The Rehabilitation Potential of Neurostimulation for Mild Traumatic Brain Injury in Animal and Human Studies
Abstract
:1. Introduction
2. Mild TBI (mTBI) and Repeat mTBI (rmTBI) Are Serious Public Health Problems
3. Example Given: Persistent Cognitive Deficits
4. Linking mTBI Sequelae to Dementia Risk
5. Rodent Models Elucidate Mechanism and Inform Treatment
6. Electroencephalography in Humans and Rodents
7. Electroencephalography in hmTBI
8. Neurostimulation Techniques (Table 1)
Stim. | Clinical Applications | Method | Limitations | Advantages | Biological System Target |
---|---|---|---|---|---|
Repetitive Transcranial Magnetic Stimulation (rTMS) | - ↑ post-encoding memory (mice) - ↓ depression - FDA-approved for chronic pain, major depressive disorder, and obsessive compulsive disorder | - Applies alternating magnetic fields generated by coil placed on scalp | - Rodents: under anesthesia/restraint - Human: office visit required; coil type dictates depth - Little systematicity across investigations | - Noninvasive - Focal - Minimal side effects - FDA approval for some | - ↓ apoptosis - ↑ neural survival - ↑ cholinergic and neurotrophic factor signaling in mice (important for cognition and TBI recovery) - ↑ metabolism - alters neural excitability |
Transcranial Direct Current Stimulation (tDCS) and Transcranial Alternating Current (tACS) | - ↑ task performance - ↑ WM - ↑ spatial WM (rats) - ↑ ChAT potentially reduces transition from injury → degeneration | - Electrical current through two scalp electrodes - Current/field modified for depth/intensity | - Cognition benefits are temporary - Specific optimized timeframe - Not focal - Requires frequency-specific tailoring to individual | - Noninvasive - Affordable - Potentially self-administrable - Safe - Can target deeper structures (e.g., hippocampus) | - ↑ theta synchrony, phase synchrony, phase–amplitude coupling, and theta-gamma cross-frequency coupling - ↑ plasticity and BDNF release in the hippocampus and frontal cortex (rodent) - ↑ ChAT in hippocampus (rodent) -Alters resting potential |
Deep Brain Stimulation (DBS) | - Rehabilitate from cognitive and neurological disturbances - May slow cognitive decline in AD model rodents - FDA-approved: PD, OCD, epilepsy, dystonia | - Surgical implantation of embedded electrodes in brain | - Risks associated with brain surgery - Invasive procedure | - Highly Focal - Low maintenance - Independently operating - Can be adapted for closed-loop | - ↑ metabolism |
9. rTMS and tDCS Benefits in Rodents after TBI
10. rTMS and tDCS Benefits in Humans after TBI
11. The Role of Theta Oscillations in Plasticity and Learning
12. TBI Disrupts Theta Oscillations in Humans and Rodents
13. Theta as a Potential Target of Neurostimulation in Neurotypical Humans
14. Cautionary Tale: Getting Ahead of the Data
15. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ziesel, D.; Nowakowska, M.; Scheruebel, S.; Kornmueller, K.; Schäfer, U.; Schindl, R.; Baumgartner, C.; Üçal, M.; Rienmüller, T. Electrical stimulation methods and protocols for the treatment of traumatic brain injury: A critical review of preclinical research. J. NeuroEngineering Rehabil. 2023, 20, 51. [Google Scholar] [CrossRef]
- Mostert, C.Q.B.; Singh, R.D.; Gerritsen, M.; Kompanje, E.J.O.; Ribbers, G.M.; Peul, W.C.; van Dijck, J. Long-term outcome after severe traumatic brain injury: A systematic literature review. Acta Neurochir. 2022, 164, 599–613. [Google Scholar] [CrossRef]
- Huovinen, A.; Marinkovic, I.; Isokuortti, H.; Korvenoja, A.; Maki, K.; Nybo, T.; Raj, R.; Melkas, S. Return to work after mild traumatic brain injury: Association with positive CT and MRI findings. Acta Neurochir. 2022, 164, 1707–1717. [Google Scholar] [CrossRef]
- Saatman, K.E.; Duhaime, A.C.; Bullock, R.; Maas, A.I.; Valadka, A.; Manley, G.T. Classification of traumatic brain injury for targeted therapies. J. Neurotrauma 2008, 25, 719–738. [Google Scholar] [CrossRef]
- Dewan, M.C.; Rattani, A.; Gupta, S.; Baticulon, R.E.; Hung, Y.C.; Punchak, M.; Agrawal, A.; Adeleye, A.O.; Shrime, M.G.; Rubiano, A.M.; et al. Estimating the global incidence of traumatic brain injury. J. Neurosurg. 2018, 130, 1080–1097. [Google Scholar] [CrossRef]
- Defense Medical Surveillance System (DMSS); Theater Medical Data Store (TMDS); Armed Forces Health Surveillance Division. DOD Numbers for Traumatic Brain Injury Worldwide—Totals. Available online: https://health.mil/Military-Health-Topics/Centers-of-Excellence/Traumatic-Brain-Injury-Center-of-Excellence/DOD-TBI-Worldwide-Numbers (accessed on 9 July 2023).
- Wei, S.; Wei, Y.; Gong, Y.; Chen, Y.; Cui, J.; Li, L.; Yan, H.; Yu, Y.; Lin, X.; Li, G.; et al. Metabolomics as a valid analytical technique in environmental exposure research: Application and progress. Metabolomics 2022, 18, 35. [Google Scholar] [CrossRef]
- Blennow, K.; Brody, D.L.; Kochanek, P.M.; Levin, H.; McKee, A.; Ribbers, G.M.; Yaffe, K.; Zetterberg, H. Traumatic brain injuries. Nat. Rev. Dis. Primers 2016, 2, 16084. [Google Scholar] [CrossRef]
- Bigler, E.D. Volumetric MRI Findings in Mild Traumatic Brain Injury (mTBI) and Neuropsychological Outcome. Neuropsychol. Rev. 2023, 33, 5–41. [Google Scholar] [CrossRef]
- Rutherford, W.H.; Merrett, J.D.; McDonald, J.R. Symptoms at one year following concussion from minor head injuries. Injury 1979, 10, 225–230. [Google Scholar] [CrossRef]
- Rabinowitz, A.R.; Levin, H.S. Cognitive sequelae of traumatic brain injury. Psychiatr. Clin. N. Am. 2014, 37, 1–11. [Google Scholar] [CrossRef]
- Chadwick, L.; Peckham, S.B.; Yeates, K.O. Adult Cognitive Outcomes Following Childhood Mild Traumatic Brain Injury: A Scoping Review. J. Head Trauma Rehabil. 2022, 37, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Leddy, J.J.; Haider, M.N.; Noble, J.M.; Rieger, B.; Flanagan, S.; McPherson, J.I.; Shubin-Stein, K.; Saleem, G.T.; Corsaro, L.; Willer, B. Clinical Assessment of Concussion and Persistent Post-Concussive Symptoms for Neurologists. Curr. Neurol. Neurosci. Rep. 2021, 21, 70. [Google Scholar] [CrossRef]
- Leddy, J.J.; Haider, M.N.; Noble, J.M.; Rieger, B.; Flanagan, S.; McPherson, J.I.; Shubin-Stein, K.; Saleem, G.T.; Corsaro, L.; Willer, B. Management of Concussion and Persistent Post-Concussive Symptoms for Neurologists. Curr. Neurol. Neurosci. Rep. 2021, 21, 72. [Google Scholar] [CrossRef] [PubMed]
- Mavroudis, I.; Kazis, D.; Chowdhury, R.; Petridis, F.; Costa, V.; Balmus, I.M.; Ciobica, A.; Luca, A.C.; Radu, I.; Dobrin, R.P.; et al. Post-Concussion Syndrome and Chronic Traumatic Encephalopathy: Narrative Review on the Neuropathology, Neuroimaging and Fluid Biomarkers. Diagnostics 2022, 12, 740. [Google Scholar] [CrossRef]
- Minen, M.T.; Boubour, A.; Walia, H.; Barr, W. Post-Concussive Syndrome: A Focus on Post-Traumatic Headache and Related Cognitive, Psychiatric, and Sleep Issues. Curr. Neurol. Neurosci. Rep. 2016, 16, 100. [Google Scholar] [CrossRef]
- Yumul, J.N.; Crowe, L.; Catroppa, C.; Anderson, V.; McKinlay, A. Post-concussive Signs and Symptoms in Preschool Children: A Systematic Review. Neuropsychol. Rev. 2022, 32, 631–650. [Google Scholar] [CrossRef] [PubMed]
- Injury, G.B.D.T.B.; Spinal Cord Injury, C. Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019, 18, 56–87. [Google Scholar] [CrossRef]
- Lasry, O.; Liu, E.Y.; Powell, G.A.; Ruel-Laliberte, J.; Marcoux, J.; Buckeridge, D.L. Epidemiology of recurrent traumatic brain injury in the general population: A systematic review. Neurology 2017, 89, 2198–2209. [Google Scholar] [CrossRef]
- Guskiewicz, K.M.; Marshall, S.W.; Bailes, J.; McCrea, M.; Cantu, R.C.; Randolph, C.; Jordan, B.D. Association between recurrent concussion and late-life cognitive impairment in retired professional football players. Neurosurgery 2005, 57, 719–726. [Google Scholar] [CrossRef]
- McKee, A.C.; Abdolmohammadi, B.; Stein, T.D. The neuropathology of chronic traumatic encephalopathy. Handb. Clin. Neurol. 2018, 158, 297–307. [Google Scholar] [CrossRef]
- Graham, A.; Livingston, G.; Purnell, L.; Huntley, J. Mild Traumatic Brain Injuries and Future Risk of Developing Alzheimer’s Disease: Systematic Review and Meta-Analysis. J. Alzheimers Dis. 2022, 87, 969–979. [Google Scholar] [CrossRef]
- Livingston, G.; Huntley, J.; Sommerlad, A.; Ames, D.; Ballard, C.; Banerjee, S.; Brayne, C.; Burns, A.; Cohen-Mansfield, J.; Cooper, C.; et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 2020, 396, 413–446. [Google Scholar] [CrossRef]
