Searching for a Relationship between Early Breastfeeding and Cognitive Development of Attention and Working Memory Capacity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Stimuli and Task
2.3. ANT
2.4. CCT
2.5. Data Analysis
3. Results
3.1. ANT Data
3.2. CCT Data
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hoefer, C.; Hardy, M.C. Later development of breast fed and artifically fed infants: Comparison of physical and mental growth. JAMA 1929, 92, 615–619. [Google Scholar] [CrossRef]
- Horta, B.; Bahl, R.; Martines, J.; Victora, C. Evidence on the Long-Term Effects of Breastfeeding: Systematic Reviews and Meta-Analyses; World Health Organization: Geneva, Switzerland, 2007.
- Horta, B.L.; Victora, C.G. Long-Term Effects of Breastfeeding: A Systematic review; World Health Organization: Geneva, Switzerland, 2013.
- Horta, B.L.; Loret De Mola, C.; Victora, C.G. Breastfeeding and intelligence: A systematic review and meta-analysis. Acta Paediatr. 2015, 104, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Duncan, J.; Seitz, R.J.; Kolodny, J.; Bor, D.; Herzog, H.; Ahmed, A.; Newell, F.N.; Emslie, H. A neural basis for general intelligence. Science 2000, 289, 457–460. [Google Scholar] [CrossRef] [PubMed]
- Deoni, S.C.; Dean, D.C., 3rd; Piryatinsky, I.; O’Muircheartaigh, J.; Waskiewicz, N.; Lehman, K.; Han, M.; Dirks, H. Breastfeeding and early white matter development: A cross-sectional study. NeuroImage 2013, 82, 77–86. [Google Scholar] [CrossRef] [Green Version]
- Isaacs, E.B.; Fischl, B.R.; Quinn, B.T.; Chong, W.K.; Gadian, D.G.; Lucas, A. Impact of breast milk on intelligence quotient, brain size, and white matter development. Pediatr. Res. 2010, 67, 357–362. [Google Scholar] [CrossRef] [Green Version]
- Kafouri, S.; Kramer, M.; Leonard, G.; Perron, M.; Pike, B.; Richer, L.; Toro, R.; Veillette, S.; Pausova, Z.; Paus, T. Breastfeeding and brain structure in adolescence. Int. J. Epidemiol. 2013, 42, 150–159. [Google Scholar] [CrossRef]
- Hauser, J.; Pisa, E.; Arias Vásquez, A.; Tomasi, F.; Traversa, A.; Chiodi, V.; Martin, F.P.; Sprenger, N.; Lukjacenko, O.; Zollinger, A.; et al. Sialylated human milk oligosaccharides program cognitive development through a non-genomic transmission mode. Mol. Psychiatry 2021, 26, 2854–2871. [Google Scholar] [CrossRef]
- Pisa, E.; Martire, A.; Chiodi, V.; Traversa, A.; Caputo, V.; Hauser, J.; Macrì, S. Exposure to 3′Sialyllactose-poor milk during lactation impairs cognitive capabilities in adulthood. Nutrients 2021, 13, 4191. [Google Scholar] [CrossRef]
- Newberry, S.J.; Chung, M.; Booth, M.; Maglione, M.A.; Tang, A.M.; O’Hanlon, C.E.; Wang, D.D.; Okunogbe, A.; Huang, C.; Motala, A.; et al. Omega-3 fatty acids and maternal and child health: An updated systematic review. Evid. Rep. Technol. Assess. 2016, 224, 1–826. [Google Scholar]
- Belfort, M.B.; Rifas-Shiman, S.L.; Kleinman, K.P.; Guthrie, L.B.; Bellinger, D.C.; Taveras, E.M.; Gillman, M.W.; Oken, E. Infant feeding and childhood cognition at ages 3 and 7 years: Effects of breastfeeding duration and exclusivity. JAMA Pediatr. 2013, 167, 836–844. [Google Scholar] [CrossRef] [Green Version]
