Infant Stimulation Induced a Rapid Increase in Maternal Salivary Oxytocin
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Participant
2.2. Blood and Saliva Collection Procedure
2.3. Procedures for Sampling during Breastfeeding
2.4. Social Interaction Test
2.5. Video Test
2.6. OT Extraction
2.7. OT Quantification
2.8. Statistical Analysis
3. Results
3.1. OT Levels of One Woman during Pregnancy
3.2. OT Levels during Parturition of One Woman
3.3. Changes in Salivary and Serum OT Levels during Breastfeeding of One Woman
3.4. Trajectory of Salivary and Serum OT Levels during Pre- and Postpartum Periods of One Woman
3.5. Social Interaction Test by One Subject of Trajectory Study
3.6. Video Test by One Subject of Trajectory Study
3.7. Social Interaction Test by a Group of Mothers
3.8. Video Test by a Group of Mothers
4. Discussion
4.1. OT Concentration during the Pregnancy and Labor of One Mother
4.2. OT Concentration during Breastfeeding of One Mother
4.3. Salivary, Not Serum OT, Increased during Mother-Infant Social Interaction in One Mother of Trajectory Study and the Group of Mothers
4.4. Saliva OT as Surrogate for Central Release of OT
5. Limitations of the Study
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jurek, B.; Neumann, I.D. The Oxytocin Receptor: From Intracellular Signaling to Behavior. Physiol. Rev. 2018, 98, 1805–1908. [Google Scholar] [CrossRef]
- Neumann, I.D.; Slattery, D.A. Oxytocin in General Anxiety and Social Fear: A Translational Approach. Biol. Psychiatry 2015, 79, 213–221. [Google Scholar] [CrossRef]
- Ross, H.E.; Young, L.J. Oxytocin and the neural mechanisms regulating social cognition and affiliative behavior. Front. Neuroendocr. 2009, 30, 534–547. [Google Scholar] [CrossRef]
- Bosch, O.J. Maternal aggression in rodents: Brain oxytocin and vasopressin mediate pup defence. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20130085. [Google Scholar] [CrossRef] [PubMed]
- Rilling, J.K. The neural and hormonal bases of human parentalcare. Neuropsychologia 2013, 51, 731–747. [Google Scholar] [CrossRef]
- Winslow, J.T.; Noble, P.L.; Lyons, C.K.; Sterk, S.M.; Insel, T.R. Rearing Effects on Cerebrospinal Fluid Oxytocin Concentration and Social Buffering in Rhesus Monkeys. Neuropsychopharmacology 2002, 28, 910–918. [Google Scholar] [CrossRef]
- Barrett, C.E.; Arambula, S.; Young, L.J. The oxytocin system promotes resilience to the effects of neonatal isolation on adult social attachment in female prairie voles. Transl. Psychiatry 2015, 5, e606. [Google Scholar] [CrossRef] [PubMed]
- Bosch, O.J.; Young, L.J. Oxytocin and Social Relationships: From Attachment to Bond Disruption. Curr. Top. Behav. Neurosci. 2017, 35, 97–117. [Google Scholar] [CrossRef]
- Rilling, J.K.; Young, L.J. The biology of mammalian parenting and its effect on offspring social development. Science 2014, 345, 771–776. [Google Scholar] [CrossRef]
- Feldman, R.; Gordon, I.; Zagoory-Sharon, O. Maternal and paternal plasma, salivary, and urinary oxytocin and parent-infant synchrony: Considering stress and affiliation components of human bonding. Dev. Sci. 2010, 14, 752–761. [Google Scholar] [CrossRef]
- Gordon, I.; Zagoory-Sharon, O.; Leckman, J.F.; Feldman, R. Oxytocin and the Development of Parenting in Humans. Biol. Psychiatry 2010, 68, 377–382. [Google Scholar] [CrossRef] [PubMed]
