GLP-1 Receptor Agonists and Related Mental Health Issues; Insights from a Range of Social Media Platforms Using a Mixed-Methods Approach
Abstract
:1. Introduction
2. Materials and Methods
Confidentiality and Ethics
3. Results
3.1. The Complex Interrelation between Weight and Overall Levels of Psychological Wellbeing
- Positive reports
- Negative reports
3.2. Weight Loss Medication Intake and Either Occurrence, or Improvement, of: Sleep Disturbances; Anxiety; “Food Noise”; Suicidal Ideation; Addictive Behavior
- Sleep-related issues
- Anxiety issues
- “Food noise”
- Addictive behavior
3.3. Weight Loss Drugs; Related Safety and Challenges in Medications’ Access Issues
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sevilla-González, M.D.R.; Quintana-Mendoza, B.M.; Aguilar-Salinas, C.A. Interaction Between Depression, Obesity, and Type 2 Diabetes: A Complex Picture. Arch. Med. Res. 2017, 48, 582–591. [Google Scholar] [CrossRef]
- Fernandes, B.S.; Salagre, E.; Enduru, N.; Grande, I.; Vieta, E.; Zhao, Z. Insulin resistance in depression: A large meta-analysis of metabolic parameters and variation. Neurosci. Biobehav. Rev. 2022, 139, 104758. [Google Scholar] [CrossRef]
- Tabák, A.G.; Akbaraly, T.N.; Batty, G.D.; Kivimäki, M. Depression and type 2 diabetes: A causal association? Lancet Diabetes Endocrinol. 2014, 2, 236–245. [Google Scholar] [CrossRef]
- Yang, J.P.; Nhan, E.R.; Tung, E.L. COVID-19 anti-Asian racism and race-based stress: A phenomenological qualitative media analysis. Psychol. Trauma 2022, 14, 1374–1382. [Google Scholar] [CrossRef]
- Malhi, G.S.; Mann, J.J. Depression. Lancet 2018, 392, 2299–2312. [Google Scholar] [CrossRef]
- Caballero, B. Humans against Obesity: Who Will Win? Adv. Nutr. 2019, 10 (Suppl. S1), S4–S9. [Google Scholar] [CrossRef]
- Tomic, D.; Shaw, J.E.; Magliano, D.J. The burden and risks of emerging complications of diabetes mellitus. Nat. Rev. Endocrinol. 2022, 18, 525–539. [Google Scholar] [CrossRef]
- Baggio, L.L.; Drucker, D.J. Glucagon-like peptide-1 receptor co-agonists for treating metabolic disease. Mol. Metab. 2021, 46, 101090. [Google Scholar] [CrossRef]
- Brown, E.; Heerspink, H.J.L.; Cuthbertson, D.J.; Wilding, J.P.H. SGLT2 inhibitors and GLP-1 receptor agonists: Established and emerging indications. Lancet 2021, 398, 262–276. [Google Scholar] [CrossRef]
- Iqbal, J.; Wu, H.X.; Hu, N.; Zhou, Y.H.; Li, L.; Xiao, F.; Wang, T.; Jiang, H.L.; Xu, S.N.; Huang, B.L.; et al. Effect of glucagon-like peptide-1 receptor agonists on body weight in adults with obesity without diabetes mellitus-a systematic review and meta-analysis of randomized control trials. Obes. Rev. 2022, 23, e13435. [Google Scholar] [CrossRef]
- Li, S.; Vandvik, P.O.; Lytvyn, L.; Guyatt, G.H.; Palmer, S.C.; Rodriguez-Gutierrez, R.; Foroutan, F.; Agoritsas, T.; Siemieniuk, R.A.C.; Walsh, M.; et al. SGLT-2 inhibitors or GLP-1 receptor agonists for adults with type 2 diabetes: A clinical practice guideline. BMJ 2021, 373, n1091. [Google Scholar] [CrossRef]
- Azuri, J.; Hammerman, A.; Aboalhasan, E.; Sluckis, B.; Arbel, R. Tirzepatide versus semaglutide for weight loss in patients with type 2 diabetes mellitus: A value for money analysis. Diabetes Obes. Metab. 2023, 25, 961–964. [Google Scholar] [CrossRef] [PubMed]
- Han, S.H.; Safeek, R.; Ockerman, K.; Trieu, N.; Mars, P.; Klenke, A.; Furnas, H.; Sorice-Virk, S. Public Interest in the Off-Label Use of Glucagon-Like Peptide 1 Agonists (Ozempic) for Cosmetic Weight Loss: A Google Trends Analysis. Aesthet. Surg. J. 2023, sjad211. [Google Scholar] [CrossRef]
- Bonner, L. GLP-1 Receptor Agonists: Breaking down the Hype and Demand. American Pharmacists Association. Available online: https://pharmacist.com/Publications/Pharmacy-Today/Article/glp-1-receptor-agonists-breaking-down-the-hype-and-demand (accessed on 11 August 2023).