- Stephens, J.A.; Williamson, K.-N.; Berryhill, M.E. Cognitive Rehabilitation after Traumatic Brain Injury: A Reference for Occupational Therapists. OTJR Occup. Particip. Health 2015, 35, 5–22. [Google Scholar] [CrossRef] [PubMed]
- Clausen, A.N.; Bouchard, H.C.; VA Mid-Atlantic MIRECC Workgroup; Welsh-Bohmer, K.A.; Morey, R.A. Assessment of Neuropsychological Function in Veterans with Blast-Related Mild Traumatic Brain Injury and Subconcussive Blast Exposure. Front. Psychol. 2021, 12, 686330. [Google Scholar] [CrossRef]
- Montenigro, P.H.; Alosco, M.L.; Martin, B.M.; Daneshvar, D.H.; Mez, J.; Chaisson, C.E.; Nowinski, C.J.; Au, R.; McKee, A.C.; Cantu, R.C.; et al. Cumulative Head Impact Exposure Predicts Later-Life Depression, Apathy, Executive Dysfunction, and Cognitive Impairment in Former High School and College Football Players. J. Neurotrauma 2017, 34, 328–340. [Google Scholar] [CrossRef] [PubMed]
- Manley, G.; Gardner, A.J.; Schneider, K.J.; Guskiewicz, K.M.; Bailes, J.; Cantu, R.C.; Castellani, R.J.; Turner, M.; Jordan, B.D.; Randolph, C.; et al. A systematic review of potential long-term effects of sport-related concussion. Br. J. Sports Med. 2017, 51, 969–977. [Google Scholar] [CrossRef]
- Hylin, M.J.; Orsi, S.A.; Rozas, N.S.; Hill, J.L.; Zhao, J.; Redell, J.B.; Moore, A.N.; Dash, P.K. Repeated mild closed head injury impairs short-term visuospatial memory and complex learning. J. Neurotrauma 2013, 30, 716–726. [Google Scholar] [CrossRef]
- Broadway, J.M.; Rieger, R.E.; Campbell, R.A.; Quinn, D.K.; Mayer, A.R.; Yeo, R.A.; Wilson, J.K.; Gill, D.; Fratzke, V.; Cavanagh, J.F. Executive function predictors of delayed memory deficits after mild traumatic brain injury. Cortex 2019, 120, 240–248. [Google Scholar] [CrossRef]
- Nelson, L.D.; Temkin, N.R.; Dikmen, S.; Barber, J.; Giacino, J.T.; Yuh, E.; Levin, H.S.; McCrea, M.A.; Stein, M.B.; Mukherjee, P.; et al. Recovery After Mild Traumatic Brain Injury in Patients Presenting to US Level I Trauma Centers: A Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) Study. JAMA Neurol. 2019, 76, 1049–1059. [Google Scholar] [CrossRef]
- Veliz, P.T.; Berryhill, M.E. Gender Differences in Adolescents’ Affective Symptoms and Behavioral Disorders after Mild Traumatic Brain Injury. J. Head. Trauma. Rehabil. 2023, 38, 308–318. [Google Scholar] [CrossRef] [PubMed]
- Arciniega, H.; Kilgore-Gomez, A.; Harris, A.; Peterson, D.J.; McBride, J.; Fox, E.; Berryhill, M.E. Visual working memory deficits in undergraduates with a history of mild traumatic brain injury. Atten. Percept. Psychophys. 2019, 81, 2597–2603. [Google Scholar] [CrossRef]
- Arciniega, H.; Kilgore-Gomez, A.; McNerney, M.W.; Lane, S.; Berryhill, M.E. Loss of consciousness, but not etiology, predicts better working memory performance years after concussion. J. Clin. Transl. Res. 2020, 5, 169–177. [Google Scholar] [CrossRef]
- Arciniega, H.; Shires, J.; Furlong, S.; Kilgore-Gomez, A.; Cerreta, A.; Murray, N.G.; Berryhill, M.E. Impaired visual working memory and reduced connectivity in undergraduates with a history of mild traumatic brain injury. Sci. Rep. 2021, 11, 2789. [Google Scholar] [CrossRef]
- Alnawmasi, M.M.; Khuu, S.K. Deficits in multiple object-tracking and visual attention following mild traumatic brain injury. Sci. Rep. 2022, 12, 13727. [Google Scholar] [CrossRef] [PubMed]
- Alnawmasi, M.M.; Walz, J.A.; Khuu, S.K. Deficits in visuospatial attentional cueing following mild traumatic brain injury. Neuropsychologia 2022, 177, 108422. [Google Scholar] [CrossRef]
- Emery, C.A.; Barlow, K.M.; Brooks, B.L.; Max, J.E.; Villavicencio-Requis, A.; Gnanakumar, V.; Robertson, H.L.; Schneider, K.; Yeates, K.O. A Systematic Review of Psychiatric, Psychological, and Behavioural Outcomes following Mild Traumatic Brain Injury in Children and Adolescents. Can. J. Psychiatry 2016, 61, 259–269. [Google Scholar] [CrossRef]
- von Steinbuechel, N.; Hahm, S.; Muehlan, H.; Arango-Lasprilla, J.C.; Bockhop, F.; Covic, A.; Schmidt, S.; Steyerberg, E.W.; Maas, A.I.R.; Menon, D.; et al. Impact of Sociodemographic, Premorbid, and Injury-Related Factors on Patient-Reported Outcome Trajectories after Traumatic Brain Injury (TBI). J. Clin. Med. 2023, 12, 2246. [Google Scholar] [CrossRef] [PubMed]
- Nordstrom, A.; Nordstrom, P. Traumatic brain injury and the risk of dementia diagnosis: A nationwide cohort study. PLoS Med. 2018, 15, e1002496. [Google Scholar] [CrossRef]
- Mielke, M.M.; Ransom, J.E.; Mandrekar, J.; Turcano, P.; Savica, R.; Brown, A.W. Traumatic Brain Injury and Risk of Alzheimer’s Disease and Related Dementias in the Population. J. Alzheimers Dis. 2022, 88, 1049–1059. [Google Scholar] [CrossRef]
- Barnes, D.E.; Kaup, A.; Kirby, K.A.; Byers, A.L.; Diaz-Arrastia, R.; Yaffe, K. Traumatic brain injury and risk of dementia in older veterans. Neurology 2014, 83, 312–319. [Google Scholar] [CrossRef]
- Wu, Z.; Xiong, S.; Sun, X.; Shi, Q.; Dan, W.; Zhan, Y.; Xie, Y.; Jiang, L. Effects of Apolipoprotein E Polymorphism on Cerebral Oxygen Saturation after Traumatic Brain Injury. Front. Neurol. 2020, 11, 539627. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Liang, X.; Wu, Z.; Sun, X.; Shi, Q.; Zhan, Y.; Dan, W.; Zheng, D.; Xia, Y.; Deng, B.; et al. APOE gene polymorphism alters cerebral oxygen saturation and quantitative EEG in early-stage traumatic brain injury. Clin. Neurophysiol. 2022, 136, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Li, Q.; Sun, X.; Shi, Q.; Dan, W.; Zhan, Y.; Deng, B.; Xia, Y.; Xie, Y.; Jiang, L. Effects of apolipoprotein E polymorphism on cerebral oxygen saturation, cerebral perfusion, and early prognosis after traumatic brain injury. Ann. Clin. Transl. Neurol. 2023, 10, 1002–1011. [Google Scholar] [CrossRef]
- Johnson, V.E.; Stewart, W.; Smith, D.H. Widespread tau and amyloid-beta pathology many years after a single traumatic brain injury in humans. Brain Pathol. 2012, 22, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Tanzi, R.E.; Moir, R.D.; Wagner, S.L. Clearance of Alzheimer’s Abeta peptide: The many roads to perdition. Neuron 2004, 43, 605–608. [Google Scholar] [CrossRef]
- Mawuenyega, K.G.; Sigurdson, W.; Ovod, V.; Munsell, L.; Kasten, T.; Morris, J.C.; Yarasheski, K.E.; Bateman, R.J. Decreased clearance of CNS beta-amyloid in Alzheimer’s disease. Science 2010, 330, 1774. [Google Scholar] [CrossRef] [PubMed]
- Mannix, R.C.; Whalen, M.J. Traumatic brain injury, microglia, and Beta amyloid. Int. J. Alzheimers Dis. 2012, 2012, 608732. [Google Scholar] [CrossRef]
- Shao, F.; Wang, X.; Wu, H.; Wu, Q.; Zhang, J. Microglia and Neuroinflammation: Crucial Pathological Mechanisms in Traumatic Brain Injury-Induced Neurodegeneration. Front. Aging Neurosci. 2022, 14, 825086. [Google Scholar] [CrossRef]
- Michinaga, S.; Koyama, Y. Pathophysiological Responses and Roles of Astrocytes in Traumatic Brain Injury. Int. J. Mol. Sci. 2021, 22, 6418. [Google Scholar] [CrossRef]
- Norris, C.M.; Kadish, I.; Blalock, E.M.; Chen, K.C.; Thibault, V.; Porter, N.M.; Landfield, P.W.; Kraner, S.D. Calcineurin triggers reactive/inflammatory processes in astrocytes and is upregulated in aging and Alzheimer’s models. J. Neurosci. 2005, 25, 4649–4658. [Google Scholar] [CrossRef]
- Abdul, H.M.; Sama, M.A.; Furman, J.L.; Mathis, D.M.; Beckett, T.L.; Weidner, A.M.; Patel, E.S.; Baig, I.; Murphy, M.P.; LeVine, H., 3rd; et al. Cognitive decline in Alzheimer’s disease is associated with selective changes in calcineurin/NFAT signaling. J. Neurosci. 2009, 29, 12957–12969. [Google Scholar] [CrossRef]
- Collins-Praino, L.E. Chapter 38—Traumatic axonal injury as a key driver of the relationship between traumatic brain injury, cognitive dysfunction, and dementia. In Cellular, Molecular, Physiological, and Behavioral Aspects of Traumatic Brain Injury; Rajendram, R., Preedy, V.R., Martin, C.R., Eds.; Acdemic Press: Cambridge, MA, USA, 2022; pp. 475–486. [Google Scholar]
- Johnson, V.E.; Stewart, J.E.; Begbie, F.D.; Trojanowski, J.Q.; Smith, D.H.; Stewart, W. Inflammation and white matter degeneration persist for years after a single traumatic brain injury. Brain 2013, 136, 28–42. [Google Scholar] [CrossRef]
- Havlicek, D.F.; Furhang, R.; Nikulina, E.; Smith-Salzberg, B.; Lawless, S.; Severin, S.A.; Mallaboeva, S.; Nayab, F.; Seifert, A.C.; Crary, J.F.; et al. A single closed head injury in male adult mice induces chronic, progressive white matter atrophy and increased phospho-tau expressing oligodendrocytes. Exp. Neurol. 2023, 359, 114241. [Google Scholar] [CrossRef] [PubMed]
