Cortical Visual Impairment in Childhood: ‘Blindsight’ and the Sprague Effect Revisited
Abstract
:1. Introduction
2. Neuroplastic Changes in the Visual System
2.1. The Process of Neuroplasticity
2.2. Neuroplastic Changes in the Visual System after Early Insult
3. Adult vs. Child Cortical Visual Impairment
4. Is Recovery of Normal Conscious Vision Possible?
Neuroplasticity and Developmental Damage to the Primary Visual Cortex (V1)
5. Blindsight
5.1. Differences between Early Life Visual System Insult and Adult-Onset Blindsight
5.1.1. V1 Injuries in Childhood in the Context of Blindsight
5.1.2. V1 Injuries in Adult Brains and Blindsight
5.1.3. Mechanisms of Difference in Children vs. Adult Mechanisms in Blindsight
6. Sprague Effect
7. Possible Interventions in Childhood CVI
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Chang, M.Y.; Borchert, M.S. Advances in the evaluation and management of cortical/cerebral visual impairment in children. Surv. Ophthalmol. 2020, 65, 708–724. [Google Scholar] [CrossRef]
- Khan, R.I.; O’Keefe, M.; Kenny, D.; Nolan, L. Changing pattern of childhood blindness. Ir. Med. J. 2007, 100, 458–461. [Google Scholar]
- Kong, L.; Fry, M.; Al-Samarraie, M.; Gilbert, C.; Steinkuller, P.G. An update on progress and the changing epidemiology of causes of childhood blindness worldwide. J. Am. Assoc. Pediatr. Ophthalmol. Strabismus 2012, 16, 501–507. [Google Scholar] [CrossRef]
- National Institutes of Health. 2021. Available online: https://www.nei.nih.gov/about/news-and-events/news/vision-loss-children-whose-eyesight-may-be-2020-requires-new-diagnostic-and-teaching-strategies (accessed on 11 September 2021).
- Flanagan, N.M.; Jackson, A.J.; Hill, A.E. Visual impairment in childhood: Insights from a community-based survey. Child Care Health Dev. 2003, 29, 493–499. [Google Scholar] [CrossRef]
- Philip, S.S.; Dutton, G.N. Identifying and characterising cerebral visual impairment in children: A review. Clin. Exp. Optom. 2014, 97, 196–208. [Google Scholar] [CrossRef]
- Lagunju, I.A.; Oluleye, T.S. Ocular abnormalities in children with cerebral palsy. Afr. J. Med. Med. Sci. 2007, 36, 71–75. [Google Scholar]
- Katoch, S.; Devi, A.; Kulkarni, P. Ocular defects in cerebral palsy. Indian J. Ophthalmol. 2007, 55, 154–156. [Google Scholar] [CrossRef]
- Dutton, G.; Bax, M. (Eds.) Visual Impairment in Children Due to Damage to the Brain; John Wiley & Sons: Hoboken, NJ, USA, 2010; Volume 186. [Google Scholar]
- André, V.; Henry, S.; Lemasson, A.; Hausberger, M.; Durier, V. The human newborn’s umwelt: Unexplored pathways and perspectives. Psychon. Bull. Rev. 2018, 25, 350–369. [Google Scholar] [CrossRef] [Green Version]
- Mundkur, N. Neuroplasticity in children. Indian J. Pediatr. 2005, 72, 855–857. [Google Scholar] [CrossRef]
- Weyandt, L.L.; Clarkin, C.M.; Holding, E.Z.; May, S.E.; Marraccini, M.E.; Gudmundsdottir, B.G.; Shepard, E.; Thompson, L. Neuroplasticity in children and adolescents in response to treatment intervention: A systematic review of the literature. Clin. Transl. Neurosci. 2020, 4, 2514183X20974231. [Google Scholar] [CrossRef]
- Greifzu, F.; Pielecka-Fortuna, J.; Kalogeraki, E.; Krempler, K.; Favaro, P.D.; Schlüter, O.M.; Löwel, S. Environmental enrichment extends ocular dominance plasticity into adulthood and protects from stroke-induced impairments of plasticity. Proc. Natl. Acad. Sci. USA 2014, 111, 1150–1155. [Google Scholar] [CrossRef] [Green Version]
- Leggio, M.G.; Mandolesi, L.; Federico, F.; Spirito, F.; Ricci, B.; Gelfo, F.; Petrosini, L. Environmental enrichment promotes improved spatial abilities and enhanced dendritic growth in the rat. Behav. Brain Res. 2005, 163, 78–90. [Google Scholar] [CrossRef]
- Bose, M.; Muñoz-Llancao, P.; Roychowdhury, S.; Nichols, J.A.; Jakkamsetti, V.; Porter, B.; Byrapureddy, R.; Salgado, H.; Kilgard, M.P.; Aboitiz, F.; et al. Effect of the environment on the dendritic morphology of the rat auditory cortex. Synapse 2010, 64, 97–110. [Google Scholar] [CrossRef] [Green Version]
- Engineer, N.D.; Percaccio, C.R.; Pandya, P.K.; Moucha, R.; Rathbun, D.L.; Kilgard, M.P. Environmental enrichment improves response strength, threshold, selectivity, and latency of auditory cortex neurons. J. Neurophysiol. 2004, 92, 73–82. [Google Scholar] [CrossRef]
- Feldman, D.E. Map plasticity in somatosensory cortex. Science 2005, 310, 810–815. [Google Scholar] [CrossRef] [Green Version]
- Cynader, M.; Mitchell, D.E. Prolonged sensitivity to monocular deprivation in dark-reared cats. J. Neurophys. 1980, 43, 1026–1040. [Google Scholar] [CrossRef]
- Mower, G.D. The effect of dark rearing on the time course of the critical period in cat visual cortex. Brain Res. Dev. Brain Res. 1991, 58, 151–158. [Google Scholar] [CrossRef]
- Fagiolini, M.; Pizzorusso, T.; Berardi, N.; Domenici, L.; Maffei, L. Functional postnatal development of the rat primary visual cortex and the role of visual experience: Dark rearing and monocular deprivation. Vis. Res. 1994, 34, 709–720. [Google Scholar] [CrossRef]
- Karmarkar, U.R.; Dan, Y. Experience-dependent plasticity in adult visual cortex. Neuron 2006, 52, 577–585. [Google Scholar] [CrossRef] [Green Version]
- Wong, A.M. New concepts concerning the neural mechanisms of amblyopia and their clinical implications. Can. J. Ophthalmol. 2012, 47, 399–409. [Google Scholar] [CrossRef]