- Suran, M. As Ozempic’s Popularity Soars, Here’s What to Know About Semaglutide and Weight Loss. JAMA 2023, 329, 1627–1629. [Google Scholar] [CrossRef]
- Yang, A. National Geographic. Ozempic Is a Serious Drug with Serious Risks. Here’s What to Know. Available online: https://www.nationalgeographic.com/science/article/ozempic-tiktoks-favorite-weight-loss-drug-is-unproven (accessed on 11 August 2023).
- Blum, D. The New York Times. Available online: https://www.nytimes.com/2022/11/22/well/ozempic-diabetes-weight-loss.html (accessed on 11 August 2023).
- Whitley, H.P.; Trujillo, J.M.; Neumiller, J.J. Special Report: Potential Strategies for Addressing GLP-1 and Dual GLP-1/GIP Receptor Agonist Shortages. Clin. Diabetes 2023, 41, 467–473. [Google Scholar] [CrossRef]
- FDA. Medications Containing Semaglutide Marketed for Type 2 Diabetes or Weight Loss. Available online: https://www.fda.gov/drugs/postmarket-drug-safety-information-patients-and-providers/medications-containing-semaglutide-marketed-type-2-diabetes-or-weight-loss (accessed on 11 August 2023).
- Skydsgaard, N. Reuters. Novo Nordisk Says EMA Raised Safety Signal on Drugs Including Semaglutide. Available online: https://www.reuters.com/business/healthcare-pharmaceuticals/novo-nordisk-shares-slip-ema-drug-safety-signal-2023-06-22/ (accessed on 11 August 2023).
- Belluz, J.V. Obesity in the Age of Ozempic. Available online: https://www.vox.com/science-and-health/23584679/ozempic-wegovy-semaglutide-weight-loss-obesity (accessed on 11 August 2023).
- Davis, N. The Guardian. New Diabetes Drugs Do Not Tackle Root Causes of Obesity, Experts Warn. Available online: https://www.theguardian.com/society/2023/feb/05/new-diabetes-drugs-do-not-tackle-root-causes-of-obesity-experts-warn (accessed on 11 August 2023).
- Massy-Westropp, M. UNSW Sydney. What We Can Learn from the Ozempic Shortage. Available online: https://www.unsw.edu.au/newsroom/news/2023/02/what-we-can-learn-from-the-ozempic-shortage#:~:text=The%20Ozempic%20shortage%20illustrates%20the,current%20dearth%20of%20such%20medications (accessed on 11 August 2023).
- EMA. EMA Statement on Ongoing Review of GLP-1 Receptor Agonists. Available online: https://www.ema.europa.eu/en/news/ema-statement-ongoing-review-glp-1-receptor-agonists (accessed on 11 August 2023).
- FDA. Ozempic Prescribing Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/209637Orig1s009lbl.pdf (accessed on 11 August 2023).
- FDA. Rybelsus Prescribing Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/213051s012lbl.pdf (accessed on 11 August 2023).
- FDA. Wegovy Prescribing Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/215256s007lbl.pdf (accessed on 11 August 2023).
- Youmshajekian, L. Medscape. Evidence Weighed for Suicide/Self-Harm with Obesity Drugs. Available online: https://www.medscape.com/viewarticle/994266#vp_1 (accessed on 11 August 2023).
- Chilton, M.; Dunkley, A.; Carter, P.; Davies, M.J.; Khunti, K.; Gray, L.J. The effect of antiobesity drugs on waist circumference: A mixed treatment comparison. Diabetes Obes. Metab. 2014, 16, 237–247. [Google Scholar] [CrossRef]
- Qato, D.M.; Ozenberger, K.; Olfson, M. Prevalence of Prescription Medications With Depression as a Potential Adverse Effect Among Adults in the United States. JAMA 2018, 319, 2289–2298. [Google Scholar] [CrossRef]
- Spielmans, G.I.; Spence-Sing, T.; Parry, P. Duty to Warn: Antidepressant Black Box Suicidality Warning Is Empirically Justified. Front. Psychiatry 2020, 11, 18. [Google Scholar] [CrossRef]
- Goodman, W.K.; Storch, E.A. Commentary: Duty to Warn: Antidepressant Black Box Suicidality Warning is Empirically Justified. Front. Psychiatry 2020, 11, 363. [Google Scholar] [CrossRef]
- Plöderl, M.; Amendola, S.; Hengartner, M.P. Observational studies of antidepressant use and suicide risk are selectively published in psychiatric journals. J. Clin. Epidemiol. 2023, 162, 10–18. [Google Scholar] [CrossRef]
- Lagerberg, T.; Matthews, A.A.; Zhu, N.; Fazel, S.; Carrero, J.J.; Chang, Z. Effect of selective serotonin reuptake inhibitor treatment following diagnosis of depression on suicidal behaviour risk: A target trial emulation. Neuropsychopharmacology 2023, 48, 1760–1768. [Google Scholar] [CrossRef]
- Llamas, M. Black Box Warnings. Available online: https://www.drugwatch.com/fda/black-box-warnings/ (accessed on 11 August 2023).