- Feldman, R.; Gordon, I.; Zagoory-Sharon, O. The cross-generation transmission of oxytocin in humans. Horm. Behav. 2010, 58, 669–676. [Google Scholar] [CrossRef] [PubMed]
- Strathearn, L.; Fonagy, P.; Amico, J.; Montague, P.R. Adult Attachment Predicts Maternal Brain and Oxytocin Response to Infant Cues. Neuropsychopharmacology 2009, 34, 2655–2666. [Google Scholar] [CrossRef] [PubMed]
- Atzil, S.; Hendler, T.; Zagoory-Sharon, O.; Winetraub, Y.; Feldman, R. Synchrony and Specificity in the Maternal and the Paternal Brain: Relations to Oxytocin and Vasopressin. J. Am. Acad. Child Adolesc. Psychiatry 2012, 51, 798–811. [Google Scholar] [CrossRef]
- Feldman, R.; Zagoory-Sharon, O.; Weisman, O.; Schneiderman, I.; Gordon, I.; Maoz, R.; Shalev, I.; Ebstein, R.P. Sensitive Parenting Is Associated with Plasma Oxytocin and Polymorphisms in the OXTR and CD38 Genes. Biol. Psychiatry 2012, 72, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Bakermans-Kranenburg, M.J.; van Ijzendoorn, M.H. Oxytocin receptor (OXTR) and serotonin transporter (5-HTT) genes associated with observed parenting. Soc. Cogn. Affect. Neurosci. 2008, 3, 128–134. [Google Scholar] [CrossRef]
- Fries, A.B.W.; Ziegler, T.E.; Kurian, J.R.; Jacoris, S.; Pollak, S.D. Early experience in humans is associated with changes in neuropeptides critical for regulating social behavior. Proc. Natl. Acad. Sci. USA 2005, 102, 17237–17240. [Google Scholar] [CrossRef]
- Suzuki, S.; Fujisawa, T.X.; Sakakibara, N.; Fujioka, T.; Takiguchi, S.; Tomoda, A. Development of Social Attention and Oxytocin Levels in Maltreated Children. Sci. Rep. 2020, 10, 7407. [Google Scholar] [CrossRef]
- Priel, A.; Djalovski, A.; Zagoory-Sharon, O.; Feldman, R. Maternal depression impacts child psychopathology across the first decade of life: Oxytocin and synchrony as markers of resilience. J. Child Psychol. Psychiatry 2018, 60, 30–42. [Google Scholar] [CrossRef]
- Heim, C.; Young, L.J.; Newport, D.J.; Mletzko, T.; Miller, A.H.; Nemeroff, C.B. Lower CSF oxytocin concentrations in women with a history of childhood abuse. Mol. Psychiatry 2008, 14, 954–958. [Google Scholar] [CrossRef] [Green Version]
- Greene, C.A.; Haisley, L.; Wallace, C.; Ford, J.D. Intergenerational effects of childhood maltreatment: A systematic review of the parenting practices of adult survivors of childhood abuse, neglect, and violence. Clin. Psychol. Rev. 2020, 80, 101891. [Google Scholar] [CrossRef]
- Macmillan, H.L.; Fleming, J.E.; Streiner, D.L.; Lin, E.; Boyle, M.H.; Jamieson, E.; Duku, E.K.; Walsh, C.A.; Wong, M.Y.-Y.; Beardslee, W.R. Childhood Abuse and Lifetime Psychopathology in a Community Sample. Am. J. Psychiatry 2001, 158, 1878–1883. [Google Scholar] [CrossRef] [PubMed]
- Kessler, R.C.; Davis, C.G.; Kendler, K.S. Childhood adversity and adult psychiatric disorder in the US National Comorbidity Survey. Psychol. Med. 1997, 27, 1101–1119. [Google Scholar] [CrossRef]
- Lansford, J.E.; Godwin, J.; McMahon, R.J.; Crowley, M.; Pettit, G.S.; Bates, J.E.; Coie, J.D.; Dodge, K.A. Early Physical Abuse and Adult Outcomes. Pediatrics 2021, 147, e20200873. [Google Scholar] [CrossRef]
- Thul, T.A.; Corwin, E.J.; Carlson, N.S.; Brennan, P.A.; Young, L.J. Oxytocin and postpartum depression: A systematic review. Psychoneuroendocrinology 2020, 120, 104793. [Google Scholar] [CrossRef] [PubMed]
