sci. Rep. 2020, 10, 11112. [Google Scholar] [CrossRef] [PubMed]
- Shores, M.M.; Pascualy, M.; Lewis, N.L.; Flatness, D.; Veith, R.C. Short-term sertraline treatment suppresses sympathetic nervous system activity in healthy human subjects. Psychoneuroendocrinology 2001, 26, 433–439. [Google Scholar] [CrossRef]
- Giuliano, R.J.; Gatzke-Kopp, L.M.; Roos, L.E.; Skowron, E.A. Resting sympathetic arousal moderates the association between parasympathetic reactivity and working memory performance in adults reporting high levels of life stress. Psychophysiology 2017, 54, 1195–1208. [Google Scholar] [CrossRef]
- Kalin, N.H. The critical relationship between anxiety and depression. Am. J. Psychiatry 2020, 177, 365–367. [Google Scholar] [CrossRef]
- Schreuder, M.J.; Hartman, C.A.; George, S.V.; Menne-Lothmann, C.; Decoster, J.; Winkel, R.; Delespaul, P.; Hert, M.D.; Derom, C.; Thiery, E.; et al. Early warning signals in psychopathology: What do they tell? BMC Med. 2020, 8, 269. [Google Scholar] [CrossRef]
- Wichers, M.; Groot, P.C. Critical slowing down as a personalized early warning signal for depression. Psychother. Psychosom. 2016, 85, 114–116. [Google Scholar] [CrossRef]
- Bourland, S.L.; Stanley, M.A.; Snyder, A.G.; Novy, D.M.; Beck, J.G.; Averill, P.M.; Swann, A.C. Quality of life in older adults with generalized anxiety disorder. Aging Ment. Health 2000, 4, 315–323. [Google Scholar] [CrossRef]
- Lewinsohn, P.M.; Libet, J. Pleasant events, activity schedules, and depressions. J. Abnorm. Psychol. 1972, 79, 291–295. [Google Scholar] [CrossRef] [PubMed]
- Leonavičius, R.; Adomaitienė, V. Anxiety and social activities in multiple sclerosis patients. Open Med. 2013, 8, 56–61. [Google Scholar] [CrossRef]
- Márquez-González, M.; Losada, A.; Rider, K.L.; López-Pérez, B. Spanish validation of the California Older Person’s Pleasant Events Schedule (COPPES). Clin. Gerontol. 2014, 37, 151–166. [Google Scholar] [CrossRef]
- Rider, K.L.; Gallagher-Thompson, D.; Thompson, L.W. California Older Person’s Pleasant Events Schedule: A tool to help older adults increase positive experiences. Clin. Gerontol. 2016, 39, 64–83. [Google Scholar] [CrossRef]
- Everard, K.M.; Lach, H.W.; Fisher, E.B.; Baum, M.C. Relationship of activity and social support to the functional health of older adults. J. Gerontol. Ser. B Psychol. Sci. Soc. Sci. 2000, 55, S208–S212. [Google Scholar] [CrossRef]
- Holtfreter, K.; Reisig, M.D.; Turanovic, J.J. Depression and infrequent participation in social activities among older adults: The moderating role of high-quality familial ties. Aging Ment. Health 2017, 21, 379–388. [Google Scholar] [CrossRef]
- Heejung, J.; Fengyan, T. Effects of social support and volunteering on depression among grandparents raising grandchildren. Int. J. Aging Hum. Dev. 2016, 83, 491–507. [Google Scholar]
- Brenes, G.A. Anxiety, depression, and quality of life in primary care patients. Prim. Care Companion J. Clin. Psychiatry 2007, 9, 437. [Google Scholar] [CrossRef]
- Elizabeth, J.; King, N.; Ollendick, T.H.; Gullone, E.; Tonge, B.; Watson, S.; Macdermott, S. Social anxiety disorder in children and youth: A research update on aetiological factors. Couns. Psychol. Q. 2006, 19, 151–163. [Google Scholar] [CrossRef]
- Mendlowicz, M.V.; Stein, M.B. Quality of life in individuals with anxiety disorders. Am. J. Psychiatry 2000, 157, 669–682. [Google Scholar] [CrossRef]
- Hutson, M. AI in action: How algorithms can analyze the mood of the masses. Science 2017, 357, 23. [Google Scholar] [CrossRef] [PubMed]