- Kim, Y.; Huang, J.; Emery, S. Garbage in, Garbage Out: Data Collection, Quality Assessment and Reporting Standards for Social Media Data Use in Health Research, Infodemiology and Digital Disease Detection. J. Med. Internet Res. 2016, 18, e41. [Google Scholar] [CrossRef]
- Andreotta, M.; Nugroho, R.; Hurlstone, M.J.; Boschetti, F.; Farrell, S.; Walker, I.; Paris, C. Analyzing social media data: A mixed-methodss framework combining computational and qualitative text analysis. Behav. Res. Methods 2019, 51, 1766–1781. [Google Scholar] [CrossRef]
- Kajamaa, A.; Mattick, K.; de la Croix, A. How to … do mixed-methods research. Clin. Teach. 2020, 17, 267–271. [Google Scholar] [CrossRef]
- Holborn, T.; Schifano, F.; Deluca, P. No prescription? No problem: A qualitative study investigating self-medication with novel psychoactive substances (NPS). Int. J. Drug Policy 2023, 118, 104109. [Google Scholar] [CrossRef]
- Arillotta, D.; Guirguis, A.; Corkery, J.M.; Scherbaum, N.; Schifano, F. COVID-19 Pandemic Impact on Substance Misuse: A Social Media Listening, Mixed Method Analysis. Brain Sci. 2021, 11, 907. [Google Scholar] [CrossRef]
- Catalani, V.; Arillotta, D.; Corkery, J.M.; Guirguis, A.; Vento, A.; Schifano, F. Identifying New/Emerging Psychoactive Substances at the Time of COVID-19; A Web-Based Approach. Front. Psychiatry 2021, 11, 632405. [Google Scholar] [CrossRef]
- Chiappini, S.; Vickers-Smith, R.; Harris, D.; Papanti Pelletier, G.D.; Corkery, J.M.; Guirguis, A.; Martinotti, G.; Sensi, S.L.; Schifano, F. Is There a Risk for Semaglutide Misuse? Focus on the Food and Drug Administration’s FDA Adverse Events Reporting System (FAERS) Pharmacovigilance Dataset. Pharmaceuticals 2023, 16, 994. [Google Scholar] [CrossRef]
- YouTube. Main Page. Available online: https://www.youtube.com/ (accessed on 11 August 2023).
- TikTok. Main Page. Available online: https://www.tiktok.com/ (accessed on 11 August 2023).
- Reddit. Main Page. Available online: https://www.reddit.com/ (accessed on 11 August 2023).
- Exportcomments. Available online: https://exportcomments.com/ (accessed on 11 August 2023).
- Numerous.ai. Available online: https://numerous.ai/ (accessed on 11 August 2023).
- Orsolini, L.; Corkery, J.M.; Chiappini, S.; Guirguis, A.; Vento, A.; De Berardis, D.; Papanti, D.; Schifano, F. ‘New/Designer Benzodiazepines’: An Analysis of the Literature and Psychonauts’ Trip Reports. Curr. Neuropharmacol. 2020, 18, 809–837. [Google Scholar] [CrossRef]
- Moreno-Ortiz, A.; García-Gámez, M. Strategies for the Analysis of Large Social Media Corpora: Sampling and Keyword Extraction Methods. Corpus Pragmat. 2023, 7, 241–265. [Google Scholar] [CrossRef]
- Faviez, C.; Talmatkadi, M.; Foulquié, P.; Mebarki, A.; Schück, S.; Burgun, A.; Chen, X. Assessment of the early detection of anosmia-ageusia symptoms in COVID-19 on Twitter: A retrospective study. JMIR Infodemiol. 2023, 3, e41863. [Google Scholar] [CrossRef]
- Schoonenboom, J.; Johnson, R.B. How to Construct a Mixed Methods Research Design. Köln. Z. Soziol. 2017, 69, 107–131. [Google Scholar] [CrossRef]
- Shorten, A.; Smith, J. Mixed Methods Research: Expanding the Evidence Base. Evid. Based Nurs. 2017, 20, 74–75. [Google Scholar] [CrossRef]
- Tricco, A.C.; Zarin, W.; Lillie, E.; Jeblee, S.; Warren, R.; Khan, P.A.; Robson, R.; Pham, B.; Hirst, G.; Straus, S.E. Utility of social media and crowd-intelligence data for pharmacovigilance: A scoping review. BMC Med. Inform. Decis. Mak. 2018, 18, 38. [Google Scholar] [CrossRef]
- Schmälzle, R.; Huskey, R. Integrating media content analysis, reception analysis, and media effects studies. Front. Neurosci. 2023, 17, 1155750. [Google Scholar] [CrossRef]
- Kozinets, R.V. The Field behind the Screen: Using Netnography for Marketing Research in Online Communities. J. Mark. Res. 2002, 39, 61–72. [Google Scholar] [CrossRef]
- Kozinets, R.V. The International Encyclopedia of Digital Communication and Society. In International Encyclopedia of Digital Communication and Society; Mansell, R., Ed.; Sage: London, UK, 2015; Volume 12, pp. 1–8. [Google Scholar]