- Schladt, T.M.; Nordmann, G.C.; Emilius, R.; Kudielka, B.M.; De Jong, T.R.; Neumann, I.D. Choir versus Solo Singing: Effects on Mood, and Salivary Oxytocin and Cortisol Concentrations. Front. Hum. Neurosci. 2017, 11, 430. [Google Scholar] [CrossRef] [PubMed]
- de Jong, T.R.; Menon, R.; Bludau, A.; Grund, T.; Biermeier, V.; Klampfl, S.M.; Jurek, B.; Bosch, O.J.; Hellhammer, J.; Neumann, I.D. Salivary oxytocin concentrations in response to running, sexual self-stimulation, breastfeeding and the TSST: The Regensburg Oxytocin Challenge (ROC) study. Psychoneuroendocrinology 2015, 62, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Carter, C.S.; Pournajafi-Nazarloo, H.; Kramer, K.M.; Ziegler, T.E.; White-Traut, R.; Bello, D.; Schwertz, R. Oxytocin: Behavioral Associations and Potential as a Salivary Biomarker. Ann. N. Y. Acad. Sci. 2007, 1098, 312–322. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, S.; Komagome, A.; Iguchi-Sherry, A.; Nagasaka, A.; Yuhi, T.; Higashida, H.; Rooksby, M.; Kikuchi, M.; Arai, O.; Minami, K.; et al. Participatory Art Activities Increase Salivary Oxytocin Secretion of ASD Children. Brain Sci. 2020, 10, 680. [Google Scholar] [CrossRef]
- Yuhi, T.; Kyuta, H.; Mori, H.A.; Murakami, C.; Furuhara, K.; Okuno, M.; Takahashi, M.; Fuji, D.; Higashida, H. Salivary Oxytocin Concentration Changes during a Group Drumming Intervention for Maltreated School Children. Brain. Sci. 2017, 7, 152. [Google Scholar] [CrossRef]
- Gröschl, M. Saliva: A reliable sample matrix in bioanalytics. Bioanalysis 2017, 9, 655–668. [Google Scholar] [CrossRef] [PubMed]
- Gröschl, M.; Köhler, H.; Topf, H.-G.; Rupprecht, T.; Rauh, M. Evaluation of saliva collection devices for the analysis of steroids, peptides and therapeutic drugs. J. Pharm. Biomed. Anal. 2008, 47, 478–486. [Google Scholar] [CrossRef]
- Neumann, I.D.; Landgraf, R. Balance of brain oxytocin and vasopressin: Implications for anxiety, depression, and social behaviors. Trends Neurosci. 2012, 35, 649–659. [Google Scholar] [CrossRef]
- Neumann, I.; Ludwig, M.; Engelmann, M.; Pittman, Q.; Landgraf, R. Simultaneous Microdialysis in Blood and Brain: Oxytocin and Vasopressin Release in Response to Central and Peripheral Osmotic Stimulation and Suckling in the Rat. Neuroendocrinology 1993, 58, 637–645. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, M.; Callahan, M.F.; Neumann, I.; Landgraf, R.; Morris, M. Systemic Osmotic Stimulation Increases Vasopressin and Oxytocin Release Within the Supraoptic Nucleus. J. Neuroendocr. 1994, 6, 369–373. [Google Scholar] [CrossRef]
- Engelmann; Ebner; Landgraf; Holsboer; Wotjak Emotional Stress Triggers Intrahypothalamic But Not Peripheral Release of Oxytocin in Male Rats. J. Neuroendocr. 2001, 11, 867–872. [CrossRef]
- Kagerbauer, S.M.; Martin, J.; Schuster, T.; Blobner, M.; Kochs, E.F.; Landgraf, R. Plasma Oxytocin and Vasopressin do not Predict Neuropeptide Concentrations in Human Cerebrospinal Fluid. J. Neuroendocr. 2013, 25, 668–673. [Google Scholar] [CrossRef]
- Martin, J.; Kagerbauer, S.M.; Gempt, J.; Podtschaske, A.; Hapfelmeier, A.; Schneider, G. Oxytocin levels in saliva correlate better than plasma levels with concentrations in the cerebrospinal fluid of patients in neurocritical care. J. Neuroendocr. 2018, 30, e12596. [Google Scholar] [CrossRef] [PubMed]