- Hahn, O.; Foltz, A.G.; Atkins, M.; Kedir, B.; Moran-Losada, P.; Guldner, I.H.; Munson, C.; Kern, F.; Pálovics, R.; Lu, N.; et al. A spatiotemporal map of the aging mouse brain reveals white matter tracts as vulnerable foci. bioRxiv 2022. bioRxiv:2022.09.18.508419. [Google Scholar] [CrossRef]
- McAleese, K.E.; Walker, L.; Graham, S.; Moya, E.L.J.; Johnson, M.; Erskine, D.; Colloby, S.J.; Dey, M.; Martin-Ruiz, C.; Taylor, J.P.; et al. Parietal white matter lesions in Alzheimer’s disease are associated with cortical neurodegenerative pathology, but not with small vessel disease. Acta Neuropathol. 2017, 134, 459–473. [Google Scholar] [CrossRef]
- Van Houcke, J.; Marien, V.; Zandecki, C.; Seuntjens, E.; Ayana, R.; Arckens, L. Modeling Neuroregeneration and Neurorepair in an Aging Context: The Power of a Teleost Model. Front. Cell Dev. Biol. 2021, 9, 619197. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Romine, J.L.; Gao, X.; Chen, J. Aging impairs dendrite morphogenesis of newborn neurons and is rescued by 7, 8-dihydroxyflavone. Aging Cell 2017, 16, 304–311. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Luo, Z.; Jin, M.; Sheng, W.; Wang, H.T.; Long, X.; Wu, Y.; Hu, P.; Xu, H.; Zhang, X. Exploration of age-related mitochondrial dysfunction and the anti-aging effects of resveratrol in zebrafish retina. Aging 2019, 11, 3117–3137. [Google Scholar] [CrossRef]
- Omalu, B. Chronic traumatic encephalopathy. Prog. Neurol. Surg. 2014, 28, 38–49. [Google Scholar] [CrossRef]
- McKee, A.C.; Daneshvar, D.H. The neuropathology of traumatic brain injury. Handb. Clin. Neurol. 2015, 127, 45–66. [Google Scholar] [CrossRef]
- McKee, A.C.; Stein, T.D.; Kiernan, P.T.; Alvarez, V.E. The neuropathology of chronic traumatic encephalopathy. Brain Pathol. 2015, 25, 350–364. [Google Scholar] [CrossRef] [PubMed]
- McKee, A.C. The Neuropathology of Chronic Traumatic Encephalopathy: The Status of the Literature. Semin. Neurol. 2020, 40, 359–369. [Google Scholar] [CrossRef] [PubMed]
- Kriegel, J.; Papadopoulos, Z.; McKee, A.C. Chronic Traumatic Encephalopathy: Is Latency in Symptom Onset Explained by Tau Propagation? Cold Spring Harb. Perspect. Med. 2018, 8, 1–12. [Google Scholar] [CrossRef]
- Graham, N.S.; Sharp, D.J. Understanding neurodegeneration after traumatic brain injury: From mechanisms to clinical trials in dementia. J. Neurol. Neurosurg. Psychiatry 2019, 90, 1221–1233. [Google Scholar] [CrossRef] [PubMed]
- Laurer, H.L.; Bareyre, F.M.; Lee, V.M.; Trojanowski, J.Q.; Longhi, L.; Hoover, R.; Saatman, K.E.; Raghupathi, R.; Hoshino, S.; Grady, M.S.; et al. Mild head injury increasing the brain’s vulnerability to a second concussive impact. J. Neurosurg. 2001, 95, 859–870. [Google Scholar] [CrossRef]
- Mouzon, B.; Chaytow, H.; Crynen, G.; Bachmeier, C.; Stewart, J.; Mullan, M.; Stewart, W.; Crawford, F. Repetitive mild traumatic brain injury in a mouse model produces learning and memory deficits accompanied by histological changes. J. Neurotrauma 2012, 29, 2761–2773. [Google Scholar] [CrossRef]
- Huh, J.W.; Widing, A.G.; Raghupathi, R. Basic science; repetitive mild non-contusive brain trauma in immature rats exacerbates traumatic axonal injury and axonal calpain activation: A preliminary report. J. Neurotrauma 2007, 24, 15–27. [Google Scholar] [CrossRef]
- Prins, M.L.; Hales, A.; Reger, M.; Giza, C.C.; Hovda, D.A. Repeat traumatic brain injury in the juvenile rat is associated with increased axonal injury and cognitive impairments. Dev. Neurosci. 2010, 32, 510–518. [Google Scholar] [CrossRef] [PubMed]
- Ondek, K.; Brevnova, O.; Jimenez-Ornelas, C.; Vergara, A.; Zwienenberg, M.; Gurkoff, G. A new model of repeat mTBI in adolescent rats. Exp. Neurol. 2020, 331, 113360. [Google Scholar] [CrossRef]
- Feng, Y.; Li, K.; Roth, E.; Chao, D.; Mecca, C.M.; Hogan, Q.H.; Pawela, C.; Kwok, W.M.; Camara, A.K.S.; Pan, B. Repetitive Mild Traumatic Brain Injury in Rats Impairs Cognition, Enhances Prefrontal Cortex Neuronal Activity, and Reduces Pre-synaptic Mitochondrial Function. Front. Cell. Neurosci. 2021, 15, 689334. [Google Scholar] [CrossRef]
- Tadepalli, S.A.; Bali, Z.K.; Bruszt, N.; Nagy, L.V.; Amrein, K.; Fazekas, B.; Buki, A.; Czeiter, E.; Hernadi, I. Long-term cognitive impairment without diffuse axonal injury following repetitive mild traumatic brain injury in rats. Behav. Brain Res. 2020, 378, 112268. [Google Scholar] [CrossRef]
- Eyolfson, E.; Yamakawa, G.R.; Griep, Y.; Collins, R.; Carr, T.; Wang, M.; Lohman, A.W.; Mychasiuk, R. Examining the Progressive Behavior and Neuropathological Outcomes Associated with Chronic Repetitive Mild Traumatic Brain Injury in Rats. Cereb. Cortex Commun. 2020, 1, tgaa002. [Google Scholar] [CrossRef]
- Xu, H.; Wang, Z.; Li, J.; Wu, H.; Peng, Y.; Fan, L.; Chen, J.; Gu, C.; Yan, F.; Wang, L.; et al. The Polarization States of Microglia in TBI: A New Paradigm for Pharmacological Intervention. Neural Plast. 2017, 2017, 5405104. [Google Scholar] [CrossRef]
- Kumar, A.; Alvarez-Croda, D.M.; Stoica, B.A.; Faden, A.I.; Loane, D.J. Microglial/Macrophage Polarization Dynamics following Traumatic Brain Injury. J. Neurotrauma 2016, 33, 1732–1750. [Google Scholar] [CrossRef] [PubMed]
- Fei, M.; Wang, H.; Zhou, M.; Deng, C.; Zhang, L.; Han, Y. Podoplanin influences the inflammatory phenotypes and mobility of microglia in traumatic brain injury. Biochem. Biophys. Res. Commun. 2020, 523, 361–367. [Google Scholar] [CrossRef]
- Catta-Preta, R.; Zdilar, I.; Jenner, B.; Doisy, E.T.; Tercovich, K.; Nord, A.S.; Gurkoff, G.G. Transcriptional Pathology Evolves over Time in Rat Hippocampus after Lateral Fluid Percussion Traumatic Brain Injury. Neurotrauma Rep. 2021, 2, 512–525. [Google Scholar] [CrossRef]
- Li, L.; Yerra, L.; Chang, B.; Mathur, V.; Nguyen, A.; Luo, J. Acute and late administration of colony stimulating factor 1 attenuates chronic cognitive impairment following mild traumatic brain injury in mice. Brain Behav. Immun. 2021, 94, 274–288. [Google Scholar] [CrossRef]
- Agoston, D.V. How to Translate Time? The Temporal Aspect of Human and Rodent Biology. Front. Neurol. 2017, 8, 92. [Google Scholar] [CrossRef]
- St. Louis, E.K.; Frey, L.C. (Eds.) Electroencephalography (EEG): An Introductory Text and Atlas of Normal and Abnormal Findings in Adults, Children, and Infants; American Epilepsy Society: Chicago, IL, USA, 2016. [Google Scholar]
- Roux, F.; Uhlhaas, P.J. Working memory and neural oscillations: Alpha-gamma versus theta-gamma codes for distinct WM information? Trends Cogn. Sci. 2014, 18, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Sauseng, P.; Griesmayr, B.; Freunberger, R.; Klimesch, W. Control mechanisms in working memory: A possible function of EEG theta oscillations. Neurosci. Biobehav. Rev. 2010, 34, 1015–1022. [Google Scholar] [CrossRef] [PubMed]
- Lewine, J.D.; Plis, S.; Ulloa, A.; Williams, C.; Spitz, M.; Foley, J.; Paulson, K.; Davis, J.; Bangera, N.; Snyder, T.; et al. Quantitative EEG Biomarkers for Mild Traumatic Brain Injury. J. Clin. Neurophysiol. 2019, 36, 298–305. [Google Scholar] [CrossRef]
- Ondek, K.; Pevzner, A.; Tercovich, K.; Schedlbauer, A.M.; Izadi, A.; Ekstrom, A.D.; Cowen, S.L.; Shahlaie, K.; Gurkoff, G.G. Recovery of Theta Frequency Oscillations in Rats Following Lateral Fluid Percussion Corresponds with a Mild Cognitive Phenotype. Front. Neurol. 2020, 11, 600171. [Google Scholar] [CrossRef]
- Montgomery, E.A.; Fenton, G.W.; McClelland, R.J.; MacFlynn, G.; Rutherford, W.H. The psychobiology of minor head injury. Psychol. Med. 1991, 21, 375–384. [Google Scholar] [CrossRef]
- Cavanagh, J.F.; Rieger, R.E.; Wilson, J.K.; Gill, D.; Fullerton, L.; Brandt, E.; Mayer, A.R. Joint analysis of frontal theta synchrony and white matter following mild traumatic brain injury. Brain Imaging Behav. 2020, 14, 2210–2223. [Google Scholar] [CrossRef] [PubMed]
- Carrier-Toutant, F.; Guay, S.; Beaulieu, C.; Leveille, E.; Turcotte-Giroux, A.; Papineau, S.D.; Brisson, B.; D’Hondt, F.; De Beaumont, L. Effects of Repeated Concussions and Sex on Early Processing of Emotional Facial Expressions as Revealed by Electrophysiology. J. Int. Neuropsychol. Soc. 2018, 24, 673–683. [Google Scholar] [CrossRef]
- Cavanagh, J.F.; Wilson, J.K.; Rieger, R.E.; Gill, D.; Broadway, J.M.; Story Remer, J.H.; Fratzke, V.; Mayer, A.R.; Quinn, D.K. ERPs predict symptomatic distress and recovery in sub-acute mild traumatic brain injury. Neuropsychologia 2019, 132, 107125. [Google Scholar] [CrossRef]