- Salzmann-Erikson, M.; Eriksson, H. A Mapping Review of Netnography in Nursing. Qual. Health Res. 2023, 33, 701–714. [Google Scholar] [CrossRef]
- Abouammoh, N.; Alhasan, K.; Raina, R.; Malki, K.A.; Aljamaan, F.; Ibraheem, T.; Muaygil, R.; Wahabi, A.; Jamal, A.; Wahabi, H.; et al. Exploring Perceptions and Experiences of CHATGPT in Medical Education: A qualitative study among medical college faculty and students in Saudi Arabia. medRxiv 2023. [Google Scholar] [CrossRef]
- Tunca, S.; Sezen, B.; Wilk, V. An exploratory content and sentiment analysis of the guardian metaverse articles using leximancer and natural language processing. J. Big Data 2023, 10, 82. [Google Scholar] [CrossRef]
- Saffar, A.H.; Mann, T.K.; Ofoghi, B. Textual emotion detection in health: Advances and applications. J. Biomed. Inform. 2023, 137, 104258. [Google Scholar] [CrossRef]
- Alvarez-Mon, M.A.; Llavero-Valero, M.; Asunsolo Del Barco, A.; Zaragozá, C.; Ortega, M.A.; Lahera, G.; Quintero, J.; Alvarez-Mon, M. Areas of Interest and Attitudes Toward Antiobesity Drugs: Thematic and Quantitative Analysis Using Twitter. J. Med. Internet Res. 2021, 23, e24336. [Google Scholar] [CrossRef]
- Dzaye, O.; Berning, P.; Razavi, A.C.; Adhikari, R.; Jha, K.; Nasir, K.; Ayers, J.W.; Mortensen, M.B.; Blaha, M.J. Online searches for SGLT-2 inhibitors and GLP-1 receptor agonists correlate with prescription rates in the United States: An infodemiological study. Front. Cardiovasc. Med. 2022, 9, 936651. [Google Scholar] [CrossRef]
- Tenderich, A.; Tenderich, B.; Barton, T.; Richards, S.E. What Are PWDs (People With Diabetes) Doing Online? A Netnographic Analysis. J. Diabetes Sci. Technol. 2019, 13, 187–197. [Google Scholar] [CrossRef]
- Golder, S.; Bach, M.; O’Connor, K.; Gross, R.; Hennessy, S.; Gonzalez Hernandez, G. Public Perspectives on Anti-Diabetic Drugs: Exploratory Analysis of Twitter Posts. JMIR Diabetes 2021, 6, e24681. [Google Scholar] [CrossRef]
- Burki, T. Social media and misinformation in diabetes and obesity. Lancet Diabetes Endocrinol. 2022, 10, 845. [Google Scholar] [CrossRef]
- Stellefson, M.; Paige, S.; Apperson, A.; Spratt, S. Social Media Content Analysis of Public Diabetes Facebook Groups. J. Diabetes Sci. Technol. 2019, 13, 428–438. [Google Scholar] [CrossRef]
- Razzak, F.A.; Saab, D.; Haddad, F.; Antoun, J. Content analysis of social media regarding obesity as a chronic disease. PeerJ Comput. Sci. 2023, 9, e1321. [Google Scholar] [CrossRef]
- Yu, L.; Jiang, W.; Ren, Z.; Xu, S.; Zhang, L.; Hu, X. Detecting changes in attitudes toward depression on Chinese social media: A text analysis. J Affect. Disord. 2021, 280 Pt A, 354–363. [Google Scholar] [CrossRef]
- Nasralah, T.; El-Gayar, O.; Wang, Y. Social Media Text Mining Framework for Drug Abuse: Development and Validation Study With an Opioid Crisis Case Analysis. J. Med. Internet Res. 2020, 22, e18350. [Google Scholar] [CrossRef]
- Zolnoori, M.; Fung, K.W.; Fontelo, P.; Kharrazi, H.; Faiola, A.; Wu YS, S.; Stoffel, V.; Patrick, T. Identifying the Underlying Factors Associated With Patients’ Attitudes Toward Antidepressants: Qualitative and Quantitative Analysis of Patient Drug Reviews. JMIR Ment. Health 2018, 5, e10726. [Google Scholar] [CrossRef]
- Babu, N.V.; Kanaga, E.G.M. Sentiment Analysis in Social Media Data for Depression Detection Using Artificial Intelligence: A Review. SN Comput. Sci. 2022, 3, 74. [Google Scholar] [CrossRef]
- Skafle, I.; Nordahl-Hansen, A.; Quintana, D.S.; Wynn, R.; Gabarron, E. Misinformation About COVID-19 Vaccines on Social Media: Rapid Review. J. Med. Internet Res. 2022, 24, e37367. [Google Scholar] [CrossRef]
- Spitale, G.; Biller-Andorno, N.; Germani, F. Concerns Around Opposition to the Green Pass in Italy: Social Listening Analysis by Using a Mixed Methods Approach. J. Med. Internet Res. 2022, 24, e34385. [Google Scholar] [CrossRef]
- The Guardian. TGA Investigates Influencers after Diabetes Drug Ozempic Promoted as Weight-Loss Treatment. Available online: https://www.theguardian.com/australia-news/2023/jan/06/tga-investigates-influencers-after-diabetes-drug-ozempic-promoted-as-weight-loss-treatment (accessed on 11 August 2023).