- Bellando, J.; McCorkle, G.; Spray, B.; Sims, C.R.; Badger, T.M.; Casey, P.H.; Scott, H.; Beall, S.R.; Sorensen, S.T.; Andres, A. Developmental assessments during the first 5 years of life in infants fed breast milk, cow’s milk formula, or soy formula. Food Sci. Nutr. 2020, 8, 3469–3478. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.; Pang, W.W.; Low, Y.L.; Sim, L.W.; Sam, S.C.; Bruntraeger, M.B.; Wong, E.Q.; Fok, D.; Broekman, B.F.; Singh, L.; et al. Infant feeding effects on early neurocognitive development in Asian children. Am. J. Clin. Nutr. 2015, 101, 326–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bathelt, J.; Gathercole, S.E.; Johnson, A.; Astle, D.E. Differences in brain morphology and working memory capacity across childhood. Dev. Sci. 2018, 21, e12579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavallina, C.; Puccio, G.; Capurso, M.; Bremner, A.J.; Santangelo, V. Cognitive development attenuates audiovisual distraction and promotes the selection of task-relevant perceptual saliency during visual search on complex scenes. Cognition 2018, 180, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Federico, F.; Marotta, A.; Martella, D.; Casagrande, M. Development in attention functions and social processing: Evidence from the Attention Network Test. Br. J. Dev. Psychol. 2017, 35, 169–185. [Google Scholar] [CrossRef]
- Galeano Weber, E.M.; Dirk, J.; Schmiedek, F. Variability in the precision of children’s spatial working memory. J. Intell. 2018, 6, 8. [Google Scholar] [CrossRef] [Green Version]
- Gathercole, S.E.; Pickering, S.J.; Ambridge, B.; Wearing, H. The structure of working memory from 4 to 15 years of age. Dev. Psychol. 2004, 40, 177–190. [Google Scholar] [CrossRef] [Green Version]
- Pedale, T.; Mastroberardino, S.; Capurso, M.; Bremner, A.J.; Spence, C.; Santangelo, V. Crossmodal spatial distraction across the lifespan. Cognition 2021, 210, 104617. [Google Scholar] [CrossRef]
- Pedale, T.; Mastroberardino, S.; Capurso, M.; Macrì, S.; Santangelo, V. Developmental differences in the impact of perceptual salience on short-term memory performance and meta-memory skills. Sci. Rep. 2022, 12, 8185. [Google Scholar] [CrossRef] [PubMed]
- Rueda, M.R.; Fan, J.; McCandliss, B.D.; Halparin, J.D.; Gruber, D.B.; Lercari, L.P.; Posner, M.I. Development of attentional networks in childhood. Neuropsychologia 2004, 42, 1029–1040. [Google Scholar] [CrossRef]
- Spronk, M.; Vogel, E.K.; Jonkman, L.M. Electrophysiological evidence for immature processing capacity and filtering in visuospatial working memory in adolescents. PLoS ONE 2012, 7, e42262. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; McCandliss, B.D.; Sommer, T.; Raz, M.; Posner, M.I. Testing the efficiency and independence of attentional networks. J. Cogn. Neurosci. 2002, 14, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Arora, S.; Lawrence, M.A.; Klein, R.M. The Attention Network Test database: ADHD and cross-cultural applications. Front. Psychol. 2020, 11, 388. [Google Scholar] [CrossRef] [PubMed]
- Luck, S.J.; Vogel, E.K. Visual working memory capacity: From psychophysics and neurobiology to individual differences. Trends Cogn. Sci. 2013, 17, 391–400. [Google Scholar] [CrossRef] [Green Version]
- Gold, J.M.; Fuller, R.L.; Robinson, B.M.; McMahon, R.P.; Braun, E.L.; Luck, S.J. Intact attentional control of working memory encoding in schizophrenia. J. Abnorm. Psychol. 2006, 115, 658–673. [Google Scholar] [CrossRef] [Green Version]