- Lu, Z.L.; Hua, T.; Huang, C.B.; Zhou, Y.; Dosher, B.A. Visual perceptual learning. Neurobiol. Learn. Mem. 2011, 95, 145–151. [Google Scholar] [CrossRef]
- Dosher, B.; Lu, Z.L. Visual perceptual learning and models. Annu. Rev. Vis. Sci. 2017, 3, 343–363. [Google Scholar] [CrossRef]
- Huurneman, B.; Boonstra, F.N.; Cox, R.F.; van Rens, G.; Cillessen, A.H. Perceptual learning in children with visual impairment improves near visual acuity. Investig. Ophthalmol. Vis. Sci. 2013, 54, 6208–6216. [Google Scholar] [CrossRef] [Green Version]
- Frank, S.M.; Bründl, S.; Frank, U.I.; Sasaki, Y.; Greenlee, M.W.; Watanabe, T. Fundamental differences in visual perceptual learning between children and adults. Curr. Biol. 2021, 31, 427–443. [Google Scholar] [CrossRef]
- Lind, A.; Parkkola, R.; Laasonen, M.; Vorobyev, V.; Haataja, L.; Ekblad, M.; Ekblad, S.; Ekholm, E.; Grönroos, L.; Huhtala, M.; et al. Visual perceptual skills in very preterm children: Developmental course and associations with neural activation. Pediatr. Neurol. 2020, 109, 72–78. [Google Scholar] [CrossRef]
- Ferriero, D.M. Neonatal brain injury. N. Engl. J. Med. 2004, 351, 1985–1995. [Google Scholar] [CrossRef]
- Macintyre-Béon, C.; Young, D.; Dutton, G.N.; Mitchell, K.; Simpson, J.; Loffler, G.; Bowman, R.; Hamilton, R. Cerebral visual dysfunction in prematurely born children attending mainstream school. Doc. Ophthalmol. 2013, 127, 89–102. [Google Scholar] [CrossRef]
- Gilbert, C.D.; Sigman, M.; Crist, R.E. The neural basis of perceptual learning. Neuron 2001, 31, 681–697. [Google Scholar] [CrossRef] [Green Version]
- Hensch, T.K. Critical period plasticity in local cortical circuits. Nat. Rev. Neurosci. 2005, 6, 877–888. [Google Scholar] [CrossRef]
- Fagiolini, M.; Hensch, T.K. Inhibitory threshold for critical-period activation in primary visual cortex. Nature 2000, 404, 183–186. [Google Scholar] [CrossRef]
- Boroojerdi, B.; Battaglia, F.; Muellbacher, W.; Cohen, L.G. Mechanisms underlying rapid experience-dependent plasticity in the human visual cortex. Proc. Natl. Acad. Sci. USA 2001, 98, 14698–14701. [Google Scholar] [CrossRef] [Green Version]
- McGee, A.W.; Yang, Y.; Fischer, Q.S.; Daw, N.W.; Strittmatter, S.M. Experience-driven plasticity of visual cortex limited by myelin and Nogo receptor. Science 2005, 309, 2222–2226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nitsche, M.A.; Müller-Dahlhaus, F.; Paulus, W.; Ziemann, U. The pharmacology of neuroplasticity induced by non-invasive brain stimulation: Building models for the clinical use of CNS active drugs. J. Physiol. 2012, 590, 4641–4662. [Google Scholar] [CrossRef] [PubMed]
- Minces, V.H.; Alexander, A.; Datlow, M.; Alfonso, S.; Chiba, A.A. The role of visual cortex acetylcholine in learning to discriminate temporally modulated visual stimuli. Front. Behav. Neurosci. 2013, 7, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chubykin, A.A.; Roach, E.B.; Bear, M.F.; Shuler, M.G.H. A cholinergic mechanism for reward timing within primary visual cortex. Neuron 2013, 77, 723–735. [Google Scholar] [CrossRef] [Green Version]
- Fernando Maya-Vetencourt, J.; Origlia, N. Visual cortex plasticity: A complex interplay of genetic and environmental influences. Neural Plast. 2012, 2012, 631965. [Google Scholar] [CrossRef] [Green Version]
- Pham, T.A.; Graham, S.J.; Suzuki, S.; Barco, A.; Kandel, E.R.; Gordon, B.; Lickey, M.E. A semi-persistent adult ocular dominance plasticity in visual cortex is stabilized by activated CREB. Learn. Mem. 2004, 11, 738–747. [Google Scholar] [CrossRef] [Green Version]
- Thomas, C.; Baker, C.I. Remodeling human cortex through training: Comment on May. Architecture 2012, 12, 1370–1371. [Google Scholar] [CrossRef]
- Wandell, B.A.; Smirnakis, S.M. Plasticity and stability of visual field maps in adult primary visual cortex. Nat. Rev. Neurosci. 2009, 10, 873–884. [Google Scholar] [CrossRef] [Green Version]
- Paulus, Y.M.; Jain, A.; Gariano, R.F.; Stanzel, B.V.; Marmor, M.; Blumenkranz, M.S.; Palanker, D. Healing of retinal photocoagulation lesions. Investig. Ophthalmol. Vis. Sci. 2008, 49, 5540–5545. [Google Scholar] [CrossRef] [Green Version]
- Masuda, Y.; Dumoulin, S.O.; Nakadomari, S.; Wandell, B.A. V1 projection zone signals in human macular degeneration depend on task, not stimulus. Cereb. Cortex 2008, 18, 2483–2493. [Google Scholar] [CrossRef] [Green Version]
- Baranauskas, G. Pain-induced plasticity in the spinal cord. In Toward a Theory of Neuroplasticity; Shaw, C.A., McEachern, J., Eds.; Psychology Press: Philadelphia, PA, USA, 2001; pp. 373–386. [Google Scholar]
- Mattson, M.P.; Duan, W.; Chan, S.L.; Guo, Z. Apoptotic and Anti-Apoptotic Signaling at the Synapse: From Adaptive Plasticity to Neurodegenerative Disorders. In Toward a Theory of Neuroplasticity; Shaw, C.A., McEachern, J., Eds.; Psychology Press: Philadelphia, PA, USA, 2001; pp. 402–426. [Google Scholar]
- Black, J.E.; Kodish, I.M.; Grossman, A.W.; Klintsova, A.Y.; Orlovskaya, D.; Vostrikov, V.; Uranova, N.; Greenough, W.T. Pathology of layer V pyramidal neurons in the prefrontal cortex of patients with schizophrenia. Am. J. Psychiatry 2004, 161, 742–744. [Google Scholar] [CrossRef]