- The Independent. Jameela Jamil Calls Out ‘Extreme’ Weight Loss at Oscars Amid Ozempic Controversy. Available online: https://www.independent.co.uk/life-style/ozempic-weight-loss-jameela-jamil-oscars-b2300525.html (accessed on 11 August 2023).
- Bour, C.; Ahne, A.; Schmitz, S.; Perchoux, C.; Dessenne, C.; Fagherazzi, G. The Use of Social Media for Health Research Purposes: Scoping Review. J. Med. Internet Res. 2021, 23, e25736. [Google Scholar] [CrossRef]
- Vandenbosch, L.; Fardouly, J.; Tiggemann, M. Social media and body image: Recent trends and future directions. Curr. Opin. Psychol. 2022, 45, 101289. [Google Scholar] [CrossRef]
- Hallward, L.; Feng, O.; Duncan, L.R. An exploration and comparison of #BodyPositivity and #BodyNeutrality content on TikTok. Eat Behav. 2023, 50, 101760. [Google Scholar] [CrossRef]
- TGA about the Ozempic (Semaglutide) Shortage 2022 and 2023. Available online: https://www.tga.gov.au/safety/shortages/information-about-major-medicine-shortages/about-ozempic-semaglutide-shortage-2022-and-2023 (accessed on 11 August 2023).
- Davey, Z.; Schifano, F.; Corazza, O.; Deluca, P.; Psychonaut Web Mapping Group. e-Psychonauts: Conducting research in online drug forum communities. J. Ment. Health 2012, 21, 386–394. [Google Scholar] [CrossRef]
- Orsolini, L.; Papanti, G.D.; Francesconi, G.; Schifano, F. Mind navigators of chemicals’ experimenters? A web-based description of e-psychonauts. Cyberpsychol Behav. Soc. Netw. 2015, 18, 296–300. [Google Scholar] [CrossRef]
- Grifell, M.; Mir Fuster, G.; Ventura Vilamala, M.; Galindo Guarín, L.; Carbón Mallol, X.; Hart, C.L.; Pérez Sola, V.; Colom Victoriano, F. Self-reported Subjective Effects of Analytically Confirmed New Psychoactive Substances Consumed by e-Psychonauts: Protocol for a Longitudinal Study Using a New Internet-Based Methodology. JMIR Res. Protoc. 2021, 10, e24433. [Google Scholar] [CrossRef]
- Mavragani, A. Infodemiology and Infoveillance: Scoping Review. J. Med. Internet Res. 2020, 22, e16206. [Google Scholar] [CrossRef]
- Barros, J.M.; Duggan, J.; Rebholz-Schuhmann, D. The Application of Internet-Based Sources for Public Health Surveillance (Infoveillance): Systematic Review. J. Med. Internet Res. 2020, 22, e13680. [Google Scholar] [CrossRef]
- Singer, M.; Bulled, N.; Ostrach, B.; Mendenhall, E. Syndemics and the biosocial conception of health. Lancet 2017, 389, 941–950. [Google Scholar] [CrossRef]
- Tewahade, S.; Berrigan, D.; Slotman, B.; Stinchcomb, D.G.; Sayer, R.D.; Catenacci, V.A.; Ostendorf, D.M. Impact of the built, social, and food environment on long-term weight loss within a behavioral weight loss intervention. Obes. Sci. Pract. 2022, 9, 261–273. [Google Scholar] [CrossRef]
- Thomas, M.K.; Lammert, L.J.; Beverly, E.A. Food Insecurity and its Impact on Body Weight, Type 2 Diabetes, Cardiovascular Disease, and Mental Health. Curr. Cardiovasc. Risk Rep. 2021, 15, 15. [Google Scholar] [CrossRef]
- Leone, T.; Coast, E.; Narayanan, S.; de Graft Aikins, A. Diabetes and depression comorbidity and socio-economic status in low and middle income countries (LMICs): A mapping of the evidence. Glob. Health 2012, 8, 39. [Google Scholar] [CrossRef]
- Vasilj, I.; Vasilj, M.; Babić, D.; Curić, I.; Sarić, B.; Sarić, B.; Pehar, D.; Martinac, M.; Bevanda, M. The impact of socio-economic processes on the health of the adult population. Psychiatr. Danub. 2014, 26 (Suppl. S2), 387–394. [Google Scholar]