- Cowan, N.; Elliot, E.M.; Saults, J.S.; Morey, C.C.; Mattox, S.; Hismjatullina, A.; Conway, A.R. On the capacity of attention: Its estimation and its role in working memory and cognitive aptitudes. Cogn. Psychol. 2005, 51, 42–100. [Google Scholar] [CrossRef] [Green Version]
- Pashler, H. Familiarity and visual change detection. Percept. Psychophys. 1988, 44, 369–378. [Google Scholar] [CrossRef] [Green Version]
- Rouder, J.N.; Morey, R.D.; Speckman, P.L.; Province, J.M. Default Bayes factors for ANOVA designs. J. Math. Psychol. 2012, 56, 356–374. [Google Scholar] [CrossRef]
- Jeffreys, H. Theory of Probability; Oxford University Press: Oxford, UK; New York, NY, USA, 1961. [Google Scholar]
- Keysers, C.; Gazzola, V.; Wagenmakers, E.J. Using Bayes factor hypothesis testing in neuroscience to establish evidence of absence. Nat. Neurosci. 2020, 23, 788–799. [Google Scholar] [CrossRef]
- Westfall, P.H. Multiple testing of general contrasts using logical constraints and correlations. J. Am. Stat. Assoc. 1997, 92, 299–306. [Google Scholar] [CrossRef]
- Anderson, J.W.; Johnstone, B.M.; Remley, D.T. Breast-feeding and cognitive development: A meta-analysis. Am. J. Clin. Nutr. 1999, 70, 525–535. [Google Scholar] [CrossRef] [PubMed]
- Posner, M.I.; Petersen, S.E. The attention system of the human brain. Annu. Rev. Neurosci. 1990, 13, 25–42. [Google Scholar] [CrossRef] [PubMed]
- Mullane, J.C.; Lawrence, M.A.; Corkum, P.V.; Klein, R.M.; McLaughlin, E.N. The development of and interaction among alerting, orienting, and executive attention in children. Child Neuropsychol. 2014, 22, 155–176. [Google Scholar] [CrossRef] [PubMed]
- Rueda, M.R.; Checa, P.; Combita, L.M. Enhanced efficiency of the executive attention network after training in preschool children: Immediate changes and effects after two months. Dev. Cogn. Neurosci. 2012, 2, S192–S204. [Google Scholar] [CrossRef]
- Reilly, S.E.; Downer, J.T.; Grimm, K.J. Developmental trajectories of executive functions from preschool to kindergarten. Dev. Sci. 2022, 25, e13236. [Google Scholar] [CrossRef]
- Silva, C.; Sousa-Gomes, V.; Fávero, M.; Oliveira-Lopes, S.; Merendeiro, C.S.; Oliveira, J.; Moreira, D. Assesment of preschool-age executive functions: A systematic review. Clin. Psychol. Psychother. 2022, 29, 1374–1391. [Google Scholar] [CrossRef]
- Iarocci, G.; Enns, J.T.; Randolph, B.; Burack, J.A. The modulation of visual orienting reflexes across the lifespan. Dev. Sci. 2009, 12, 715–724. [Google Scholar] [CrossRef]
- Krieber-Tomantschger, M.; Pokorny, F.B.; Krieber-Tomantschger, I.; Langmann, L.; Poustka, L.; Zhang, D.; Treue, S.; Tanzer, N.K.; Einspieler, C.; Marschik, P.B.; et al. The development of visual attention in early infancy: Insights from a free-viewing paradigm. Infancy 2022, 27, 433–458. [Google Scholar] [CrossRef]
- Plude, D.J.; Enns, J.T.; Brodeur, D. The development of selective attention: A life-span overview. Acta Psychol. 1994, 86, 227–272. [Google Scholar] [CrossRef]
- Giovannoli, J.; Martella, D.; Casagrande, M. Assessing the three attentional networks and vigilance in the adolescence stages. Brain Sci. 2021, 11, 503. [Google Scholar] [CrossRef]
- Casagrande, M.; Marotta, A.; Martella, D.; Volpari, E.; Agostini, F.; Favieri, F.; Forte, G.; Rea, M.; Ferri, R.; Giordano, V.; et al. Assessing the three attentional networks in children from three to six years: A child-friendly version of the Attentional Network Test for Interaction. Behav. Res. Methods 2022, 54, 1403–1415. [Google Scholar] [CrossRef] [PubMed]