- Liu, S.; Shi, C.; Ma, X.; Zhao, B.; Chen, X.; Tao, L. Cognitive deficits and rehabilitation mechanisms in mild traumatic brain injury patients revealed by EEG connectivity markers. Clin. Neurophysiol. 2021, 132, 554–567. [Google Scholar] [CrossRef]
- Ledwidge, P.S.; Jones, C.M.; Huston, C.A.; Trenkamp, M.; Bator, B.; Laeng, J. Electrophysiology reveals cognitive-linguistic alterations after concussion. Brain Lang. 2022, 233, 105166. [Google Scholar] [CrossRef]
- Fortin, J.; Grondin, S.; Blanchet, S. Event-related potentials of episodic encoding after traumatic brain injury in older adults. Brain Res. 2021, 1766, 147504. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Rao, S.L.; Chandramouli, B.A.; Pillai, S.V. Reduction of functional brain connectivity in mild traumatic brain injury during working memory. J. Neurotrauma 2009, 26, 665–675. [Google Scholar] [CrossRef] [PubMed]
- Bazarian, J.J.; Elbin, R.J.; Casa, D.J.; Hotz, G.A.; Neville, C.; Lopez, R.M.; Schnyer, D.M.; Yeargin, S.; Covassin, T. Validation of a Machine Learning Brain Electrical Activity-Based Index to Aid in Diagnosing Concussion among Athletes. JAMA Netw. Open 2021, 4, e2037349. [Google Scholar] [CrossRef] [PubMed]
- Liang, B.; Alosco, M.L.; Armananzas, R.; Martin, B.M.; Tripodis, Y.; Stern, R.A.; Prichep, L.S. Long-Term Changes in Brain Connectivity Reflected in Quantitative Electrophysiology of Symptomatic Former National Football League Players. J. Neurotrauma 2023, 40, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Sponheim, S.R.; McGuire, K.A.; Kang, S.S.; Davenport, N.D.; Aviyente, S.; Bernat, E.M.; Lim, K.O. Evidence of disrupted functional connectivity in the brain after combat-related blast injury. Neuroimage 2011, 54 (Suppl. S1), S21–S29. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Mahmood, A.; Chopp, M. Animal models of traumatic brain injury. Nat. Rev. Neurosci. 2013, 14, 128–142. [Google Scholar] [CrossRef] [PubMed]
- Kricheldorff, J.; Goke, K.; Kiebs, M.; Kasten, F.H.; Herrmann, C.S.; Witt, K.; Hurlemann, R. Evidence of Neuroplastic Changes after Transcranial Magnetic, Electric, and Deep Brain Stimulation. Brain Sci. 2022, 12, 929. [Google Scholar] [CrossRef] [PubMed]
- Perera, T.; George, M.S.; Grammer, G.; Janicak, P.G.; Pascual-Leone, A.; Wirecki, T.S. The Clinical TMS Society Consensus Review and Treatment Recommendations for TMS Therapy for Major Depressive Disorder. Brain Stimul. 2016, 9, 336–346. [Google Scholar] [CrossRef]
- Motes, M.A.; Spence, J.S.; Yeatman, K.; Jones, P.M.; Lutrell, M.; O’Hair, R.; Shakal, S.; DeLaRosa, B.L.; To, W.; Vanneste, S.; et al. High-Definition Transcranial Direct Current Stimulation to Improve Verbal Retrieval Deficits in Chronic Traumatic Brain Injury. J. Neurotrauma 2020, 37, 170–177. [Google Scholar] [CrossRef]
- Choi, G.S.; Kwak, S.G.; Lee, H.D.; Chang, M.C. Effect of high-frequency repetitive transcranial magnetic stimulation on chronic central pain after mild traumatic brain injury: A pilot study. J. Rehabil. Med. 2018, 50, 246–252. [Google Scholar] [CrossRef]
- Herrold, A.A.; Kletzel, S.L.; Harton, B.C.; Chambers, R.A.; Jordan, N.; Pape, T.L. Transcranial magnetic stimulation: Potential treatment for co-occurring alcohol, traumatic brain injury and posttraumatic stress disorders. Neural Regen. Res. 2014, 9, 1712–1730. [Google Scholar] [CrossRef] [PubMed]
- Lindsey, A.; Ellison, R.L.; Herrold, A.A.; Aaronson, A.L.; Kletzel, S.L.; Stika, M.M.; Guernon, A.; Bender Pape, T. rTMS/iTBS and Cognitive Rehabilitation for Deficits Associated with TBI and PTSD: A Theoretical Framework and Review. J. Neuropsychiatry Clin. Neurosci. 2023, 35, 28–38. [Google Scholar] [CrossRef]
- Demirtas-Tatlidede, A.; Vahabzadeh-Hagh, A.M.; Bernabeu, M.; Tormos, J.M.; Pascual-Leone, A. Noninvasive brain stimulation in traumatic brain injury. J. Head. Trauma. Rehabil. 2012, 27, 274–292. [Google Scholar] [CrossRef] [PubMed]
- Pape, T.L.; Rosenow, J.; Lewis, G. Transcranial magnetic stimulation: A possible treatment for TBI. J. Head. Trauma. Rehabil. 2006, 21, 437–451. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.; Parr, N.J.; Vela, K. Evidence Brief: Transcranial Magnetic Stimulation (TMS) for Chronic Pain, PTSD, TBI, Opioid Addiction, and Sexual Trauma; VA Evidence-Based Synthesis Program Reports; Department of Veterans Affairs: Washington, DC, USA, 2020. [Google Scholar]
- Huntley, J.H.; Rezvani Habibabadi, R.; Vaishnavi, S.; Khoshpouri, P.; Kraut, M.A.; Yousem, D.M. Transcranial Magnetic Stimulation and its Imaging Features in Patients with Depression, Post-traumatic Stress Disorder, and Traumatic Brain Injury. Acad. Radiol. 2023, 30, 103–112. [Google Scholar] [CrossRef]
- Clayton, E.; Kinley-Cooper, S.K.; Weber, R.A.; Adkins, D.L. Brain stimulation: Neuromodulation as a potential treatment for motor recovery following traumatic brain injury. Brain Res. 2016, 1640, 130–138. [Google Scholar] [CrossRef]
- Villamar, M.F.; Santos Portilla, A.; Fregni, F.; Zafonte, R. Noninvasive brain stimulation to modulate neuroplasticity in traumatic brain injury. Neuromodulation 2012, 15, 326–338. [Google Scholar] [CrossRef]
- Coyle, H.L.; Ponsford, J.; Hoy, K.E. Understanding individual variability in symptoms and recovery following mTBI: A role for TMS-EEG? Neurosci. Biobehav. Rev. 2018, 92, 140–149. [Google Scholar] [CrossRef]
- Chail, A.; Saini, R.K.; Bhat, P.S.; Srivastava, K.; Chauhan, V. Transcranial magnetic stimulation: A review of its evolution and current applications. Ind. Psychiatry J. 2018, 27, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Speer, A.M.; Kimbrell, T.A.; Wassermann, E.M.; Repella, J.D.; Willis, M.W.; Herscovitch, P.; Post, R.M. Opposite effects of high and low frequency rTMS on regional brain activity in depressed patients. Biol. Psychiatry 2000, 48, 1133–1141. [Google Scholar] [CrossRef]
- Heath, A.; Lindberg, D.R.; Makowiecki, K.; Gray, A.; Asp, A.J.; Rodger, J.; Choi, D.S.; Croarkin, P.E. Medium- and high-intensity rTMS reduces psychomotor agitation with distinct neurobiologic mechanisms. Transl. Psychiatry 2018, 8, 126. [Google Scholar] [CrossRef]
- Yoon, Y.S.; Cho, K.H.; Kim, E.S.; Lee, M.S.; Lee, K.J. Effect of Epidural Electrical Stimulation and Repetitive Transcranial Magnetic Stimulation in Rats with Diffuse Traumatic Brain Injury. Ann. Rehabil. Med. 2015, 39, 416–424. [Google Scholar] [CrossRef]
- Lu, X.; Bao, X.; Li, J.; Zhang, G.; Guan, J.; Gao, Y.; Wu, P.; Zhu, Z.; Huo, X.; Wang, R. High-frequency repetitive transcranial magnetic stimulation for treating moderate traumatic brain injury in rats: A pilot study. Exp. Ther. Med. 2017, 13, 2247–2254. [Google Scholar] [CrossRef]
- Rajan, T.S.; Cuzzocrea, S.; Bruschetta, D.; Quartarone, A. Repetitive Transcranial Magnetic Stimulation as a Novel Therapy in Animal Models of Traumatic Brain Injury. Methods Mol. Biol. 2016, 1462, 433–443. [Google Scholar] [CrossRef] [PubMed]
- Rodger, J.; Sherrard, R.M. Optimising repetitive transcranial magnetic stimulation for neural circuit repair following traumatic brain injury. Neural Regen. Res. 2015, 10, 357–359. [Google Scholar] [CrossRef]
- Gersner, R.; Kravetz, E.; Feil, J.; Pell, G.; Zangen, A. Long-term effects of repetitive transcranial magnetic stimulation on markers for neuroplasticity: Differential outcomes in anesthetized and awake animals. J. Neurosci. 2011, 31, 7521–7526. [Google Scholar] [CrossRef]
- Madore, M.R.; Poh, E.; Bollard, S.J.; Rivera, J.; Taylor, J.; Cheng, J.; Booth, E.; Nable, M.; Heath, A.; Yesavage, J.; et al. Moving back in the brain to drive the field forward: Targeting neurostimulation to different brain regions in animal models of depression and neurodegeneration. J. Neurosci. Methods 2021, 360, 109261. [Google Scholar] [CrossRef] [PubMed]
- Heath, A.M.; Brewer, M.; Yesavage, J.; McNerney, M.W. Improved object recognition memory using post-encoding repetitive transcranial magnetic stimulation. Brain Stimul. 2022, 15, 78–86. [Google Scholar] [CrossRef]
- McNerney, M.W.; Heath, A.; Narayanan, S.K.; Yesavage, J. Repetitive Transcranial Magnetic Stimulation Improves Brain-Derived Neurotrophic Factor and Cholinergic Signaling in the 3xTgAD Mouse Model of Alzheimer’s Disease. J. Alzheimers Dis. 2022, 86, 499–507. [Google Scholar] [CrossRef]
- Lu, H.; Kobilo, T.; Robertson, C.; Tong, S.; Celnik, P.; Pelled, G. Transcranial magnetic stimulation facilitates neurorehabilitation after pediatric traumatic brain injury. Sci. Rep. 2015, 5, 14769. [Google Scholar] [CrossRef]