- Saha, K.; Chan, L.; De Barbaro, K.; Abowd, G.D.; De Choudhury, M. Inferring mood instability on social media by leveraging ecological momentary assessments. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2017, 1, 1–27. [Google Scholar] [CrossRef]
- Gaikwad, G.; Joshi, D.J. Multiclass mood classification on Twitter using lexicon dictionary and machine learning algorithms. In Proceedings of the 2016 International Conference on Inventive Computation Technologies (ICICT), Coimbatore, India, 26–27 August 2016. [Google Scholar]
- Panwar, S.; Rad, P.; Choo, K.K.R.; Roopaei, M. Are you emotional or depressed? Learning about your emotional state from your music using machine learning. J. Supercomput. 2019, 75, 2986–3009. [Google Scholar] [CrossRef]
- Chen, C.; Li, H.; Luo, W.; Xie, J.; Yao, J.; Wu, L.; Xia, Y. Predicting the effect of street environment on residents’ mood states in large urban areas using machine learning and street view images. Sci. Total Environ. 2022, 816, 151605. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Jin, K.; Shang, Y.; Guo, G. Visually interpretable representation learning for depression recognition from facial images. IEEE Trans. Affect. Comput. 2018, 11, 542–552. [Google Scholar] [CrossRef]
- Dey, A.; Dasgupta, K. Mood recognition in online sessions using machine learning in realtime. In Proceedings of the 2021 5th International Conference on Computer, Communication and Signal Processing (ICCCSP), Chennai, India, 24–25 May 2021. [Google Scholar]
- Israelashvili, J.; Sauter, D.; Fischer, A. How well can we assess our ability to understand others’ feelings? Beliefs about taking others’ perspectives and actual understanding of others’ emotions. Front. Psychol. 2019, 10, 2475. [Google Scholar] [CrossRef]
- Barrett, L.F.; Adolphs, R.; Marsella, S.; Martinez, A.M.; Pollak, S.D. Emotional expressions reconsidered: Challenges to inferring emotion from human facial movements. Psychol. Sci. Public Interest 2019, 20, 1–68. [Google Scholar] [CrossRef]
- Thomas, D.L.; Diener, E. Memory accuracy in the recall of emotions. J. Personal. Soc. Psychol. 1990, 59, 291. [Google Scholar] [CrossRef]
- Zillmann, D. Attribution and misattribution of excitatory reactions. In New Directions in Attribution Research; Psychology Press: London, UK, 2018; pp. 335–368. [Google Scholar]
- Barraza, J.A.; Alexander, V.; Beavin, L.E.; Terris, E.T.; Zak, P.J. The heart of the story: Peripheral physiology during narrative exposure predicts charitable giving. Biol. Psychol. 2015, 105, 138–143. [Google Scholar] [CrossRef]
- Zak, P.J.; Barraza, J.A. Measuring immersion in experiences with biosensors. In Proceedings of the 11th International Joint Conference on Biomedical Engineering Systems and Technologies, Funchal, Portugal, 19–21 January 2018. [Google Scholar] [CrossRef]
- Zak, P.J. Neurological Correlates Allow Us to Predict Human Behavior. Available online: https://www.the-scientist.com/features/neurological-correlates-allow-us-to-predict-human-behavior-67948 (accessed on 3 August 2022).
- Barraza, J.; Zak, P. Empathy toward strangers triggers oxytocin release and subsequent generosity. Ann. N. Y. Acad. Sci. 2009, 1167, 182–189. [Google Scholar] [CrossRef]
- Ježová, D.; Jurčovičová, J.; Vigaš, M.; Murgaš, K.; Labrie, F. Increase in plasma ACTH after dopaminergic stimulation in rats. Psychopharmacology 1985, 85, 201–203. [Google Scholar] [CrossRef] [PubMed]
- Nowack, K.; Zak, P.J. Sustain High Performance with Psychological Safety. Am. Soc. Train. Dev. Available online: https://www.dropbox.com/s/03rghulo3pe78pu/Sustain_High_Performance_With_Psychological_Safety.pdf?dl=0 (accessed on 3 August 2022).