- Abundis-Gutiérrez, A.; Checa, P.; Castellanos, C.; Rosario Rueda, M. Electrophysiological correlates of attention networks in childhood and early adulthood. Neuropsychologia 2014, 57, 78–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riggs, K.J.; McTaggart, J.; Simpson, A.; Freeman, R.P. Changes in the capacity of visual working memory in 5- to 10-year-olds. J. Exp. Child Psychol. 2006, 95, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Van Leijenhorst, L.; Crone, E.A.; Van der Molen, M.W. Developmental trends for object and spatial working memory: A psychophysiological analysis. Child Dev. 2007, 78, 987–1000. [Google Scholar] [CrossRef] [PubMed]
- Gathercole, S.E. Cognitive approaches to the development of short-term memory. Trends Cogn. Sci. 1999, 3, 410–419. [Google Scholar] [CrossRef] [PubMed]
- Luciana, M.; Conklin, H.M.; Hooper, C.J.; Yarger, R.S. The development of nonverbal working memory and executive control processes in adolescents. Child Dev. 2005, 76, 697–712. [Google Scholar] [CrossRef]
- Luna, B.; Garver, K.E.; Urban, T.A.; Lazar, N.A.; Sweeney, J.A. Maturation of cognitive processes from late childhood to adulthood. Child Dev. 2004, 75, 1357–1372. [Google Scholar] [CrossRef]
- Mohammed, S.; Oakley, L.L.; Marston, M.; Glynn, J.R.; Calvert, C. The association of breastfeeding with cognitive development and educational achievement in sub-Saharan Africa: A systematic review. J. Glob. Health 2022, 12, 04071. [Google Scholar] [CrossRef]
- Janvier, B.; Testu, F. Age-related differences in daily attention patterns in preschool, kindergarten, first-grade, and fifth-grade pupils. Chronobiol. Int. 2007, 24, 327–343. [Google Scholar] [CrossRef]
- Choi, H.J.; Kang, S.K.; Chung, M.R. The relationship between exclusive breastfeeding and infant development: A 6- and 12-month follow-up study. Early Hum. Dev. 2018, 127, 42–47. [Google Scholar] [CrossRef]
- Quigley, M.A.; Hockley, C.; Carson, C.; Kelly, Y.; Renfrew, M.J.; Sacker, A. Breastfeeding is associated with improved child cognitive development: A population-based cohort study. J. Pediatr. 2012, 160, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Lopez, D.A.; Foxe, J.J.; Mao, Y.; Thompson, W.K.; Martin, H.J.; Freedman, E.G. Breastfeeding duration is associated with domain-specific improvements in cognitive performance in 9–10-year-old children. Front. Public Health 2021, 9, 657422. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Ingol, T.T.; Smith, K.; Oza-Frank, R.; Keim, S.A. Reliability of maternal recall of feeding at the breast and breast milk expression 6 years after delivery. Breastfeed. Med. 2020, 15, 224–236. [Google Scholar] [CrossRef] [PubMed]
- De Weerth, C.; Aatsinki, A.-K.; Azad, M.B.; Bartol, F.F.; Bode, L.; Collado, M.C.; Dettmer, A.M.; Field, C.J.; Guilfoyle, M.; Hinde, K.; et al. Human milk: From complex tailored nutrition to bioactive impact on child cognition and behavior. Crit. Rev. Food Sci. Nutr. 2022, 1–38. [Google Scholar] [CrossRef]
No. of Participants | Gender | Age | |||
---|---|---|---|---|---|
Males | Females | Mean ± S.D. | Range | ||
Young Children | 50 | 19 | 31 | 6.4 ± 0.5 | 6–7 |
eBF | 31 | 13 | 18 | 6.4 ± 0.5 | 6–7 |
neBF | 19 | 6 | 13 | 6.3 ± 0.5 | 6–7 |
Older Children | 55 | 28 | 27 | 10.2 ± 0.4 | 9–11 |
eBF | 32 | 17 | 15 | 10.2 ± 0.4 | 10–11 |