- Murmu, M.S.; Salomon, S.; Biala, Y.; Weinstock, M.; Braun, K.; Bock, J. Changes of spine density and dendritic complexity in the prefrontal cortex in offspring of mothers exposed to stress during pregnancy. Eur. J. Neurosci. 2006, 24, 1477–1487. [Google Scholar] [CrossRef]
- Hooker, J.D.; Khan, M.A.; Farkas, A.B.; Lirette, S.T.; Joyner, D.A.; Gordy, D.P.; Storrs, J.M.; Roda, M.S.; Bofill, J.A.; Smith, A.D.; et al. Third-trimester in utero fetal brain diffusion tensor imaging fiber tractography: A prospective longitudinal characterization of normal white matter tract development. Pediatr. Radiol. 2020, 50, 973–983. [Google Scholar] [CrossRef]
- Jacques, S.M.; Kupsky, W.J.; Giorgadze, T.; Qureshi, F. Fetal central nervous system injury in third trimester stillbirth: A clinicopathologic study of 63 cases. Pediatr. Dev. Pathol. 2012, 15, 375–384. [Google Scholar] [CrossRef]
- Kostovic, I.; Rakic, P. Developmental history of the transient subplate zone in the visual and somatosensory cortex of the macaque monkey and human brain. J. Comp. Neurol. 1990, 297, 441–470. [Google Scholar] [CrossRef]
- Seghier, M.L.; Lazeyras, F.; Zimine, S.; Maier, S.E.; Hanquinet, S.; Delavelle, J.; Volpe, J.J.; Huppi, P.S. Combination of event-related fMRI and diffusion tensor imaging in an infant with perinatal stroke. Neuroimage 2004, 21, 463–472. [Google Scholar] [CrossRef]
- Seghier, M.L.; Lazeyras, F.; Zimine, S.; Saudan-Frei, S.; Safran, A.B.; Huppi, P.S. Visual recovery after perinatal stroke evidenced by functional and diffusion MRI: Case report. BMC Neurol. 2005, 5, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Seghier, M.L.; Lazeyras, F.; Huppi, P.S. Functional MRI of the newborn. In Seminars in Fetal and Neonatal Medicine; WB Saunders: Philadelphia, PA, USA, 2006; Volume 11, pp. 479–488. [Google Scholar]
- Reid, L.B.; Rose, S.E.; Boyd, R.N. Rehabilitation and neuroplasticity in children with unilateral cerebral palsy. Nat. Rev. Neurol. 2015, 11, 390. [Google Scholar] [CrossRef]
- Guzzetta, A.; Mazzotti, S.; Tinelli, F.; Bancale, A.; Ferretti, G.; Battini, R.; Bartalena, L.; Boldrini, A.; Cioni, G. Early assessment of visual information processing and neurological outcome in preterm infants. Neuropediatrics 2006, 37, 278–285. [Google Scholar] [CrossRef]
- Guzzetta, A.; D’Acunto, G.I.; Rose, S.; Tinelli, F.; Boyd, R.; Cioni, G. Plasticity of the visual system after early brain damage. Dev. Med. Child Neurol. 2010, 52, 891–900. [Google Scholar] [CrossRef]
- Fiori, S.; Guzzetta, A. Plasticity following early-life brain injury: Insights from quantitative MRI. Semin. Perinatol. 2015, 39, 141–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perivier, M.; Delion, M.; Chinier, E.; Loustau, S.; Nguyen, S.; Ter Minassian, A.; Richard, I.; Dinomais, M. Relationship between somatosensory deficit and brain somatosensory system after early brain lesion: A morphometric study. Eur. J. Paediatr. Neurol. 2016, 20, 403–411. [Google Scholar] [CrossRef] [PubMed]
- Hevner, R.F. Development of connections in the human visual system during fetal mid-gestation: A Dil-tracing study. J. Neuropathol. Exp. Neurol. 2000, 59, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Rakic, P. Prenatal genesis of connections subserving ocular dominance in the rhesus monkey. Nature 1976, 261, 467–471. [Google Scholar] [CrossRef]
- Hoerder-Suabedissen, A.; Molnár, Z. Development, evolution and pathology of neocortical subplate neurons. Nat. Rev. Neurosci. 2015, 16, 133–146. [Google Scholar] [CrossRef]
- Pogledic, I.; Schwartz, E.; Mitter, C.; Baltzer, P.; Milos, R.I.; Gruber, G.M.; Brugger, P.C.; Hainfellner, J.; Bettelheim, D.; Langs, G.; et al. The Subplate Layers: The Superficial and Deep Subplate Can be Discriminated on 3 Tesla Human Fetal Postmortem MRI. Cereb. Cortex 2020, 30, 5038–5048. [Google Scholar] [CrossRef]
- Halliwell, C.I. Treatment Interventions Following Prenatal Stress and Neonatal Cortical Injury. Ph.D. Thesis, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada, 2011. [Google Scholar]
- Weaver, I.C.; Cervoni, N.; Champagne, F.A.; D’Alessio, A.C.; Sharma, S.; Seckl, J.R.; Dymov, S.; Szyf, M.; Meaney, M.J. Epigenetic programming by maternal behavior. Nat. Neurosci. 2004, 7, 847–854. [Google Scholar] [CrossRef]
- Weaver, I.C.; Meaney, M.J.; Szyf, M. Maternal care effects on the hippocampal transcriptome and anxiety-mediated behaviors in the offspring that are reversible in adulthood. Proc. Natl. Acad. Sci. USA 2006, 103, 3480–3485. [Google Scholar] [CrossRef] [Green Version]
- Mahncke, H.W.; Bronstone, A.; Merzenich, M.M. Brain plasticity and functional losses in the aged: Scientific bases for a novel intervention. Prog. Brain Res. 2006, 157, 81–109. [Google Scholar]
- Mahncke, H.W.; Connor, B.B.; Appelman, J.; Ahsanuddin, O.N.; Hardy, J.L.; Wood, R.A.; Joyce, N.M.; Boniske, T.; Atkins, S.M.; Merzenich, M.M. Memory enhancement in healthy older adults using a brain plasticity-based training program: A randomized, controlled study. Proc. Natl. Acad. Sci. USA 2006, 103, 12523–12528. [Google Scholar] [CrossRef] [Green Version]
- Whiting, S.; Jan, J.E.; Wong, P.K.; Flodmark, O.; Farrell, K.; McCormick, A.Q. Permanent cortical visual impairment in children. Dev. Med. Child Neurol. 1985, 27, 730–739. [Google Scholar] [CrossRef]
- Oldham, S.; Fornito, A. The development of brain network hubs. Dev. Cognit. Neurosci. 2019, 36, 100607. [Google Scholar] [CrossRef]