- McNair, D.M.; Lorr, M.; Droppleman, L. Profile of Mood States Questionnaire; Educational and Industrial Testing Service: San Diego, CA, USA, 1981. [Google Scholar]
- Curran, S.L.; Andrykowski, M.A.; Studts, J.L. Short form of the profile of mood states (POMS-SF): Psychometric information. Psychol. Assess. 1995, 7, 80. [Google Scholar] [CrossRef]
- Christ, M.; Braun, N.; Neuffer, J.; Kempa-Liehr, A.W. Time Series Feature Extraction on basis of Scalable Hypothesis tests (tsfresh—A Python package). Neurocomputing 2018, 307, 72–77. [Google Scholar] [CrossRef]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Maddala, G.S.; Wu, S. A Comparative Study of Unit Root Tests with Panel Data and a New Simple Test. Oxf. Bull. Econ. Stat. 1999, 61, 631–652. [Google Scholar] [CrossRef]
- Morawetz, C.; Riedel, M.C.; Salo, T.; Berboth, S.; Eickhoff, S.B.; Laird, A.R.; Kohn, N. Multiple large-scale neural networks underlying emotion regulation. Neurosci. Biobehav. Rev. 2020, 116, 382–395. [Google Scholar] [CrossRef]
- Baños, R.M.; Etchemendy, E.; Castilla, D.; García-Palacios, A.; Quero, S.; Botella, C. Positive mood induction procedures for virtual environments designed for elderly people. Interact. Comput. 2012, 24, 131–138. [Google Scholar] [CrossRef]
- Uysal, R. Social competence and psychological vulnerability: The mediating role of flourishing. Psychol. Rep. 2015, 117, 554–565. [Google Scholar] [CrossRef]
- Martino, J.; Pegg, J.; Frates, E.P. The connection prescription: Using the power of social interactions and the deep desire for connectedness to empower health and wellness. Am. J. Lifestyle Med. 2017, 11, 466–475. [Google Scholar] [CrossRef]
- Sun, J.; Harris, K.; Vazire, S. Is well-being associated with the quantity and quality of social interactions? J. Personal. Soc. Psychol. 2020, 119, 1478. [Google Scholar] [CrossRef]
- Zak, P.J. Immersion: The Science of the Extraordinary and Source of Happiness; Lioncrest Publishing: New York, NY, USA, 2022. [Google Scholar]
- Hsu, H.-C. Trajectories and covariates of life satisfaction among older adults in Taiwan. Arch. Gerontol. Geriatr. 2012, 55, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Ferring, D.; Balducci, C.; Burholt, V.; Wenger, C.; Thissen, F.; Weber, G.; Hallberg, I. Life satisfaction of older people in six european countries: Findings from the european study on adult well-being. Eur. J. Ageing Soc. Behav. Health Perspect. 2004, 1, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Shannon, B.W. The role of psychological safety in human development. Res. Hum. Dev. 2016, 13, 6–14. [Google Scholar]
- Zhou, H.; Chen, J. How Does Psychological Empowerment Prevent Emotional Exhaustion? Psychological Safety and Organizational Embeddedness as Mediators. Front. Psychol. 2021, 12, 546687. [Google Scholar] [CrossRef]
- Remtulla, R.; Hagana, A.; Houbby, N.; Ruparell, K.; Aojula, N.; Menon, A.; Meyer, E. Exploring the barriers and facilitators of psychological safety in primary care teams: A qualitative study. BMC Health Serv. Res. 2021, 21, 269. [Google Scholar] [CrossRef]
- Frazier, M.L.; Fainshmidt, S.; Klinger, R.L.; Pezeshkan, A.; Vracheva, V. Psychological safety: A meta-analytic review and extension. Pers. Psychol. 2017, 70, 113–165. [Google Scholar] [CrossRef]
- Bowling, A.; Gabriel, Z.; Dykes, J.; Dowding, L.M.; Evans, O.; Fleissig, A.; Sutton, S. Let’s ask them: A national survey of definitions of quality of life and its enhancement among people aged 65 and over. Int. J. Aging Hum. Dev. 2003, 56, 269–306. [Google Scholar] [CrossRef]
- Hansson, L. Quality of life in depr(logit: 65%; RF: 94%; SVM: 88%), ession and anxiety. Int. Rev. Psychiatry 2002, 14, 185–189. [Google Scholar] [CrossRef]
- Meek, K.P.; Bergeron, C.D.; Towne, S.D.; Ahn, S.N.; Ory, M.G.; Smith, M.L. Restricted social engagement among adults living with chronic conditions. Int. J. Environ. Res. Public Health 2018, 15, 158. [Google Scholar] [CrossRef]