- Monti, J.M.; Voss, M.W.; Pence, A.; McAuley, E.; Kramer, A.F.; Cohen, N.J. History of mild traumatic brain injury is associated with deficits in relational memory, reduced hippocampal volume, and less neural activity later in life. Front. Aging Neurosci. 2013, 5, 41. [Google Scholar] [CrossRef] [PubMed]
- Freedberg, M.V.; Reeves, J.A.; Fioriti, C.M.; Murillo, J.; Wassermann, E.M. Reproducing the effect of hippocampal network-targeted transcranial magnetic stimulation on episodic memory. Behav. Brain Res. 2022, 419, 113707. [Google Scholar] [CrossRef]
- Thair, H.; Holloway, A.L.; Newport, R.; Smith, A.D. Transcranial Direct Current Stimulation (tDCS): A Beginner’s Guide for Design and Implementation. Front. Neurosci. 2017, 11, 641. [Google Scholar] [CrossRef]
- Martin, D.M.; Berryhill, M.E.; Dielenberg, V. Can brain stimulation enhance cognition in clinical populations? A critical review. Restor. Neurol. Neurosci. 2022, 40, 241–259. [Google Scholar] [CrossRef] [PubMed]
- Bikson, M.; Grossman, P.; Thomas, C.; Zannou, A.L.; Jiang, J.; Adnan, T.; Mourdoukoutas, A.P.; Kronberg, G.; Truong, D.; Boggio, P.; et al. Safety of Transcranial Direct Current Stimulation: Evidence Based Update 2016. Brain Stimul. 2016, 9, 641–661. [Google Scholar] [CrossRef] [PubMed]
- Nitsche, M.A.; Cohen, L.G.; Wassermann, E.M.; Priori, A.; Lang, N.; Antal, A.; Paulus, W.; Hummel, F.; Boggio, P.S.; Fregni, F.; et al. Transcranial direct current stimulation: State of the art 2008. Brain Stimul. 2008, 1, 206–223. [Google Scholar] [CrossRef]
- Soleimani, G.; Nitsche, M.A.; Bergmann, T.O.; Towhidkhah, F.; Violante, I.R.; Lorenz, R.; Kuplicki, R.; Tsuchiyagaito, A.; Mulyana, B.; Mayeli, A.; et al. Closing the loop between brain and electrical stimulation: Towards precision neuromodulation treatments. Transl. Psychiatry 2023, 13, 279. [Google Scholar] [CrossRef]
- Vergallito, A.; Feroldi, S.; Pisoni, A.; Romero Lauro, L.J. Inter-Individual Variability in tDCS Effects: A Narrative Review on the Contribution of Stable, Variable, and Contextual Factors. Brain Sci. 2022, 12, 522. [Google Scholar] [CrossRef]
- Chan, M.M.Y.; Yau, S.S.Y.; Han, Y.M.Y. The neurobiology of prefrontal transcranial direct current stimulation (tDCS) in promoting brain plasticity: A systematic review and meta-analyses of human and rodent studies. Neurosci. Biobehav. Rev. 2021, 125, 392–416. [Google Scholar] [CrossRef] [PubMed]
- de Souza Custodio, J.C.; Martins, C.W.; Lugon, M.D.; Fregni, F.; Nakamura-Palacios, E.M. Epidural direct current stimulation over the left medial prefrontal cortex facilitates spatial working memory performance in rats. Brain Stimul. 2013, 6, 261–269. [Google Scholar] [CrossRef]
- Yoon, K.J.; Lee, Y.T.; Chae, S.W.; Park, C.R.; Kim, D.Y. Effects of anodal transcranial direct current stimulation (tDCS) on behavioral and spatial memory during the early stage of traumatic brain injury in the rats. J. Neurol. Sci. 2016, 362, 314–320. [Google Scholar] [CrossRef]
- Yu, X.; Li, Y.; Wen, H.; Zhang, Y.; Tian, X. Intensity-dependent effects of repetitive anodal transcranial direct current stimulation on learning and memory in a rat model of Alzheimer’s disease. Neurobiol. Learn. Mem. 2015, 123, 168–178. [Google Scholar] [CrossRef]
- Gondard, E.; Soto-Montenegro, M.L.; Cassol, A.; Lozano, A.M.; Hamani, C. Transcranial direct current stimulation does not improve memory deficits or alter pathological hallmarks in a rodent model of Alzheimer’s disease. J. Psychiatr. Res. 2019, 114, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Dorval, A.D.; Grill, W.M. Deep brain stimulation of the subthalamic nucleus reestablishes neuronal information transmission in the 6-OHDA rat model of parkinsonism. J. Neurophysiol. 2014, 111, 1949–1959. [Google Scholar] [CrossRef] [PubMed]
- Knorr, S.; Musacchio, T.; Paulat, R.; Matthies, C.; Endres, H.; Wenger, N.; Harms, C.; Ip, C.W. Experimental deep brain stimulation in rodent models of movement disorders. Exp. Neurol. 2022, 348, 113926. [Google Scholar] [CrossRef] [PubMed]
- Deuschl, G.; Schade-Brittinger, C.; Krack, P.; Volkmann, J.; Schafer, H.; Botzel, K.; Daniels, C.; Deutschlander, A.; Dillmann, U.; Eisner, W.; et al. A randomized trial of deep-brain stimulation for Parkinson’s disease. N. Engl. J. Med. 2006, 355, 896–908. [Google Scholar] [CrossRef]
- Chiken, S.; Nambu, A. Mechanism of Deep Brain Stimulation: Inhibition, Excitation, or Disruption? Neuroscientist 2016, 22, 313–322. [Google Scholar] [CrossRef]
- Tsai, S.T.; Chen, S.Y.; Lin, S.Z.; Tseng, G.F. Rostral intralaminar thalamic deep brain stimulation ameliorates memory deficits and dendritic regression in beta-amyloid-infused rats. Brain Struct. Funct. 2020, 225, 751–761. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Chu, H.; Ma, Y.; Zhou, Z.; Dai, C.; Huang, X.; Fang, L.; Ao, Q.; Huang, D. The neuroprotective effect of deep brain stimulation at nucleus basalis of Meynert in transgenic mice with Alzheimer’s disease. Brain Stimul. 2019, 12, 161–174. [Google Scholar] [CrossRef]
- Izadi, A.; Pevzner, A.; Lee, D.J.; Ekstrom, A.D.; Shahlaie, K.; Gurkoff, G.G. Medial septal stimulation increases seizure threshold and improves cognition in epileptic rats. Brain Stimul. 2019, 12, 735–742. [Google Scholar] [CrossRef]
- Izadi, A.; Schedlbauer, A.; Ondek, K.; Disse, G.; Ekstrom, A.D.; Cowen, S.L.; Shahlaie, K.; Gurkoff, G.G. Early Intervention via Stimulation of the Medial Septal Nucleus Improves Cognition and Alters Markers of Epileptogenesis in Pilocarpine-Induced Epilepsy. Front. Neurol. 2021, 12, 708957. [Google Scholar] [CrossRef]
- Lee, D.J.; Gurkoff, G.G.; Izadi, A.; Berman, R.F.; Ekstrom, A.D.; Muizelaar, J.P.; Lyeth, B.G.; Shahlaie, K. Medial septal nucleus theta frequency deep brain stimulation improves spatial working memory after traumatic brain injury. J. Neurotrauma 2013, 30, 131–139. [Google Scholar] [CrossRef]
- Lee, D.J.; Gurkoff, G.G.; Izadi, A.; Seidl, S.E.; Echeverri, A.; Melnik, M.; Berman, R.F.; Ekstrom, A.D.; Muizelaar, J.P.; Lyeth, B.G.; et al. Septohippocampal Neuromodulation Improves Cognition after Traumatic Brain Injury. J. Neurotrauma 2015, 32, 1822–1832. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.J.; Izadi, A.; Melnik, M.; Seidl, S.; Echeverri, A.; Shahlaie, K.; Gurkoff, G.G. Stimulation of the medial septum improves performance in spatial learning following pilocarpine-induced status epilepticus. Epilepsy Res. 2017, 130, 53–63. [Google Scholar] [CrossRef]
- Schermer, M. Ethical issues in deep brain stimulation. Front. Integr. Neurosci. 2011, 5, 17. [Google Scholar] [CrossRef] [PubMed]
- Spanagel, R. Ten Points to Improve Reproducibility and Translation of Animal Research. Front. Behav. Neurosci. 2022, 16, 869511. [Google Scholar] [CrossRef] [PubMed]
- Hyde, J.; Carr, H.; Kelley, N.; Seneviratne, R.; Reed, C.; Parlatini, V.; Garner, M.; Solmi, M.; Rosson, S.; Cortese, S.; et al. Efficacy of neurostimulation across mental disorders: Systematic review and meta-analysis of 208 randomized controlled trials. Mol. Psychiatry 2022, 27, 2709–2719. [Google Scholar] [CrossRef]
- Patel, R.; Silla, F.; Pierce, S.; Theule, J.; Girard, T.A. Cognitive functioning before and after repetitive transcranial magnetic stimulation (rTMS): A quantitative meta-analysis in healthy adults. Neuropsychologia 2020, 141, 107395. [Google Scholar] [CrossRef]
- Kan, R.L.D.; Padberg, F.; Giron, C.G.; Lin, T.T.Z.; Zhang, B.B.B.; Brunoni, A.R.; Kranz, G.S. Effects of repetitive transcranial magnetic stimulation of the left dorsolateral prefrontal cortex on symptom domains in neuropsychiatric disorders: A systematic review and cross-diagnostic meta-analysis. Lancet Psychiatry 2023, 10, 252–259. [Google Scholar] [CrossRef]
- Begemann, M.J.; Brand, B.A.; Curcic-Blake, B.; Aleman, A.; Sommer, I.E. Efficacy of non-invasive brain stimulation on cognitive functioning in brain disorders: A meta-analysis. Psychol. Med. 2020, 50, 2465–2486. [Google Scholar] [CrossRef]
- Kirkovski, M.; Donaldson, P.H.; Do, M.; Speranza, B.E.; Albein-Urios, N.; Oberman, L.M.; Enticott, P.G. A systematic review of the neurobiological effects of theta-burst stimulation (TBS) as measured using functional magnetic resonance imaging (fMRI). Brain Struct. Funct. 2023, 228, 717–749. [Google Scholar] [CrossRef]
- Chung, S.W.; Hoy, K.E.; Fitzgerald, P.B. Theta-burst stimulation: A new form of TMS treatment for depression? Depress. Anxiety 2015, 32, 182–192. [Google Scholar] [CrossRef]