- Lennartsson, F.; Holmström, L.; Eliasson, A.C.; Flodmark, O.; Forssberg, H.; Tournier, J.D.; Vollmer, B. Advanced fiber tracking in early acquired brain injury causing cerebral palsy. AJNR Am. J. Neuroradiol. 2015, 36, 181–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ricci, D.; Cesarini, L.; Groppo, M.; De Carli, A.; Gallini, F.; Serrao, F.; Fumagalli, M.; Cowan, F.; Ramenghi, L.A.; Anker, S.; et al. Early assessment of visual function in full term newborns. Early Hum. Dev. 2008, 84, 107–113. [Google Scholar] [CrossRef]
- Rutherford, M.A. MRI of the Neonatal Brain; WB Saunders: London, UK, 2002. [Google Scholar]
- Brown, A.M.; Lindsey, D.T.; Cammenga, J.G.; Giannone, P.J.; Stenger, M.R. The contrast sensitivity of the newborn human infant. Investig. Ophthalmol. Visual Sci. 2015, 56, 625–632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sloot, F.; Hoeve, H.L.; De Kroon, M.L.; Goedegebure, A.; Carlton, J.; Griffiths, H.J.; Simonsz, H.J. Inventory of current EU paediatric vision and hearing screening programmes. J. Med. Screen. 2015, 22, 55–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krageloh-Mann, I.; Horber, V. The role of magnetic reso-nance imaging in furthering understanding of the pathogene-sis of cerebral palsy. Dev. Med. Child Neurol. 2007, 49, 948. [Google Scholar] [CrossRef] [PubMed]
- Hagberg, H.; Edwards, A.D.; Groenendaal, F. Perinatal brain damage: The term infant. Neurobiol. Dis. 2016, 92, 102–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leisman, G. Plasticity and Functional Connectivities in Rehabilitation. In Neuroplasticity in Learning and Rehabilitation; Leisman, G., Merrick, J., Eds.; Nova Series in Functional Neurology; Nova Scientific Publishers: Hauppauge, NY, USA, 2016; Volume 2. [Google Scholar]
- Sprague, J.M. Interaction of cortex and superior colliculus in mediation of visually guided behavior in the cat. Science 1966, 153, 1544–1547. [Google Scholar] [CrossRef] [PubMed]
- Back, S.A. White matter injury in the preterm infant: Pathology and mechanisms. Acta Neuropathol. 2017, 134, 331–349. [Google Scholar] [CrossRef] [PubMed]
- Kirton, A.; de Veber, G. Advances in perinatal ischemic stroke. Pediatr. Neurol. 2009, 40, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Raju, T.N.; Nelson, K.B.; Ferriero, D.; Lynch, J.K. Ischemic perinatal stroke: Summary of a workshop sponsored by the National Institute of Child Health and Human Development and the National Institute of Neurological Disorders and Stroke. Pediatrics 2007, 120, 609–616. [Google Scholar] [CrossRef] [Green Version]
- Roach, G.D. Perinatal Arterial Ischemic Stroke. Neoreviews 2020, 21, e741–e748. [Google Scholar] [CrossRef] [PubMed]
- Mercuri, E.; Anker, S.; Guzzetta, A.; Barnett, A.; Haataja, L.; Rutherford, M.; Cowan, F.; Dubowitz, L.; Braddick, O.; Atkinson, J. Neonatal cerebral infarction and visual function at school age. Arch. Dis. Child. Fetal Neonatal Ed. 2003, 88, F487–F491. [Google Scholar] [CrossRef] [PubMed]
- Crawford, L.B.; Golomb, M.R. Childhood Stroke and Vision: A Review of the Literature. Pediatr. Neurol. 2018, 81, 6–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martín, M.B.; Santos-Lozano, A.; Martín-Hernández, J.; López-Miguel, A.; Maldonado, M.; Baladrón, C.; Bauer, C.M.; Merabet, L.B. Cerebral versus ocular visual impairment: The impact on developmental neuroplasticity. Front. Psychol. 2016, 7, 1958. [Google Scholar] [CrossRef] [Green Version]
- Bourne, J.A.; Morrone, M.C. Plasticity of visual pathways and function in the developing brain: Is the pulvinar a crucial player? Front. Sys. Neurosci. 2017, 11, 3. [Google Scholar] [CrossRef] [Green Version]
- Mikellidou, K.; Arrighi, R.; Aghakhanyan, G.; Tinelli, F.; Frijia, F.; Crespi, S.; De Masi, F.; Montanaro, D.; Morrone, M.C. Plasticity of the human visual brain after an early cortical lesion. Neuropsychologia 2019, 128, 166–177. [Google Scholar] [CrossRef]
- Rocha-Ferreira, E.; Hristova, M. Plasticity in the neonatal brain following hypoxic-ischaemic injury. Neural Plast. 2016, 2016, 4901014. [Google Scholar] [CrossRef] [Green Version]
- Batalle, D.; Edwards, A.D.; O’Muircheartaigh, J. Annual Research Review: Not just a small adult brain: Understanding later neurodevelopment through imaging the neonatal brain. J. Child Psychol. Psychiatry 2018, 59, 350–371. [Google Scholar] [CrossRef] [Green Version]
- Dixon, B.J.; Reis, C.; Ho, W.M.; Tang, J.; Zhang, J.H. Neuroprotective strategies after neonatal hypoxic ischemic encephalopathy. Int. J. Mol. Sci. 2015, 16, 22368–22401. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.C.; Kancherla, S.; Fan, S.J.; Wu, E.X. Long-term effects of neonatal hypoxia-ischemia on structural and physiological integrity of the eye and visual pathway by multimodal MRI. Investig. Ophthalmol. Visual Sci. 2015, 56, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Millar, L.J.; Shi, L.; Hoerder-Suabedissen, A.; Molnár, Z. Neonatal hypoxia ischaemia: Mechanisms, models, and therapeutic challenges. Front. Cell. Neurosci. 2017, 11, 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chorna, O.D.; Guzzetta, A.; Maitre, N.L. Vision assessments and interventions for infants 0-2 years at high risk for cerebral palsy: A systematic review. Pediatr. Neurol. 2017, 76, 3–13. [Google Scholar] [CrossRef]