- Simon, G.E. Treating depression in patients with chronic disease. West. J. Med. 2001, 175, 292. [Google Scholar] [CrossRef]
- Godil, A.; Mallick, M.S.A.; Adam, A.M.; Haq, A.; Khetpal, A.; Afzal, R.; Shahid, N. Prevalence and severity of depression in a Pakistani population with at least one major chronic disease. J. Clin. Diagn. Res. JCDR 2017, 11, OC05. [Google Scholar] [CrossRef] [PubMed]
- Wróblewska, I.; Bartyzel, M.; Chmielowiec, B.; Puścion, M.; Chmielewski, J.P. The impact of depression on the quality of life in elderly people. Med. Ogólna I Nauk. O Zdrowiu 2021, 27, 199. [Google Scholar] [CrossRef]
- Yohannes, A.; Baldwin, R.; Connolly, M. Mood disorders in elderly patients with chronic obstructive pulmonary disease. Rev. Clin. Gerontol. 2000, 10, 193–202. [Google Scholar] [CrossRef]
- Bucks, R.S.; Gidron, Y.; Harris, P.; Teeling, J.; Wesnes, K.A.; Perry, V.H. Selective effects of upper respiratory tract infection on cognition, mood and emotion processing: A prospective study. Brain Behav. Immun. 2008, 22, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Nesse, R.M. Is depression an adaptation? Arch. Gen. Psychiatry 2000, 57, 14–20. [Google Scholar] [CrossRef] [Green Version]
- Lukaschek, K.; Vanajan, A.; Johar, H.; Weiland, N.; Ladwig, K.-H. “In the mood for ageing”: Determinants of subjective well-being in older men and women of the population-based kora-age study. BMC Geriatr. 2017, 17, 126. [Google Scholar] [CrossRef]
- Okamura, T.; Ura, C.; Miyamae, F.; Sugiyama, M.; Inagaki, H.; Ayako, E.; Hiroshi, M.; Motokawa, K.; Awata, S. Prevalence of depressed mood and loss of interest among community-dwelling older people: Large-scale questionnaire survey and visiting intervention. Geriatr. Gerontol. Int. 2018, 18, 1567–1572. [Google Scholar] [CrossRef]
Variable | OLS | VIF | Logit | Odds Ratio |
---|---|---|---|---|
Immersion | 0.403 * (0.126) | 1.60 | 1.19 (0.484) | 3.296 |
PS | −0.091 (0.081) | 1.58 | 0.127 (0.301) | 1.136 |
PI | 19.63 * (6.52) | 1.03 | 0.428 * (0.192) | 1.153 |
Sick | −0.922 *** (0.152) | 1.02 | −3.889 (1.14) | 0.020 |
Male Intercept | 0.285 (0.087) 3.068 * (0.900) | 1.09 | 1.687 (0.370) −0.535 (3.139) | 5.403 |
F-value | 12.54 | Likelihood ratio χ2 | 55.42 | |
p-value | 0.000 | p-value | 0.000 | |
R-squared | 0.174 | Pseudo R-squared | 0.134 |
Variable | OLS | VIF | Logit | Odds Ratio |
---|---|---|---|---|
Immersion | 0.499 * (0.192) | 1.60 | 1.134 * (0.488) | 3.11 * |
PS | 0.122 (0.123) | 1.58 | 0.507 (0.302) | 1.66 |
PI | 33.95 ** (9.95) | 1.03 | 0.504 ** (0.199) | 1.66 |
Sick | −0.594 ** (0.232) | 1.02 | −1.733 (1.06) | 0.177 |
Male | 0.159 (0.132) | 1.09 | −0.504 (0.394) | 0.604 |
Intercept | 0.764 * (0.614) | −5.888 ** (1.593) | ||
F-value | 7.04 | Likelihood ratio χ2 | 37.88 | |
p-value | (0.000) | p-value | 0.000 | |
R-squared | 0.106 | Pseudo R-squared | 0.107 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Merritt, S.H.; Krouse, M.; Alogaily, R.S.; Zak, P.J. Continuous Neurophysiologic Data Accurately Predict Mood and Energy in the Elderly. Brain Sci. 2022, 12, 1240. https://doi.org/10.3390/brainsci12091240
Merritt SH, Krouse M, Alogaily RS, Zak PJ. Continuous Neurophysiologic Data Accurately Predict Mood and Energy in the Elderly. Brain Sciences. 2022; 12(9):1240. https://doi.org/10.3390/brainsci12091240
Chicago/Turabian StyleMerritt, Sean H., Michael Krouse, Rana S. Alogaily, and Paul J. Zak. 2022. "Continuous Neurophysiologic Data Accurately Predict Mood and Energy in the Elderly" Brain Sciences 12, no. 9: 1240. https://doi.org/10.3390/brainsci12091240
APA StyleMerritt, S. H., Krouse, M., Alogaily, R. S., & Zak, P. J. (2022). Continuous Neurophysiologic Data Accurately Predict Mood and Energy in the Elderly. Brain Sciences, 12(9), 1240. https://doi.org/10.3390/brainsci12091240