- Cooper, D.H.; Ramachandra, R.; Ceban, F.; Di Vincenzo, J.D.; Rhee, T.G.; Mansur, R.B.; Teopiz, K.M.; Gill, H.; Ho, R.; Cao, B.; et al. Glucagon-like peptide 1 (GLP-1) receptor agonists as a protective factor for incident depression in patients with diabetes mellitus: A systematic review. J. Psychiatr. Res. 2023, 164, 80–89. [Google Scholar] [CrossRef]
- Kim, Y.K.; Kim, O.Y.; Song, J. Alleviation of Depression by Glucagon-Like Peptide 1 Through the Regulation of Neuroinflammation, Neurotransmitters, Neurogenesis, and Synaptic Function. Front. Pharmacol. 2020, 11, 1270. [Google Scholar] [CrossRef]
- Pozzi, M.; Mazhar, F.; Peeters, G.G.A.M.; Vantaggiato, C.; Nobile, M.; Clementi, E.; Radice, S.; Carnovale, C. A systematic review of the antidepressant effects of glucagon-like peptide 1 (GLP-1) functional agonists: Further link between metabolism and psychopathology: Special Section on “Translational and Neuroscience Studies in Affective Disorders”. J. Affect. Disord. 2019, 257, S0165-0327(19)30593-2. [Google Scholar] [CrossRef]
- Mehdi, S.F.; Pusapati, S.; Anwar, M.S.; Lohana, D.; Kumar, P.; Nandula, S.A.; Nawaz, F.K.; Tracey, K.; Yang, H.; LeRoith, D.; et al. Glucagon-like peptide-1, a multi-faceted anti-inflammatory agent. Front. Immunol. 2023, 14, 1148209. [Google Scholar] [CrossRef]
- Kuckuck, S.; van der Valk, E.S.; Scheurink, A.J.W.; van der Voorn, B.; Iyer, A.M.; Visser, J.A.; Delhanty, P.J.D.; van den Berg, S.A.A.; van Rossum, E.F.C. Glucocorticoids, stress and eating: The mediating role of appetite-regulating hormones. Obes. Rev. 2023, 24, e13539. [Google Scholar] [CrossRef]
- Rzepczyk, S.; Dolińska-Kaczmarek, K.; Uruska, A.; Żaba, C. The Other Face of Insulin-Overdose and Its Effects. Toxics 2022, 10, 123. [Google Scholar] [CrossRef]
- Garcia-Rizo, C.; Kirkpatrick, B.; Fernandez-Egea, E.; Oliveira, C.; Bernardo, M. Abnormal glycemic homeostasis at the onset of serious mental illnesses: A common pathway. Psychoneuroendocrinology 2016, 67, 70–75. [Google Scholar] [CrossRef]
- Conti, C.; Mennitto, C.; Di Francesco, G.; Fraticelli, F.; Vitacolonna, E.; Fulcheri, M. Clinical Characteristics of Diabetes Mellitus and Suicide Risk. Front. Psychiatry 2017, 8, 40. [Google Scholar] [CrossRef]
- Tabb, K.M.; Perez-Flores, N.; Wang, Y.; Huang, H. The burden of suicidal ideation among persons with type II diabetes: A scoping review. J. Psychosom. Res. 2017, 103, 113–118. [Google Scholar] [CrossRef]
- Sher, L. Prevention of suicidal behavior in diabetes: The role of primary care. QJM 2022, 115, 789–792. [Google Scholar] [CrossRef]
- Martins, L.B.; Braga Tibães, J.R.; Berk, M.; Teixeira, A.L. Diabetes and mood disorders: Shared mechanisms and therapeutic opportunities. Int. J. Psychiatry Clin. Pract. 2022, 26, 183–195. [Google Scholar] [CrossRef]
- Amiri, S.; Behnezhad, S. Body mass index and risk of suicide: A systematic review and meta-analysis. J. Affect. Disord. 2018, 238, 615–625. [Google Scholar] [CrossRef]
- Klinitzke, G.; Steinig, J.; Blüher, M.; Kersting, A.; Wagner, B. Obesity and suicide risk in adults—A systematic review. J. Affect. Disord. 2013, 145, 277–284. [Google Scholar] [CrossRef]
- Park, H.; Lee, K. The relationship between metabolically healthy obesity and suicidal ideation. J. Affect. Disord. 2021, 292, 369–374. [Google Scholar] [CrossRef]
- Nauck, M.A.; Quast, D.R.; Wefers, J.; Pfeiffer, A.F.H. The evolving story of incretins (GIP and GLP-1) in metabolic and cardiovascular disease: A pathophysiological update. Diabetes Obes. Metab. 2021, 23 (Suppl. S3), 5–29. [Google Scholar] [CrossRef]
- Kabahizi, A.; Wallace, B.; Lieu, L.; Chau, D.; Dong, Y.; Hwang, E.S.; Williams, K.W. Glucagon-like peptide-1 (GLP-1) signalling in the brain: From neural circuits and metabolism to therapeutics. Br. J. Pharmacol. 2022, 179, 600–624. [Google Scholar] [CrossRef]