- Guzzetta, A.; Cioni, G.; Cowan, F.; Mercuri, E. Visual disorders in children with brain lesions: 1. Maturation of visual func- tion in infants with neonatal brain lesions: Correlation with neuroimaging. Eur. J. Paediatr. Neurol. 2001, 5, 107–114. [Google Scholar] [CrossRef]
- Solebo, A.L.; Teoh, L.; Rahi, J. Epidemiology of blindness in children. Arch. Dis. Child. 2017, 102, 853–857. [Google Scholar] [CrossRef]
- Leung, M.P.; Thompson, B.; Black, J.; Dai, S.; Alsweiler, J.M. The effects of preterm birth on visual development. Clin. Exp. Optomet. 2018, 101, 4–12. [Google Scholar] [CrossRef] [Green Version]
- Stoerig, P. Blindsight, conscious vision, and the role of primary visual cortex. Prog. Brain Res. 2006, 155, 217–234. [Google Scholar]
- Briscoe, R.; Schwenkler, J. Conscious vision in action. Cognit. Sci. 2015, 39, 1435–1467. [Google Scholar] [CrossRef]
- Gross, H.M.; Heinke, D.; Boehme, H.J.; Braumann, U.D.; Pomierski, T. A behaviour-oriented approach to an implicit “object-understanding” in visual attention. In Proceedings of the ICNN’95—International Conference on Neural Networks (ICNN’95), Perth, Australia, 27 November–1 December 1995; Volume 1, pp. 657–662. [Google Scholar]
- Huxlin, K.R. Perceptual plasticity in damaged adult visual systems. Vision Res. 2008, 48, 2154–2166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Kedar, S.; Lynn, M.J.; Newman, N.J.; Biousse, V. Natural history of homonymous hemianopia. Neurology 2006, 66, 901–905. [Google Scholar] [CrossRef] [PubMed]
- Sabel, B.A.; Kasten, E. Restoration of vision by training of residual functions. Curr. Opin. Ophthalmol. 2000, 11, 430–436. [Google Scholar] [CrossRef] [PubMed]
- Fontenot, J.L.; Bona, M.D.; Kaleem, M.A.; McLaughlin, W.M.; Morse, A.R.; Schwartz, T.L.; Shepherd, J.D.; Jackson, M.L. Vision rehabilitation preferred practice pattern. Ophthalmology 2018, 125, P228–P278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bridge, H.; Thomas, O.; Jbabdi, S.; Cowey, A. Changes in connectivity after visual cortical brain damage underlie altered visual function. Brain 2008, 131, 1433–1444. [Google Scholar] [CrossRef] [Green Version]
- Bridge, H. Loss of visual cortex and its consequences for residual vision. Curr. Opin. Physiol. 2020, 16, 21–26. [Google Scholar] [CrossRef]
- Bouwmeester, L.; Heutink, J.; Lucas, C. The effect of visual training for patients with visual field defects due to brain damage: A systematic review. J. Neurol. Neurosurg. Psychiatry 2007, 78, 555–564. [Google Scholar] [CrossRef] [Green Version]
- Waddington, J.; Hodgson, T. Review of rehabilitation and habilitation strategies for children and young people with homonymous visual field loss caused by cerebral vision impairment. Br. J. Vis. Impair. 2017, 35, 197–210. [Google Scholar] [CrossRef] [Green Version]
- Moore, K.L.; Persaud TV, N.; Torchia, M.G. Before We Are Born E-Book: Essentials of Embryology and Birth Defects; Elsevier Health Sciences: Philadelphia, PA, USA, 2015. [Google Scholar]
- Walsh, V.; Butler, S.R.; Carden, D.; Kulikowski, J.J. The effects of V4 lesions on the visual abilities of macaques: Shape discrimination. Behav. Brain Res. 1992, 50, 115–126. [Google Scholar] [CrossRef]
- Hovda, D.A.; Villablanca, J.R. Depth perception in cats after cerebral hemispherectomy: Comparisons between neonatal-and adult-lesioned animals. Behav. Brain Res. 1989, 32, 231–240. [Google Scholar] [CrossRef]
- Zennou-Azogui, Y.; Xerri, C.; Leonard, J.; Tighilet, B. Vestibular compensation: Role of visual motion cues in the recovery of posturo-kinetic functions in the cat. Behav. Brain Res. 1996, 74, 65–77. [Google Scholar] [CrossRef]
- Leh, S.E.; Johansen-Berg, H.; Ptito, A. Unconscious vision: New insights into the neuronal correlate of blindsight using diffusion tractography. Brain 2006, 129, 1822–1832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teuber, H.-L. Recovery of function after brain injury in man. In Ciba Foundation Symposium; Elsevier: Amsterdam, The Netherlands, 1975; Volume 34, pp. 159–190. [Google Scholar] [CrossRef]
- Leisman, G.; Koch, P. Networks of conscious experience: Computational neuroscience in understanding life, death, and consciousness. Rev. Neurosci. 2009, 20, 151–176. [Google Scholar] [CrossRef]
- Perenin, M.T. Visual function within the hemianopic field following early cerebral hemidecortication in man—II. Pattern discrimination. Neuropsychologia 1978, 16, 697–708. [Google Scholar] [CrossRef]
- Perenin, M.T.; Jeannerod, M. Visual function within the hemianopic field following early cerebral hemidecortication in man—I. Spatial localization. Neuropsychologia 1978, 16, 1–13. [Google Scholar] [CrossRef]
- Knyazeva, M.G.; Maeder, P.; Kiper, D.C.; Deonna, T.; Innocenti, G.M. Vision after early-onset lesions of the occipital cortex: II. Physiological studies. Neural Plast. 2002, 9, 27–40. [Google Scholar] [CrossRef] [Green Version]
- Kiper, D.C.; Zesiger, P.; Maeder, P.; Deonna, T.; Innocenti, G.M. Vision after early-onset lesions of the occipital cortex: I. Neuropsychological and psychophysical studies. Neural Plast. 2002, 9, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Werth, R. Visual functions without the occipital lobe or after cerebral hemispherectomy in infancy. Eur. J. Neurosci. 2006, 24, 2932–2944. [Google Scholar] [CrossRef]