- Carson, D.S.; Berquist, S.W.; Trujillo, T.H.; Garner, J.P.; Hannah, S.L.; A Hyde, S.; Sumiyoshi, R.D.; Jackson, L.P.; Moss, J.K.; Strehlow, M.C.; et al. Cerebrospinal fluid and plasma oxytocin concentrations are positively correlated and negatively predict anxiety in children. Mol. Psychiatry 2014, 20, 1085–1090. [Google Scholar] [CrossRef] [PubMed]
- Valstad, M.; Alvares, G.A.; Egknud, M.; Matziorinis, A.M.; Andreassen, O.A.; Westlye, L.T.; Quintana, D.S. The correlation between central and peripheral oxytocin concentrations: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2017, 78, 117–124. [Google Scholar] [CrossRef] [Green Version]
- Uvnäs-Moberg, K.; Ekström-Bergström, A.; Berg, M.; Buckley, S.; Pajalic, Z.; Hadjigeorgiou, E.; Kotłowska, A.; Lengler, L.; Kielbratowska, B.; Leon-Larios, F.; et al. Maternal plasma levels of oxytocin during physiological childbirth—A systematic review with implications for uterine contractions and central actions of oxytocin. BMC Pregnancy Childbirth 2019, 19, 285. [Google Scholar] [CrossRef]
- A de Groot, A.N.J.; Vree, T.B.; Hekster, Y.A.; Pesman, G.J.; Sweep, F.; van Dongen, P.J.W.; van Roosmalen, J. Bioavailability and Pharmacokinetics of Sublingual Oxytocin in Male Volunteers. J. Pharm. Pharmacol. 1995, 47, 571–575. [Google Scholar] [CrossRef] [PubMed]
- Dawood, M.Y.; Khan-Dawood, F.S.; Wahi, R.S.; Fuchs, F. Oxytocin Release and Plasma Anterior Pituitary and Gonadal Hormones in Women during Lactation. J. Clin. Endocrinol. Metab. 1981, 52, 678–683. [Google Scholar] [CrossRef]
- Chiodera, P.; Salvarani, C.; Bacchi-Modena, A.; Spallanzani, R.; Cigarini, C.; Alboni, A.; Gardini, E.; Coiro, V. Relationship between Plasma Profiles of Oxytocin and Adrenocorticotropic Hormone during Suckling or Breast Stimulation in Women. Horm. Res. 1991, 35, 119–123. [Google Scholar] [CrossRef]
- Kumaresan, P.; Anandarangam, P.; Dianzon, W.; Vasicka, A. Plasma oxytocin levels during human pregnancy and labor as determined by radioimmunoassay. Am. J. Obstet. Gynecol. 1974, 119, 215–223. [Google Scholar] [CrossRef]
- Dawood, M.Y.; Ylikorkala, O.; Trivedi, D. Oxytocin in Maternal Circulation and Amniotic Fluid during Pregnancy. J. Clin. Endocrinol. Metab. 1979, 49, 429–434. [Google Scholar] [CrossRef] [PubMed]
- Levine, A.; Zagoory-Sharon, O.; Feldman, R.; Weller, A. Oxytocin during pregnancy and early postpartum: Individual patterns and maternal–fetal attachment. Peptides 2007, 28, 1162–1169. [Google Scholar] [CrossRef]
- Leake, R.D.; Weitzman, R.E.; Glatz, T.H.; Fisher, D.A. Plasma Oxytocin Concentrations in Men, Nonpregnant Women, and Pregnant Women before and during Spontaneous Labor. J. Clin. Endocrinol. Metab. 1981, 53, 730–733. [Google Scholar] [CrossRef]
- Tsujimoto, M.; Mizutani, S.; Adachi, H.; Kimura, M.; Nakazato, H.; Tomoda, Y. Identification of human placental leucine aminopeptidase as oxytocinase. Arch. Biochem. Biophys. 1992, 292, 388–392. [Google Scholar] [CrossRef]
- Kozaki, H.; Itakura, A.; Okamura, M.; Ohno, Y.; Wakai, K.; Mizutani, S. Maternal serum placental leucine aminopeptidase (P-LAP)/oxytocinase and preterm delivery. Int. J. Gynecol. Obstet. 2001, 73, 207–213. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Higashida, H. RAGE regulates oxytocin transport into the brain. Commun. Biol. 2020, 3, 70. [Google Scholar] [CrossRef]