- Chand, S.P.; Arif, H. Depression. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Hasegawa, A.; Somatori, K.; Nishimura, H.; Hattori, Y.; Kunisato, Y. Depression, Rumination, and Impulsive Action: A Latent Variable Approach to Behavioral Impulsivity. J. Psychol. 2021, 155, 717–737. [Google Scholar] [CrossRef]
- Hellberg, S.N.; Abramowitz, J.S.; Ojalehto, H.J.; Butcher, M.W.; Buchholz, J.L.; Riemann, B.C. Co-occurring depression and obsessive-compulsive disorder: A dimensional network approach. J. Affect. Disord. 2022, 317, 417–426. [Google Scholar] [CrossRef]
- Zhou, H.X.; Chen, X.; Shen, Y.Q.; Li, L.; Chen, N.X.; Zhu, Z.C.; Castellanos, F.X.; Yan, C.G. Rumination and the default mode network: Meta-analysis of brain imaging studies and implications for depression. Neuroimage 2020, 206, 116287. [Google Scholar] [CrossRef]
- Anderberg, R.H.; Richard, J.E.; Hansson, C.; Nissbrandt, H.; Bergquist, F.; Skibicka, K.P. GLP-1 is both anxiogenic and antidepressant; divergent effects of acute and chronic GLP-1 on emotionality. Psychoneuroendocrinology 2016, 65, 54–66. [Google Scholar] [CrossRef]
- Tsai, W.H.; Sung, F.C.; Chiu, L.T.; Shih, Y.H.; Tsai, M.C.; Wu, S.I. Decreased Risk of Anxiety in Diabetic Patients Receiving Glucagon-like Peptide-1 Receptor Agonist: A Nationwide, Population-Based Cohort Study. Front. Pharmacol. 2022, 13, 765446. [Google Scholar] [CrossRef]
- Zhu, C.; Li, H.; Kong, X.; Wang, Y.; Sun, T.; Wang, F. Possible Mechanisms Underlying the Effects of Glucagon-Like Peptide-1 Receptor Agonist on Cocaine Use Disorder. Front. Pharmacol. 2022, 13, 819470. [Google Scholar] [CrossRef]
- Chuong, V.; Farokhnia, M.; Khom, S.; Pince, C.L.; Elvig, S.K.; Vlkolinsky, R.; Marchette, R.C.; Koob, G.F.; Roberto, M.; Vendruscolo, L.F.; et al. The glucagon-like peptide-1 (GLP-1) analogue semaglutide reduces alcohol drinking and modulates central GABA neurotransmission. JCI Insight 2023, 8, e170671. [Google Scholar] [CrossRef]
- Eren-Yazicioglu, C.Y.; Yigit, A.; Dogruoz, R.E.; Yapici-Eser, H. Can GLP-1 Be a Target for Reward System Related Disorders? A Qualitative Synthesis and Systematic Review Analysis of Studies on Palatable Food, Drugs of Abuse, and Alcohol. Front. Behav. Neurosci. 2021, 14, 614884. [Google Scholar] [CrossRef]
- Klausen, M.K.; Thomsen, M.; Wortwein, G.; Fink-Jensen, A. The role of glucagon-like peptide 1 (GLP-1) in addictive disorders. Br. J. Pharmacol. 2022, 179, 625–641. [Google Scholar] [CrossRef]
- Blundell, J.; Finlayson, G.; Axelsen, M.; Flint, A.; Gibbons, C.; Kvist, T.; Hjerpsted, J.B. Effects of once-weekly semaglutide on appetite, energy intake, control of eating, food preference and body weight in subjects with obesity. Diabetes Obes. Metab. 2017, 19, 1242–1251. [Google Scholar] [CrossRef]
- Hernandez, N.S.; Schmidt, H.D. Central GLP-1 receptors: Novel molecular targets for cocaine use disorder. Physiol. Behav. 2019, 206, 93–105. [Google Scholar] [CrossRef]
- Sun, W.; Kober, H. Regulating food craving: From mechanisms to interventions. Physiol. Behav. 2020, 222, 112878. [Google Scholar] [CrossRef]
- Brierley, D.I.; Holt, M.K.; Singh, A.; de Araujo, A.; McDougle, M.; Vergara, M.; Afaghani, M.H.; Lee, S.J.; Scott, K.; Maske, C.; et al. Central and peripheral GLP-1 systems independently suppress eating. Nat. Metab. 2021, 3, 258–273. [Google Scholar] [CrossRef]
- Banks, D.L.; House, L.; Killourhy, K. Cherry-picking for complex data: Robust structure discovery. Philos. Trans. A Math. Phys. Eng. Sci. 2009, 367, 4339–4359. [Google Scholar] [CrossRef]