- Cornwell, P.; Payne, B. Visual discrimination by cats given lesions of visual cortex in one or two stages in infancy or in one stage in adulthood. Behav. Neurosci. 1989, 103, 1191. [Google Scholar] [CrossRef] [PubMed]
- Cornwell, P.; Herbein, S.; Corso, C.; Eskew, R.; Warren, J.M.; Payne, B. Selective sparing after lesions of visual cortex in newborn kittens. Behav. Neurosci. 1989, 103, 1176. [Google Scholar] [CrossRef] [PubMed]
- Atapour, N.; Worthy, K.H.; Lui, L.L.; Yu, H.H.; Rosa, M.G. Neuronal degeneration in the dorsal lateral geniculate nucleus following lesions of primary visual cortex: Comparison of young adult and geriatric marmoset monkeys. Brain Struct. Funct. 2017, 7, 3283–3293. [Google Scholar] [CrossRef] [PubMed]
- Atapour, N.; Worthy, K.H.; Rosa, M.G. Neurochemical changes in the primate lateral geniculate nucleus following lesions of striate cortex in infancy and adulthood: Implications for residual vision and blindsight. Brain Struct. Funct. 2021, 1–13. [Google Scholar] [CrossRef]
- Moore, T.; Rodman, H.R.; Repp, A.B.; Gross, C.G.; Mezrich, R.S. Greater residual vision in monkeys after striate cortex damage in infancy. J. Neurophysiol. 1996, 76, 3928–3933. [Google Scholar] [CrossRef] [PubMed]
- Moore, T.; Rodman, H.R.; Gross, C.G. Direction of motion discrimination after early lesions of striate cortex (V1) of the macaque monkey. Proc. Natl. Acad. Sci. USA 2001, 98, 325–330. [Google Scholar] [CrossRef]
- Mercuri, E.; Atkinson, J.; Braddick, O.; Anker, S.; Nokes, L.; Cowan, F.; Rutherford, M.; Pennock, J.; Dubowitz, L. Visual function and perinatal focal cerebral infarction. Arch. Dis. Child. Fetal Neonatal Ed. 1996, 75, F76–F81. [Google Scholar] [CrossRef] [Green Version]
- Burneo, J.G.; Kuzniecky, R.I.; Bebin, M.; Knowlton, R.C. Cortical reorganization in malformations of cortical development: A magnetoencephalographic study. Neurology 2004, 63, 1818–1824. [Google Scholar] [CrossRef]
- Artzi, M.; Shiran, S.I.; Weinstein, M.; Myers, V.; Tarrasch, R.; Schertz, M.; Fattal-Valevski, A.; Miller, E.; Gordon, A.M.; Green, D.; et al. Cortical reorganization following injury early in life. Neural Plast. 2016, 2016, 8615872. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.T.; Nestor, A.; Vida, M.D.; Pyles, J.A.; Patterson, C.; Yang, Y.; Yang, F.N.; Freud, E.; Behrmann, M. Successful reorganization of category-selective visual cortex following occipito-temporal lobectomy in childhood. Cell Rep. 2018, 24, 1113–1122. [Google Scholar] [CrossRef] [Green Version]
- Yates, T.S.; Ellis, C.T.; Turk-Browne, N.B. Emergence and organization of adult brain function throughout child development. Neuroimage 2021, 226, 117606. [Google Scholar] [CrossRef]
- Blume, W.T.; Whiting, S.E.; Girvin, J.P. Epilepsy surgery in the posterior cortex. Ann. Neurol. 1991, 29, 638–645. [Google Scholar] [CrossRef]
- Innocenti, G.M.; Maeder, P.; Knyazeva, M.G.; Fornari, E.; Deonna, T. Functional activation of microgyric visual cortex in a human. Ann. Neurol. 2001, 50, 672–676. [Google Scholar] [CrossRef] [PubMed]
- Kujala, T.; Alho, K.; Näätänen, R. Cross-modal reorganization of human cortical functions. Trends Neurosci. 2000, 23, 115–120. [Google Scholar] [CrossRef]
- Melnick, M.D.; Tadin, D.; Huxlin, K.R. Relearning to see in cortical blindness. Neuroscientist 2016, 22, 199–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chokron, S.; Perez, C.; Peyrin, C. Behavioral consequences and cortical reorganization in homonymous hemianopia. Front. Sys. Neurosci. 2016, 10, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jamal, Y.A.; Dilks, D.D. Rapid topographic reorganization in adult human primary visual cortex (V1) during noninvasive and reversible deprivation. Proc. Natl. Acad. Sci. USA 2020, 117, 11059–11067. [Google Scholar] [CrossRef] [PubMed]
- Castaldi, E.; Lunghi, C.; Morrone, M.C. Neuroplasticity in adult human visual cortex. Neurosci. Biobehav. Rev. 2020, 112, 542–552. [Google Scholar] [CrossRef]
- Coullon, G.S.; Jiang, F.; Fine, I.; Watkins, K.E.; Bridge, H. Subcortical functional reorganization due to early blindness. J. Neurophysiol. 2015, 113, 2889–2899. [Google Scholar] [CrossRef]
- Hasson, U.; Andric, M.; Atilgan, H.; Collignon, O. Congenital blindness is associated with large-scale reorganization of anatomical networks. Neuroimage 2016, 128, 362–372. [Google Scholar] [CrossRef] [Green Version]
- Weiskrantz, L.; Warrington, E.K.; Sanders, M.D.; Marshall, J. Visual capacity in the hemianopic field following a restricted occipital ablation. Brain 1974, 97, 709–728. [Google Scholar] [CrossRef]
- Weiskrantz, L. Is blindsight just degraded normal vision? Exp. Brain Res. 2009, 192, 413–416. [Google Scholar] [CrossRef]
- Pöppel, E.; Held, R.; Frost, D. Residual visual function after brain wounds involving the central visual pathways in man. Nature 1973, 243, 295–296. [Google Scholar] [CrossRef]
- Barbur, J.L.; Ruddock, K.H.; Waterfield, V.A. Human visual responses in the absence of the geniculo-calcarine projection. Brain 1980, 103, 905–928. [Google Scholar] [CrossRef]
- Stoerig, P.; Cowey, A. Blindsight in man and monkey. Brain 1997, 120, 535–559. [Google Scholar] [CrossRef] [Green Version]