- Higashida, H.; Hashii, M.; Tanaka, Y.; Matsukawa, S.; Higuchi, Y.; Gabata, R.; Tsubomoto, M.; Seishima, N.; Teramachi, M.; Kamijima, T.; et al. CD38, CD157, and RAGE as Molecular Determinants for Social Behavior. Cells 2019, 9, 62. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, Y.; Liang, M.; Munesue, S.; Deguchi, K.; Harashima, A.; Furuhara, K.; Yuhi, T.; Zhong, J.; Akther, S.; Goto, H.; et al. Vascular RAGE transports oxytocin into the brain to elicit its maternal bonding behaviour in mice. Commun. Biol. 2019, 2, 76. [Google Scholar] [CrossRef] [PubMed]
- Stuebe, A.M.; Grewen, K.; Meltzer-Brody, S. Association Between Maternal Mood and Oxytocin Response to Breastfeeding. J. Women’s Health 2013, 22, 352–361. [Google Scholar] [CrossRef]
- Grewen, K.M.; Davenport, R.E.; Light, K.C. An investigation of plasma and salivary oxytocin responses in breast- and formula-feeding mothers of infants. Psychophysiology 2010, 47, 625–632. [Google Scholar] [CrossRef] [PubMed]
- Gröschl, M. The physiological role of hormones in saliva. BioEssays 2009, 31, 843–852. [Google Scholar] [CrossRef]
- Carter, C.S.; Kenkel, W.M.; MacLean, E.L.; Wilson, S.R.; Perkeybile, A.M.; Yee, J.R.; Ferris, C.F.; Nazarloo, H.P.; Porges, S.W.; Davis, J.M.; et al. Is Oxytocin “Nature’s Medicine”? Pharmacol. Rev. 2020, 72, 829–861. [Google Scholar] [CrossRef]
n (%) | Mean ± SD | Min. | Max. | n (%) | Mean ± SD | Min. | Max. | ||
---|---|---|---|---|---|---|---|---|---|
Social interaction test (n = 9) | Video test (n = 6) | ||||||||
Mother Age (years) | 32.3 (±4.8) | 26 | 39 | 32.0 (±5.3) | 26 | 39 | |||
Infant Age | 6 months | 9 (100.0) | 4 (66.7) | ||||||
7 months | - | 2 (33.3) | |||||||
Obstetric History | Primipara | 4 (44.4) | 4 (66.7) | ||||||
Multipara | 5 (55.6) | 2 (33.3) | |||||||
Reproductive History | Naturally | 6 (66.7) | 4 (66.7) | ||||||
Infertility treatment | 3 (33.3) | 2 (33.3) | |||||||
Education | <4 years college graduate | - | - | ||||||
Graduated 4 years college | 6 (66.7) | 4 (66.7) | |||||||
Postgraduate | 3 (33.3) | 2 (33.3) | |||||||
Family Type | Nuclear family | 7 (77.8) | 6 (100.0) | ||||||
Extended family | 2 (22.2) | - | |||||||
Employment Situation | Working | - | - | ||||||
Maternity leave | 7 (77.8) | 4 (66.7) | |||||||
Housewife | 2 (22.2) | 2 (33.3) | |||||||
Infant Birth Weight | 3052 (±322.4) | 2680 | 3620 | 3139 (±306.5) | 2728 | 3620 | |||
Menstruation | Postpartum Amenorrhea | 7 (77.8) | 4 (66.7) | ||||||
Restart | 2 (22.2) | 2 (33.3) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Minami, K.; Yuhi, T.; Higashida, H.; Yokoyama, S.; Tsuji, T.; Tsuji, C. Infant Stimulation Induced a Rapid Increase in Maternal Salivary Oxytocin. Brain Sci. 2022, 12, 1246. https://doi.org/10.3390/brainsci12091246
Minami K, Yuhi T, Higashida H, Yokoyama S, Tsuji T, Tsuji C. Infant Stimulation Induced a Rapid Increase in Maternal Salivary Oxytocin. Brain Sciences. 2022; 12(9):1246. https://doi.org/10.3390/brainsci12091246
Chicago/Turabian StyleMinami, Kana, Teruko Yuhi, Haruhiro Higashida, Shigeru Yokoyama, Takahiro Tsuji, and Chiharu Tsuji. 2022. "Infant Stimulation Induced a Rapid Increase in Maternal Salivary Oxytocin" Brain Sciences 12, no. 9: 1246. https://doi.org/10.3390/brainsci12091246
APA StyleMinami, K., Yuhi, T., Higashida, H., Yokoyama, S., Tsuji, T., & Tsuji, C. (2022). Infant Stimulation Induced a Rapid Increase in Maternal Salivary Oxytocin. Brain Sciences, 12(9), 1246. https://doi.org/10.3390/brainsci12091246