neBF | 23 | 11 | 12 | 10.2 ± 0.5 | 9–11 |
Adults | 39 | 14 | 25 | 18.8 ± 0.9 | 17–20 |
eBF | 25 | 11 | 14 | 18.8 ± 0.9 | 17–20 |
neBF | 14 | 3 | 11 | 18.8 ± 0.9 | 17–20 |
Predictors | P(incl) | P(excl) | P(incl|data) | P(excl|data) | BF01 | BF10 |
---|---|---|---|---|---|---|
Age | 0.400 | 0.400 | 0.503 | 0.483 | 0.960 | 1.042 |
Breastfeeding | 0.400 | 0.400 | 0.198 | 0.788 | 3.974 | 0.252 |
Age x breastfeeding | 0.200 | 0.200 | 0.014 | 0.103 | 7.511 | 0.133 |
Alerting | ||||||
---|---|---|---|---|---|---|
Predictors | P(incl) | P(excl) | P(incl|data) | P(excl|data) | BF01 | BF10 |
Age | 0.400 | 0.400 | 0.088 | 0.909 | 10.314 | 0.097 |
Breastfeeding | 0.400 | 0.400 | 0.187 | 0.810 | 4.323 | 0.231 |
Age x breastfeeding | 0.200 | 0.200 | 0.003 | 0.016 | 5.201 | 0.192 |
Orienting | ||||||
Predictors | P(incl) | P(excl) | P(incl|data) | P(excl|data) | BF01 | BF10 |
Age | 0.400 | 0.400 | 0.947 | 0.019 | 0.021 | 48.666 |
Breastfeeding | 0.400 | 0.400 | 0.153 | 0.814 | 5.314 | 0.188 |
Age x breastfeeding | 0.200 | 0.200 | 0.033 | 0.150 | 4.513 | 0.222 |
Conflict | ||||||
Predictors | P(incl) | P(excl) | P(incl|data) | P(excl|data) | BF01 | BF10 |
Age | 0.400 | 0.400 | 0.957 | 0.004 | 0.004 | 252.473 |
Breastfeeding | 0.400 | 0.400 | 0.160 | 0.801 | 5.021 | 0.199 |
Age x breastfeeding | 0.200 | 0.200 | 0.039 | 0.159 | 4.025 | 0.248 |
Predictors | P(incl) | P(excl) | P(incl|data) | P(excl|data) | BF01 | BF10 |
---|---|---|---|---|---|---|
Set size | 0.263 | 0.263 | 1.68 × 10−6 | 1.90 × 10−41 | 1.13 × 10−35 | 8.85 × 1034 |
Age | 0.263 | 0.263 | 1.66 × 10−6 | 8.52 × 10−15 | 5.12 × 10−9 | 1.95 × 108 |
Breastfeeding | 0.263 | 0.263 | 0.138 | 0.815 | 5.896 | 0.170 |
Set size x age | 0.263 | 0.263 | 1.000 | 1.71 × 10−6 | 1.71 × 10−6 | 585716.102 |
Set size x breastfeeding | 0.263 | 0.263 | 0.021 | 0.164 | 7.917 | 0.126 |
Age x breastfeeding | 0.263 | 0.263 | 0.029 | 0.155 | 5.329 | 0.188 |
Set size x age x breastfeeding | 0.053 | 0.053 | 2.04 × 10−4 | 0.004 | 17.962 | 0.056 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pedale, T.; Mastroberardino, S.; Del Gatto, C.; Capurso, M.; Bellagamba, F.; Addessi, E.; Macrì, S.; Santangelo, V. Searching for a Relationship between Early Breastfeeding and Cognitive Development of Attention and Working Memory Capacity. Brain Sci. 2023, 13, 53. https://doi.org/10.3390/brainsci13010053
Pedale T, Mastroberardino S, Del Gatto C, Capurso M, Bellagamba F, Addessi E, Macrì S, Santangelo V. Searching for a Relationship between Early Breastfeeding and Cognitive Development of Attention and Working Memory Capacity. Brain Sciences. 2023; 13(1):53. https://doi.org/10.3390/brainsci13010053
Chicago/Turabian StylePedale, Tiziana, Serena Mastroberardino, Claudia Del Gatto, Michele Capurso, Francesca Bellagamba, Elsa Addessi, Simone Macrì, and Valerio Santangelo. 2023. "Searching for a Relationship between Early Breastfeeding and Cognitive Development of Attention and Working Memory Capacity" Brain Sciences 13, no. 1: 53. https://doi.org/10.3390/brainsci13010053
APA StylePedale, T., Mastroberardino, S., Del Gatto, C., Capurso, M., Bellagamba, F., Addessi, E., Macrì, S., & Santangelo, V. (2023). Searching for a Relationship between Early Breastfeeding and Cognitive Development of Attention and Working Memory Capacity. Brain Sciences, 13(1), 53. https://doi.org/10.3390/brainsci13010053