- Radoeva, P.D.; Prasad, S.; Brainard, D.H.; Aguirre, G.K. Neural activity within area V1 reflects unconscious visual performance in a case of blindsight. J. Cognit. Neurosci. 2008, 20, 1927–1939. [Google Scholar] [CrossRef] [Green Version]
- Sabel, B.A.; Flammer, J.; Merabet, L.B. Residual vision activation and the brain-eye-vascular triad: Dysregulation, plasticity and restoration in low vision and blindness—A review. Restor. Neurol. Neurosci. 2018, 36, 767–791. [Google Scholar] [CrossRef] [Green Version]
- Ro, T.; Rafal, R. Visual restoration in cortical blindness: Insights from natural and TMS-induced blindsight. Neuropsychol. Rehab. 2006, 16, 377–396. [Google Scholar] [CrossRef]
- Chokron, S.; Perez, C.; Obadia, M.; Gaudry, I.; Laloum, L.; Gout, O. From blindsight to sight: Cognitive rehabilitation of visual field defects. Restor. Neurol. Neurosci. 2008, 26, 305–320. [Google Scholar]
- Fox, D.M.; Goodale, M.A.; Bourne, J.A. The age-dependent neural substrates of blindsight. Trends Neurosci. 2020, 43, 242–252. [Google Scholar] [CrossRef] [PubMed]
- Phillips, I. Blindsight is qualitatively degraded conscious vision. Psychol. Rev. 2021, 128, 558. [Google Scholar] [CrossRef] [PubMed]
- Gross, C.G.; Moore, T.; Rodman, H.R. Visually guided behavior after V1 lesions in young and adult monkeys and its relation to blindsight in humans. Prog. Brain Res. 2004, 144, 279–294. [Google Scholar] [PubMed]
- Ajina, S.; Pestilli, F.; Rokem, A.; Kennard, C.; Bridge, H. Human blindsight is mediated by an intact geniculo-extrastriate pathway. eLife 2015, 4, e08935. [Google Scholar] [CrossRef]
- Mundinano, I.C.; Chen, J.; de Souza, M.; Sarossy, M.G.; Joanisse, M.F.; Goodale, M.A.; Bourne, J.A. More than blindsight: Case report of a child with extraordinary visual capacity following perinatal bilateral occipital lobe injury. Neuropsychologia 2019, 128, 178–186. [Google Scholar] [CrossRef]
- Henriksson, L.; Raninen, A.; Näsänen, R.; Hyvärinen, L.; Vanni, S. Training-induced cortical representation of a hemianopic hemifield. J. Neurol. Neurosurg. Psychiatry 2007, 78, 74–81. [Google Scholar] [CrossRef]
- Malkowicz, D.E.; Myers, G.; Leisman, G. Rehabilitation of cortical visual impairment in children. Int. J. Neurosci. 2006, 116, 1015–1033. [Google Scholar] [CrossRef]
- Ajina, S.; Bridge, H. Blindsight relies on a functional connection between hMT+ and the lateral geniculate nucleus, not the pulvinar. PLoS Biol. 2018, 16, e2005769. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.H.; Atapour, N.; Chaplin, T.A.; Worthy, K.H.; Rosa, M.G. Robust visual responses and normal retinotopy in primate lateral geniculate nucleus following long-term lesions of striate cortex. J. Neurosci. 2018, 38, 3955–3970. [Google Scholar] [CrossRef] [PubMed]
- Koivisto, M.; Mäntylä, T.; Silvanto, J. The role of early visual cortex (V1/V2) in conscious and unconscious visual perception. Neuroimage 2010, 51, 828–834. [Google Scholar] [CrossRef] [PubMed]
- Hurme, M.; Koivisto, M.; Revonsuo, A.; Railo, H. Early processing in primary visual cortex is necessary for conscious and unconscious vision while late processing is necessary only for conscious vision in neurologically healthy humans. Neuroimage 2017, 150, 230–238. [Google Scholar] [CrossRef]
- Hurme, M.; Koivisto, M.; Revonsuo, A.; Railo, H. V1 activity during feedforward and early feedback processing is necessary for both conscious and unconscious motion perception. NeuroImage 2019, 185, 313–321. [Google Scholar] [CrossRef]
- Boyle, N.J.; Jones, D.H.; Hamilton, R.; Spowart, K.M.; Dutton, G.N. Blindsight in children: Does it exist and can it be used to help the child? Observations on a case series. Dev. Med. Child Neurol. 2005, 47, 699–702. [Google Scholar] [CrossRef]
- Weiskrantz, L. Fragments of memory. Neuropsychologia 1997, 35, 1051–1057. [Google Scholar] [CrossRef]
- Sahraie, A.; Hibbard, P.B.; Trevethan, C.T.; Ritchie, K.L.; Weiskrantz, L. Consciousness of the first order in blindsight. Proc. Natl. Acad. Sci. USA 2010, 107, 21217–21222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cowey, A. The blindsight saga. Exp. Brain Res. 2010, 200, 3–24. [Google Scholar] [CrossRef]
- Tomaiuolo, F.; Ptito, M.; Marzi, C.A.; Paus, T.; Ptito, A. Blindsight in hemispherectomized patients as revealed by spatial summation across the vertical meridian. Brain 1997, 120, 795–803. [Google Scholar] [CrossRef] [Green Version]
- Tamietto, M.; Cauda, F.; Corazzini, L.L.; Savazzi, S.; Marzi, C.A.; Goebel, R.; de Gelder, B. Collicular vision guides nonconscious behavior. J. Cognit. Neurosci. 2010, 22, 888–902. [Google Scholar] [CrossRef] [Green Version]
- Payne, B.R.; Lomber, S.G.; Geeraerts, S.; Van Der Gucht, E.; Vandenbussche, E. Reversible visual hemineglect. Proc. Natl. Acad. Sci. USA 1996, 93, 290–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sorenson, K.M.; Rodman, H.R. A transient geniculo-extrastriate pathway in macaques? Implications for ‘blindsight’. Neuroreport 1999, 10, 3295–3299. [Google Scholar] [CrossRef]
- Lyon, D.C.; Nassi, J.J.; Callaway, E.M. A disynaptic relay from superior colliculus to dorsal stream visual cortex in macaque monkey. Neuron 2010, 65, 270–279. [Google Scholar] [CrossRef] [Green Version]
- Denny-Brown, D. The midbrain and motor integration. Proc. R. Soc. Med. 1962, 55, 527–538. [Google Scholar] [CrossRef] [Green Version]