- Tsai, Y.C.; Li, C.T.; Juan, C.H. A review of critical brain oscillations in depression and the efficacy of transcranial magnetic stimulation treatment. Front. Psychiatry 2023, 14, 1073984. [Google Scholar] [CrossRef] [PubMed]
- Bonni, S.; Mastropasqua, C.; Bozzali, M.; Caltagirone, C.; Koch, G. Theta burst stimulation improves visuo-spatial attention in a patient with traumatic brain injury. Neurol. Sci. 2013, 34, 2053–2056. [Google Scholar] [CrossRef]
- Jannati, A.; Oberman, L.M.; Rotenberg, A.; Pascual-Leone, A. Assessing the mechanisms of brain plasticity by transcranial magnetic stimulation. Neuropsychopharmacology 2023, 48, 191–208. [Google Scholar] [CrossRef] [PubMed]
- Milosevic, M.; Nakanishi, T.; Sasaki, A.; Yamaguchi, A.; Nomura, T.; Popovic, M.R.; Nakazawa, K. Cortical Re-organization After Traumatic Brain Injury Elicited Using Functional Electrical Stimulation Therapy: A Case Report. Front. Neurosci. 2021, 15, 693861. [Google Scholar] [CrossRef] [PubMed]
- Coyle, H.L.; Bailey, N.W.; Ponsford, J.; Hoy, K.E. Investigation of neurobiological responses to theta burst stimulation during recovery from mild traumatic brain injury (mTBI). Behav. Brain Res. 2023, 442, 114308. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.W.; Rogasch, N.C.; Hoy, K.E.; Sullivan, C.M.; Cash, R.F.H.; Fitzgerald, P.B. Impact of different intensities of intermittent theta burst stimulation on the cortical properties during TMS-EEG and working memory performance. Hum. Brain Mapp. 2018, 39, 783–802. [Google Scholar] [CrossRef]
- Wang, J.; Nelson, B. Transcranial Magnetic Stimulation for Treatment-Resistant Depression: An Interactive Self-Learning Module. MedEdPORTAL 2018, 14, 10713. [Google Scholar] [CrossRef]
- Siddiqi, S.H.; Kandala, S.; Hacker, C.D.; Trapp, N.T.; Leuthardt, E.C.; Carter, A.R.; Brody, D.L. Individualized precision targeting of dorsal attention and default mode networks with rTMS in traumatic brain injury-associated depression. Sci. Rep. 2023, 13, 4052. [Google Scholar] [CrossRef]
- Hoy, K.E.; McQueen, S.; Elliot, D.; Herring, S.E.; Maller, J.J.; Fitzgerald, P.B. A Pilot Investigation of Repetitive Transcranial Magnetic Stimulation for Post-Traumatic Brain Injury Depression: Safety, Tolerability, and Efficacy. J. Neurotrauma 2019, 36, 2092–2098. [Google Scholar] [CrossRef]
- Rao, V.; Bechtold, K.; McCann, U.; Roy, D.; Peters, M.; Vaishnavi, S.; Yousem, D.; Mori, S.; Yan, H.; Leoutsakos, J.; et al. Low-Frequency Right Repetitive Transcranial Magnetic Stimulation for the Treatment of Depression after Traumatic Brain Injury: A Randomized Sham-Controlled Pilot Study. J. Neuropsychiatry Clin. Neurosci. 2019, 31, 306–318. [Google Scholar] [CrossRef]
- Oberman, L.M.; Exley, S.; Philip, N.S.; Siddiqi, S.H.; Adamson, M.M.; Brody, D.L. Use of Repetitive Transcranial Magnetic Stimulation in the Treatment of Neuropsychiatric and Neurocognitive Symptoms Associated with Concussion in Military Populations. J. Head. Trauma. Rehabil. 2020, 35, 388–400. [Google Scholar] [CrossRef] [PubMed]
- Philip, N.S.; Ramanathan, D.; Gamboa, B.; Brennan, M.C.; Kozel, F.A.; Lazzeroni, L.; Madore, M.R. Repetitive Transcranial Magnetic Stimulation for Depression and Posttraumatic Stress Disorder in Veterans with Mild Traumatic Brain Injury. Neuromodulation 2023, 26, 878–884. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Lu, T.; Yu, H.; Shen, J.; Chen, Z.; Yang, X.; Huang, Z.; Yang, Y.; Feng, Y.; Zhou, X.; et al. Repetitive Transcranial Magnetic Stimulation for Neuropathic Pain and Neuropsychiatric Symptoms in Traumatic Brain Injury: A Systematic Review and Meta-Analysis. Neural Plast. 2022, 2022, 2036736. [Google Scholar] [CrossRef] [PubMed]
- Green, J.D.; Arduini, A.A. Hippocampal electrical activity in arousal. J. Neurophysiol. 1954, 17, 533–557. [Google Scholar] [CrossRef] [PubMed]
- Brankack, J.; Stewart, M.; Fox, S.E. Current source density analysis of the hippocampal theta rhythm: Associated sustained potentials and candidate synaptic generators. Brain Res. 1993, 615, 310–327. [Google Scholar] [CrossRef] [PubMed]
- Hyman, J.M.; Wyble, B.P.; Goyal, V.; Rossi, C.A.; Hasselmo, M.E. Stimulation in hippocampal region CA1 in behaving rats yields long-term potentiation when delivered to the peak of theta and long-term depression when delivered to the trough. J. Neurosci. 2003, 23, 11725–11731. [Google Scholar] [CrossRef]
- Malenka, R.C.; Nicoll, R.A. Learning and memory. Never fear, LTP is hear. Nature 1997, 390, 552–553. [Google Scholar] [CrossRef]
- Malenka, R.C.; Bear, M.F. LTP and LTD: An embarrassment of riches. Neuron 2004, 44, 5–21. [Google Scholar] [CrossRef]
- Huerta, P.T.; Lisman, J.E. Heightened synaptic plasticity of hippocampal CA1 neurons during a cholinergically induced rhythmic state. Nature 1993, 364, 723–725. [Google Scholar] [CrossRef]
- McCartney, H.; Johnson, A.D.; Weil, Z.M.; Givens, B. Theta reset produces optimal conditions for long-term potentiation. Hippocampus 2004, 14, 684–687. [Google Scholar] [CrossRef]
- Pavlides, C.; Greenstein, Y.J.; Grudman, M.; Winson, J. Long-term potentiation in the dentate gyrus is induced preferentially on the positive phase of theta-rhythm. Brain Res. 1988, 439, 383–387. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Maier, D.L.; Cross, B.; Doherty, J.J.; Christian, E.P. Fimbria-fornix lesions compromise the induction of long-term potentiation at the Schaffer collateral-CA1 synapse in the rat in vivo. J. Neurophysiol. 2005, 93, 3001–3006. [Google Scholar] [CrossRef] [PubMed]
- Benchenane, K.; Peyrache, A.; Khamassi, M.; Tierney, P.L.; Gioanni, Y.; Battaglia, F.P.; Wiener, S.I. Coherent theta oscillations and reorganization of spike timing in the hippocampal-prefrontal network upon learning. Neuron 2010, 66, 921–936. [Google Scholar] [CrossRef] [PubMed]
- Jones, M.W.; Wilson, M.A. Theta rhythms coordinate hippocampal-prefrontal interactions in a spatial memory task. PLoS Biol. 2005, 3, e402. [Google Scholar] [CrossRef] [PubMed]
- van Wingerden, M.; van der Meij, R.; Kalenscher, T.; Maris, E.; Pennartz, C.M. Phase-amplitude coupling in rat orbitofrontal cortex discriminates between correct and incorrect decisions during associative learning. J. Neurosci. 2014, 34, 493–505. [Google Scholar] [CrossRef] [PubMed]
- Tort, A.B.; Komorowski, R.W.; Manns, J.R.; Kopell, N.J.; Eichenbaum, H. Theta-gamma coupling increases during the learning of item-context associations. Proc. Natl. Acad. Sci. USA 2009, 106, 20942–20947. [Google Scholar] [CrossRef]
- Tort, A.B.; Kramer, M.A.; Thorn, C.; Gibson, D.J.; Kubota, Y.; Graybiel, A.M.; Kopell, N.J. Dynamic cross-frequency couplings of local field potential oscillations in rat striatum and hippocampus during performance of a T-maze task. Proc. Natl. Acad. Sci. USA 2008, 105, 20517–20522. [Google Scholar] [CrossRef]
- Kendrick, K.M.; Zhan, Y.; Fischer, H.; Nicol, A.U.; Zhang, X.; Feng, J. Learning alters theta amplitude, theta-gamma coupling and neuronal synchronization in inferotemporal cortex. BMC Neurosci. 2011, 12, 55. [Google Scholar] [CrossRef]
- Lega, B.; Burke, J.; Jacobs, J.; Kahana, M.J. Slow-Theta-to-Gamma Phase-Amplitude Coupling in Human Hippocampus Supports the Formation of New Episodic Memories. Cereb. Cortex 2016, 26, 268–278. [Google Scholar] [CrossRef]
- Axmacher, N.; Henseler, M.M.; Jensen, O.; Weinreich, I.; Elger, C.E.; Fell, J. Cross-frequency coupling supports multi-item working memory in the human hippocampus. Proc. Natl. Acad. Sci. USA 2010, 107, 3228–3233. [Google Scholar] [CrossRef]
- Xu, X.; An, L.; Mi, X.; Zhang, T. Impairment of cognitive function and synaptic plasticity associated with alteration of information flow in theta and gamma oscillations in melamine-treated rats. PLoS ONE 2013, 8, e77796. [Google Scholar] [CrossRef]
- Bazzigaluppi, P.; Beckett, T.L.; Koletar, M.M.; Lai, A.Y.; Joo, I.L.; Brown, M.E.; Carlen, P.L.; McLaurin, J.; Stefanovic, B. Early-stage attenuation of phase-amplitude coupling in the hippocampus and medial prefrontal cortex in a transgenic rat model of Alzheimer’s disease. J. Neurochem. 2018, 144, 669–679. [Google Scholar] [CrossRef]
- Colgin, L.L. Mechanisms and functions of theta rhythms. Annu. Rev. Neurosci. 2013, 36, 295–312. [Google Scholar] [CrossRef]
- Lisman, J.; Buzsaki, G. A neural coding scheme formed by the combined function of gamma and theta oscillations. Schizophr. Bull. 2008, 34, 974–980. [Google Scholar] [CrossRef]
- O’Keefe, J.; Recce, M.L. Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 1993, 3, 317–330. [Google Scholar] [CrossRef] [PubMed]
- Skaggs, W.E.; McNaughton, B.L.; Wilson, M.A.; Barnes, C.A. Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus 1996, 6, 149–172. [Google Scholar] [CrossRef]
- Tsodyks, M.V.; Skaggs, W.E.; Sejnowski, T.J.; McNaughton, B.L. Population dynamics and theta rhythm phase precession of hippocampal place cell firing: A spiking neuron model. Hippocampus 1996, 6, 271–280. [Google Scholar] [CrossRef]
- Bohbot, V.D.; Copara, M.S.; Gotman, J.; Ekstrom, A.D. Low-frequency theta oscillations in the human hippocampus during real-world and virtual navigation. Nat. Commun. 2017, 8, 14415. [Google Scholar] [CrossRef] [PubMed]
- Vass, L.K.; Copara, M.S.; Seyal, M.; Shahlaie, K.; Farias, S.T.; Shen, P.Y.; Ekstrom, A.D. Oscillations Go the Distance: Low-Frequency Human Hippocampal Oscillations Code Spatial Distance in the Absence of Sensory Cues during Teleportation. Neuron 2016, 89, 1180–1186. [Google Scholar] [CrossRef]
- Ekstrom, A.D.; Caplan, J.B.; Ho, E.; Shattuck, K.; Fried, I.; Kahana, M.J. Human hippocampal theta activity during virtual navigation. Hippocampus 2005, 15, 881–889. [Google Scholar] [CrossRef]
- Watrous, A.J.; Lee, D.J.; Izadi, A.; Gurkoff, G.G.; Shahlaie, K.; Ekstrom, A.D. A comparative study of human and rat hippocampal low-frequency oscillations during spatial navigation. Hippocampus 2013, 23, 656–661. [Google Scholar] [CrossRef] [PubMed]
- Burke, J.F.; Merkow, M.B.; Jacobs, J.; Kahana, M.J.; Zaghloul, K.A. Brain computer interface to enhance episodic memory in human participants. Front. Hum. Neurosci. 2014, 8, 1055. [Google Scholar] [CrossRef] [PubMed]
- Burke, J.F.; Sharan, A.D.; Sperling, M.R.; Ramayya, A.G.; Evans, J.J.; Healey, M.K.; Beck, E.N.; Davis, K.A.; Lucas, T.H., 2nd; Kahana, M.J. Theta and high-frequency activity mark spontaneous recall of episodic memories. J. Neurosci. 2014, 34, 11355–11365. [Google Scholar] [CrossRef] [PubMed]
- Merkow, M.B.; Burke, J.F.; Stein, J.M.; Kahana, M.J. Prestimulus theta in the human hippocampus predicts subsequent recognition but not recall. Hippocampus 2014, 24, 1562–1569. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.J.; Rugg, M.D.; Das, S.; Stein, J.; Rizzuto, D.S.; Kahana, M.J.; Lega, B.C. Theta band power increases in the posterior hippocampus predict successful episodic memory encoding in humans. Hippocampus 2017, 27, 1040–1053. [Google Scholar] [CrossRef] [PubMed]
- Solomon, E.A.; Kragel, J.E.; Gross, R.; Lega, B.; Sperling, M.R.; Worrell, G.; Sheth, S.A.; Zaghloul, K.A.; Jobst, B.C.; Stein, J.M.; et al. Medial temporal lobe functional connectivity predicts stimulation-induced theta power. Nat. Commun. 2018, 9, 4437. [Google Scholar] [CrossRef]
- Mizumori, S.J.; Barnes, C.A.; McNaughton, B.L. Behavioral correlates of theta-on and theta-off cells recorded from hippocampal formation of mature young and aged rats. Exp. Brain Res. 1990, 80, 365–373. [Google Scholar] [CrossRef]
- Givens, B.S.; Olton, D.S. Cholinergic and GABAergic modulation of medial septal area: Effect on working memory. Behav. Neurosci. 1990, 104, 849–855. [Google Scholar] [CrossRef]
- McNaughton, N.; Ruan, M.; Woodnorth, M.A. Restoring theta-like rhythmicity in rats restores initial learning in the Morris water maze. Hippocampus 2006, 16, 1102–1110. [Google Scholar] [CrossRef]
- Inostroza, M.; Brotons-Mas, J.R.; Laurent, F.; Cid, E.; de la Prida, L.M. Specific impairment of “what-where-when” episodic-like memory in experimental models of temporal lobe epilepsy. J. Neurosci. 2013, 33, 17749–17762. [Google Scholar] [CrossRef]
- Sigurdsson, T.; Stark, K.L.; Karayiorgou, M.; Gogos, J.A.; Gordon, J.A. Impaired hippocampal-prefrontal synchrony in a genetic mouse model of schizophrenia. Nature 2010, 464, 763–767. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, J. Reduced degree of long-range phase synchrony in pathological human brain. Acta Neurobiol. Exp. 2001, 61, 309–318. [Google Scholar]
- Maurer, A.P.; McNaughton, B.L. Network and intrinsic cellular mechanisms underlying theta phase precession of hippocampal neurons. Trends Neurosci. 2007, 30, 325–333. [Google Scholar] [CrossRef]
- Huxter, J.R.; Miranda, J.A.; Dias, R. The hippocampal physiology of approaching middle-age: Early indicators of change. Hippocampus 2012, 22, 1923–1940. [Google Scholar] [CrossRef] [PubMed]
- Lenck-Santini, P.P.; Holmes, G.L. Altered phase precession and compression of temporal sequences by place cells in epileptic rats. J. Neurosci. 2008, 28, 5053–5062. [Google Scholar] [CrossRef] [PubMed]
- Almeida-Suhett, C.P.; Prager, E.M.; Pidoplichko, V.; Figueiredo, T.H.; Marini, A.M.; Li, Z.; Eiden, L.E.; Braga, M.F. GABAergic interneuronal loss and reduced inhibitory synaptic transmission in the hippocampal CA1 region after mild traumatic brain injury. Exp. Neurol. 2015, 273, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Huusko, N.; Romer, C.; Ndode-Ekane, X.E.; Lukasiuk, K.; Pitkanen, A. Loss of hippocampal interneurons and epileptogenesis: A comparison of two animal models of acquired epilepsy. Brain Struct. Funct. 2015, 220, 153–191. [Google Scholar] [CrossRef]
- Toth, Z.; Hollrigel, G.S.; Gorcs, T.; Soltesz, I. Instantaneous perturbation of dentate interneuronal networks by a pressure wave-transient delivered to the neocortex. J. Neurosci. 1997, 17, 8106–8117. [Google Scholar] [CrossRef]
- Drexel, M.; Puhakka, N.; Kirchmair, E.; Hortnagl, H.; Pitkanen, A.; Sperk, G. Expression of GABA receptor subunits in the hippocampus and thalamus after experimental traumatic brain injury. Neuropharmacology 2015, 88, 122–133. [Google Scholar] [CrossRef]
- Mtchedlishvili, Z.; Lepsveridze, E.; Xu, H.; Kharlamov, E.A.; Lu, B.; Kelly, K.M. Increase of GABAA receptor-mediated tonic inhibition in dentate granule cells after traumatic brain injury. Neurobiol. Dis. 2010, 38, 464–475. [Google Scholar] [CrossRef]
- O’Dell, D.M.; Gibson, C.J.; Wilson, M.S.; DeFord, S.M.; Hamm, R.J. Positive and negative modulation of the GABA(A) receptor and outcome after traumatic brain injury in rats. Brain Res. 2000, 861, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Fedor, M.; Berman, R.F.; Muizelaar, J.P.; Lyeth, B.G. Hippocampal theta dysfunction after lateral fluid percussion injury. J. Neurotrauma 2010, 27, 1605–1615. [Google Scholar] [CrossRef]
- Berryhill, M.E.; Martin, D. Cognitive Effects of Transcranial Direct Current Stimulation in Healthy and Clinical Populations: An Overview. J. ECT 2018, 34, e25–e35. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Truong, D.Q.; Esmaeilpour, Z.; Huang, Y.; Badran, B.W.; Bikson, M. Enhanced tES and tDCS computational models by meninges emulation. J. Neural Eng. 2020, 17, 016027. [Google Scholar] [CrossRef] [PubMed]
- Unal, G.; Ficek, B.; Webster, K.; Shahabuddin, S.; Truong, D.; Hampstead, B.; Bikson, M.; Tsapkini, K. Impact of brain atrophy on tDCS and HD-tDCS current flow: A modeling study in three variants of primary progressive aphasia. Neurol. Sci. 2020, 41, 1781–1789. [Google Scholar] [CrossRef]
- Shahid, S.; Wen, P.; Ahfock, T. Assessment of electric field distribution in anisotropic cortical and subcortical regions under the influence of tDCS. Bioelectromagnetics 2014, 35, 41–57. [Google Scholar] [CrossRef]
- Gomez-Tames, J.; Asai, A.; Hirata, A. Significant group-level hotspots found in deep brain regions during transcranial direct current stimulation (tDCS): A computational analysis of electric fields. Clin. Neurophysiol. 2020, 131, 755–765. [Google Scholar] [CrossRef]
- Grover, S.; Fayzullina, R.; Bullard, B.M.; Levina, V.; Reinhart, R.M.G. A meta-analysis suggests that tACS improves cognition in healthy, aging, and psychiatric populations. Sci. Transl. Med. 2023, 15, eabo2044. [Google Scholar] [CrossRef]
- Senkowski, D.; Sobirey, R.; Haslacher, D.; Soekadar, S.R. Boosting working memory: Uncovering the differential effects of tDCS and tACS. Cereb. Cortex Commun. 2022, 3, tgac018. [Google Scholar] [CrossRef]
- Feltman, K.A.; Hayes, A.M.; Bernhardt, K.A.; Nwala, E.; Kelley, A.M. Viability of tDCS in Military Environments for Performance Enhancement: A Systematic Review. Mil. Med. 2020, 185, e53–e60. [Google Scholar] [CrossRef]
- Mancuso, L.E.; Ilieva, I.P.; Hamilton, R.H.; Farah, M.J. Does Transcranial Direct Current Stimulation Improve Healthy Working Memory?: A Meta-Analytic Review. J. Cogn. Neurosci. 2016, 28, 1063–1089. [Google Scholar] [CrossRef] [PubMed]
- Hsu, W.Y.; Ku, Y.; Zanto, T.P.; Gazzaley, A. Effects of noninvasive brain stimulation on cognitive function in healthy aging and Alzheimer’s disease: A systematic review and meta-analysis. Neurobiol. Aging 2015, 36, 2348–2359. [Google Scholar] [CrossRef] [PubMed]