- Heilman, K.M.; Valenstein, E. Mechanisms underlying hemispatial neglect. Ann. Neurol. 1979, 5, 166–170. [Google Scholar] [CrossRef]
- King, A.J. The superior colliculus. Curr. Biol. 2004, 14, R335–R338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basso, M.A.; Paul, J. Circuits for action and cognition: A view from the superior colliculus. Ann. Rev. Vis. Sci. 2017, 3, 197–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rafal, R.D.; Posner, M.I. Deficits in human visual spatial attention following thalamic lesions. Proc. Natl. Acad. Sci. USA 1987, 84, 7349–7353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, C.K.; Wong, L.Y.; Yuen, M.K. Visual field plasticity in a female with right occipital cortical dysplasia. Pediatr. Neurol. 2000, 23, 256–260. [Google Scholar] [CrossRef]
- Lambert, S.R.; Kriss, A.; Taylor, D. Detection of isolated occipital lobe anomalies during early childhood. Dev. Med. Child Neurol. 1990, 32, 451–455. [Google Scholar] [CrossRef]
- Amedi, A.; Merabet, L.B.; Bermpohl, F.; Pascual-Leone, A. The occipital cortex in the blind: Lessons about plasticity and vision. Curr. Direct. Psychol. Sci. 2005, 14, 306–311. [Google Scholar] [CrossRef]
- Amedi, A.; Hofstetter, S.; Maidenbaum, S.; Heimler, B. Task selectivity as a comprehensive principle for brain organization. Trends Cognit. Sci. 2017, 21, 307–310. [Google Scholar] [CrossRef]
- Vetter, P.; Bola, Ł.; Reich, L.; Bennett, M.; Muckli, L.; Amedi, A. Decoding natural sounds in early “visual” cortex of congenitally blind individuals. Curr. Biol. 2020, 30, 3039–3044. [Google Scholar] [CrossRef]
- Pascual-Leone, A.; Amedi, A.; Fregni, F.; Merabet, L.B. The plastic human brain cortex. Annu. Rev. Neurosci. 2005, 28, 377–401. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, J.M.; Juricevic, I. Foreshortening, convergence and drawings from a blind adult. Perception 2006, 35, 847–851. [Google Scholar] [CrossRef]
- Amedi, A.; Floel, A.; Knecht, S.; Zohary, E.; Cohen, L.G. Transcranial magnetic stimulation of the occipital pole interferes with verbal processing in blind subjects. Nat. Neurosci. 2004, 7, 1266–1270. [Google Scholar] [CrossRef]
- Raz, N.; Amedi, A.; Zohary, E. V1 activation in congenitally blind humans is associated with episodic retrieval. Cereb. Cortex 2005, 15, 1459–1468. [Google Scholar] [CrossRef]
- Striem-Amit, E.; Ovadia-Caro, S.; Caramazza, A.; Margulies, D.S.; Villringer, A.; Amedi, A. Functional connectivity of visual cortex in the blind follows retinotopic organization principles. Brain 2015, 138, 1679–1695. [Google Scholar] [CrossRef] [PubMed]
- McDowell, N. A review of the literature to inform the development of a practice framework for supporting children with cerebral visual impairment (CVI). Int. J. Incl. Ed. 2021, 1–21. [Google Scholar] [CrossRef]
- Ben Itzhak, N.; Vancleef, K.; Franki, I.; Laenen, A.; Wagemans, J.; Ortibus, E. Quantifying visuoperceptual profiles of children with cerebral visual impairment. Child Neuropsychol. 2021, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Werth, R.; Seelos, K. Restitution of visual functions in cerebrally blind children. Neuropsychologia 2005, 43, 2011–2023. [Google Scholar] [CrossRef]
- Mueller, I.; Gall, C.; Kasten, E.; Sabel, B.A. Long-term learning of visual functions in patients after brain damage. Behav. Brain Res. 2008, 191, 32–42. [Google Scholar] [CrossRef]
- Likova, L.T. Drawing enhances cross-modal memory plasticity in the human brain: A case study in a totally blind adult. Front. Hum. Neurosci. 2012, 6, 44. [Google Scholar] [CrossRef] [Green Version]
- Rima, S.; Schmid, M.C. V1-bypassing thalamo-cortical visual circuits in blindsight and developmental dyslexia. Curr. Opin. Physiol. 2020, 16, 14–20. [Google Scholar] [CrossRef]
- Leisman, G.; Mualem, R.; Mughrabi, S.K. The neurological development of the child with the educational enrichment in mind. Psicol. Educ. 2015, 21, 79–96. [Google Scholar] [CrossRef] [Green Version]
- Melillo, R.; Leisman, G. Neurobehavioral Disorders of Childhood: An Evolutionary Approach; Springer: New York, NY, USA, 2010. [Google Scholar]
- Leisman, G.; Merrick, J. Neuroplasticity in Learning and Rehabilitation; Nova Science Publishers: Hauppauge, NY, USA, 2016. [Google Scholar]
- Reid, V.M.; Dunn, K.; Young, R.J.; Amu, J.; Donovan, T.; Reissland, N. The human fetus preferentially engages with face-like visual stimuli. Curr. Biol. 2017, 27, 1825–1828. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leisman, G.; Machado, C.; Melillo, R. Cortical Visual Impairment in Childhood: ‘Blindsight’ and the Sprague Effect Revisited. Brain Sci. 2021, 11, 1279. https://doi.org/10.3390/brainsci11101279
Leisman G, Machado C, Melillo R. Cortical Visual Impairment in Childhood: ‘Blindsight’ and the Sprague Effect Revisited. Brain Sciences. 2021; 11(10):1279. https://doi.org/10.3390/brainsci11101279
Chicago/Turabian StyleLeisman, Gerry, Calixto Machado, and Robert Melillo. 2021. "Cortical Visual Impairment in Childhood: ‘Blindsight’ and the Sprague Effect Revisited" Brain Sciences 11, no. 10: 1279. https://doi.org/10.3390/brainsci11101279
APA StyleLeisman, G., Machado, C., & Melillo, R. (2021). Cortical Visual Impairment in Childhood: ‘Blindsight’ and the Sprague Effect Revisited. Brain Sciences, 11(10), 1279. https://doi.org/10.3390/brainsci11101279