- Lefaucheur, J.P.; Antal, A.; Ayache, S.S.; Benninger, D.H.; Brunelin, J.; Cogiamanian, F.; Cotelli, M.; De Ridder, D.; Ferrucci, R.; Langguth, B.; et al. Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin. Neurophysiol. 2017, 128, 56–92. [Google Scholar] [CrossRef]
- Pergher, V.; Au, J.; Alizadeh Shalchy, M.; Santarnecchi, E.; Seitz, A.; Jaeggi, S.M.; Battelli, L. The benefits of simultaneous tDCS and working memory training on transfer outcomes: A systematic review and meta-analysis. Brain Stimul. 2022, 15, 1541–1551. [Google Scholar] [CrossRef] [PubMed]
- Jones, K.T.; Stephens, J.A.; Alam, M.; Bikson, M.; Berryhill, M.E. Longitudinal neurostimulation in older adults improves working memory. PLoS ONE 2015, 10, e0121904. [Google Scholar] [CrossRef]
- Johnson, E.L.; Arciniega, H.; Jones, K.T.; Kilgore-Gomez, A.; Berryhill, M.E. Individual predictors and electrophysiological signatures of working memory enhancement in aging. Neuroimage 2022, 250, 118939. [Google Scholar] [CrossRef]
- Jones, K.T.; Johnson, E.L.; Berryhill, M.E. Frontoparietal theta-gamma interactions track working memory enhancement with training and tDCS. Neuroimage 2020, 211, 116615. [Google Scholar] [CrossRef]
- Jones, K.T.; Peterson, D.J.; Blacker, K.J.; Berryhill, M.E. Frontoparietal neurostimulation modulates working memory training benefits and oscillatory synchronization. Brain Res. 2017, 1667, 28–40. [Google Scholar] [CrossRef]
- Grover, S.; Nguyen, J.A.; Reinhart, R.M.G. Synchronizing Brain Rhythms to Improve Cognition. Annu. Rev. Med. 2021, 72, 29–43. [Google Scholar] [CrossRef]
- Reinhart, R.M.G.; Nguyen, J.A. Working memory revived in older adults by synchronizing rhythmic brain circuits. Nat. Neurosci. 2019, 22, 820–827. [Google Scholar] [CrossRef]
- Srihagulang, C.; Vongsfak, J.; Vaniyapong, T.; Chattipakorn, N.; Chattipakorn, S.C. Potential roles of vagus nerve stimulation on traumatic brain injury: Evidence from in vivo and clinical studies. Exp. Neurol. 2022, 347, 113887. [Google Scholar] [CrossRef] [PubMed]
- Moller, A.; Nemmi, F.; Karlsson, K.; Klingberg, T. Transcranial Electric Stimulation Can Impair Gains during Working Memory Training and Affects the Resting State Connectivity. Front. Hum. Neurosci. 2017, 11, 364. [Google Scholar] [CrossRef] [PubMed]
- Ulam, F.; Shelton, C.; Richards, L.; Davis, L.; Hunter, B.; Fregni, F.; Higgins, K. Cumulative effects of transcranial direct current stimulation on EEG oscillations and attention/working memory during subacute neurorehabilitation of traumatic brain injury. Clin. Neurophysiol. 2015, 126, 486–496. [Google Scholar] [CrossRef] [PubMed]
- Antal, A.; Luber, B.; Brem, A.K.; Bikson, M.; Brunoni, A.R.; Cohen Kadosh, R.; Dubljevic, V.; Fecteau, S.; Ferreri, F.; Floel, A.; et al. Non-invasive brain stimulation and neuroenhancement. Clin. Neurophysiol. Pract. 2022, 7, 146–165. [Google Scholar] [CrossRef]
- Giacino, J.; Fins, J.J.; Machado, A.; Schiff, N.D. Central thalamic deep brain stimulation to promote recovery from chronic posttraumatic minimally conscious state: Challenges and opportunities. Neuromodulation 2012, 15, 339–349. [Google Scholar] [CrossRef] [PubMed]
- Chudy, D.; Deletis, V.; Almahariq, F.; Marcinkovic, P.; Skrlin, J.; Paradzik, V. Deep brain stimulation for the early treatment of the minimally conscious state and vegetative state: Experience in 14 patients. J. Neurosurg. 2018, 128, 1189–1198. [Google Scholar] [CrossRef]
- Verisezan Rosu, O.; Jemna, N.; Hapca, E.; Benedek, I.; Vadan, I.; Muresanu, I.; Chira, D.; Radu, C.; Chereches, R.; Strilciuc, S.; et al. Cerebrolysin and repetitive transcranial magnetic stimulation (rTMS) in patients with traumatic brain injury: A three-arm randomized trial. Front. Neurosci. 2023, 17, 1186751. [Google Scholar] [CrossRef]
- Lee, S.A.; Kim, M.K. Effect of Low Frequency Repetitive Transcranial Magnetic Stimulation on Depression and Cognition of Patients with Traumatic Brain Injury: A Randomized Controlled Trial. Med. Sci. Monit. 2018, 24, 8789–8794. [Google Scholar] [CrossRef]
- Franke, L.M.; Gitchel, G.T.; Perera, R.A.; Hadimani, R.L.; Holloway, K.L.; Walker, W.C. Randomized trial of rTMS in traumatic brain injury: Improved subjective neurobehavioral symptoms and increases in EEG delta activity. Brain Inj. 2022, 36, 683–692. [Google Scholar] [CrossRef]
- Rodrigues, P.A.; Zaninotto, A.L.; Ventresca, H.M.; Neville, I.S.; Hayashi, C.Y.; Brunoni, A.R.; de Paula Guirado, V.M.; Teixeira, M.J.; Paiva, W.S. The Effects of Repetitive Transcranial Magnetic Stimulation on Anxiety in Patients with Moderate to Severe Traumatic Brain Injury: A Post-hoc Analysis of a Randomized Clinical Trial. Front. Neurol. 2020, 11, 564940. [Google Scholar] [CrossRef]
- Neville, I.S.; Zaninotto, A.L.; Hayashi, C.Y.; Rodrigues, P.A.; Galhardoni, R.; Ciampi de Andrade, D.; Brunoni, A.R.; Amorim, R.L.O.; Teixeira, M.J.; Paiva, W.S. Repetitive TMS does not improve cognition in patients with TBI: A randomized double-blind trial. Neurology 2019, 93, e190–e199. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, J.E.; Lu, L.H.; Reid, M.W.; Leal, F.O.; Cooper, D.B. Correlates of Depression in U.S. Military Service Members with a History of Mild Traumatic Brain Injury. Mil. Med. 2019, 184, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Stilling, J.; Paxman, E.; Mercier, L.; Gan, L.S.; Wang, M.; Amoozegar, F.; Dukelow, S.P.; Monchi, O.; Debert, C. Treatment of Persistent Post-Traumatic Headache and Post-Concussion Symptoms Using Repetitive Transcranial Magnetic Stimulation: A Pilot, Double-Blind, Randomized Controlled Trial. J. Neurotrauma 2020, 37, 312–323. [Google Scholar] [CrossRef]
- Leung, A.; Metzger-Smith, V.; He, Y.; Cordero, J.; Ehlert, B.; Song, D.; Lin, L.; Shahrokh, G.; Tsai, A.; Vaninetti, M.; et al. Left Dorsolateral Prefrontal Cortex rTMS in Alleviating MTBI Related Headaches and Depressive Symptoms. Neuromodulation 2018, 21, 390–401. [Google Scholar] [CrossRef]
- Vaninetti, M.; Lim, M.; Khalaf, A.; Metzger-Smith, V.; Flowers, M.; Kunnel, A.; Yang, E.; Song, D.; Lin, L.; Tsai, A.; et al. fMRI findings in MTBI patients with headaches following rTMS. Sci. Rep. 2021, 11, 9573. [Google Scholar] [CrossRef] [PubMed]
- Charvet, L.; Harrison, A.T.; Mangold, K.; Moore, R.D.; Guo, S.; Zhang, J.; Datta, A.; Androulakis, X.M. Remotely supervised at-home tDCS for veterans with persistent post-traumatic headache: A double-blind, sham-controlled randomized pilot clinical trial. Front. Neurol. 2023, 14, 1184056. [Google Scholar] [CrossRef]
- Chang, C.-H.; Chou, P.-H.; Chuang, H.-Y.; Yao, C.-Y.; Chen, W.-J.; Tsai, H.-C. Efficacy of Non-Invasive Brain Stimulation for Treating Depression in Patients with Traumatic Brain Injury: A Meta-Analysis and Meta-Regression of Randomized Controlled Trials. J. Clin. Med. 2023, 12, 6030. [Google Scholar] [CrossRef]
- Moussavi, Z.; Suleiman, A.; Rutherford, G.; Ranjbar Pouya, O.; Dastgheib, Z.; Zhang, W.; Salter, J.; Wang, X.; Mansouri, B.; Lithgow, B. A Pilot Randomised Double-Blind Study of the Tolerability and Efficacy of Repetitive Transcranial Magnetic Stimulation on Persistent Post-Concussion Syndrome. Sci. Rep. 2019, 9, 5498. [Google Scholar] [CrossRef]
- Shanks, N.; Greek, R.; Greek, J. Are animal models predictive for humans? Philos. Ethics Humanit. Med. 2009, 4, 2. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McNerney, M.W.; Gurkoff, G.G.; Beard, C.; Berryhill, M.E. The Rehabilitation Potential of Neurostimulation for Mild Traumatic Brain Injury in Animal and Human Studies. Brain Sci. 2023, 13, 1402. https://doi.org/10.3390/brainsci13101402
McNerney MW, Gurkoff GG, Beard C, Berryhill ME. The Rehabilitation Potential of Neurostimulation for Mild Traumatic Brain Injury in Animal and Human Studies. Brain Sciences. 2023; 13(10):1402. https://doi.org/10.3390/brainsci13101402
Chicago/Turabian StyleMcNerney, M. Windy, Gene G. Gurkoff, Charlotte Beard, and Marian E. Berryhill. 2023. "The Rehabilitation Potential of Neurostimulation for Mild Traumatic Brain Injury in Animal and Human Studies" Brain Sciences 13, no. 10: 1402. https://doi.org/10.3390/brainsci13101402
APA StyleMcNerney, M. W., Gurkoff, G. G., Beard, C., & Berryhill, M. E. (2023). The Rehabilitation Potential of Neurostimulation for Mild Traumatic Brain Injury in Animal and Human Studies. Brain Sciences, 13(10), 1402. https://doi.org/10.3390/brainsci13101402