- Morse, J.M. “Cherry picking”: Writing from thin data. Qual. Health Res. 2010, 20, 3. [Google Scholar] [CrossRef]
- Ruksakulpiwat, S.; Kumar, A.; Ajibade, A. Using ChatGPT in Medical Research: Current Status and Future Directions. J. Multidiscip. Healthc. 2023, 16, 1513–1520. [Google Scholar] [CrossRef]
- Golan, R.; Ripps, S.J.; Reddy, R.; Loloi, J.; Bernstein, A.P.; Connelly, Z.M.; Golan, N.S.; Ramasamy, R. ChatGPT’s Ability to Assess Quality and Readability of Online Medical Information: Evidence From a Cross-Sectional Study. Cureus 2023, 15, e42214. [Google Scholar] [CrossRef]
- Kim, J.K.; Chua, M.; Rickard, M.; Lorenzo, A. ChatGPT and large language model (LLM) chatbots: The current state of acceptability and a proposal for guidelines on utilization in academic medicine. J Pediatr. Urol. 2023, 19, 598–604. [Google Scholar] [CrossRef]
- Blanco-González, A.; Cabezón, A.; Seco-González, A.; Conde-Torres, D.; Antelo-Riveiro, P.; Piñeiro, Á.; Garcia-Fandino, R. The Role of AI in Drug Discovery: Challenges, Opportunities, and Strategies. Pharmaceuticals 2023, 16, 891. [Google Scholar] [CrossRef]
- Salah, M.; Al Halbusi, H.; Abdelfattah, F. May the force of text data analysis be with you: Unleashing the power of generative AI for social psychology research. Comput. Hum. Behav. 2023, 1, 100006. [Google Scholar] [CrossRef]
- Salvagno, M.; Taccone, F.S.; Gerli, A.G. Can artificial intelligence help for scientific writing? Crit Care 2023, 27, 75. [Google Scholar] [CrossRef]
- Hill-Yardin, E.L.; Hutchinson, M.R.; Laycock, R.; Spencer, S.J. A Chat(GPT) about the future of scientific publishing. Brain Behav. Immun. 2023, 110, 152–154. [Google Scholar] [CrossRef]
- Ashraf, H.; Ashfaq, H. The Role of ChatGPT in Medical Research: Progress and Limitations. Ann. Biomed. Eng. 2023. [Google Scholar] [CrossRef]
- Emsley, R. ChatGPT: These are not hallucinations—they’re fabrications and falsifications. Schizophrenia 2023, 9, 52. [Google Scholar] [CrossRef]
- Bhattacharyya, M.; Miller, V.M.; Bhattacharyya, D.; Miller, L.E. High Rates of Fabricated and Inaccurate References in ChatGPT-Generated Medical Content. Cureus 2023, 15, e39238. [Google Scholar] [CrossRef]
- Athaluri, S.A.; Manthena, S.V.; Kesapragada, V.S.R.K.M.; Yarlagadda, V.; Dave, T.; Duddumpudi, R.T.S. Exploring the Boundaries of Reality: Investigating the Phenomenon of Artificial Intelligence Hallucination in Scientific Writing Through ChatGPT References. Cureus 2023, 15, e37432. [Google Scholar] [CrossRef]
- Goddard, J. Hallucinations in ChatGPT: A Cautionary Tale for Biomedical Researchers. Am. J. Med. 2023, 136, 1059–1060. [Google Scholar] [CrossRef]
- McGowan, A.; Gui, Y.; Dobbs, M.; Shuster, S.; Cotter, M.; Selloni, A.; Goodman, M.; Srivastava, A.; Cecchi, G.A.; Corcoran, C.M. ChatGPT and Bard exhibit spontaneous citation fabrication during psychiatry literature search. Psychiatry Res. 2023, 326, 115334. [Google Scholar] [CrossRef]
- Algarni, M.A.; Algarni, A.A.M.; Alqarni, W.A.; Alqassim, A.Y. Knowledge and Attitude of the General Population in Saudi Arabia Toward Weight Management Medications (WMMs): A Cross-Sectional Study. Cureus. 2023, 15, e42875. [Google Scholar] [CrossRef]
Keywords | Number of Matches from All Comments |
---|---|
| 204 62 165 353 66 19 620 |
Mental Health |
Themes |
|
|
|
|
|
Depression |
Themes |
|
|
|
|
|
Mood |
Themes |
|
|
|
|
|
Anxiety |
Themes |
|
|
|
|
|
Compulsion |
Themes |
|
|
|
|
|
Sleep |
Themes |
|
|
|
|
|
Insomnia |
Themes |
|
|
|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arillotta, D.; Floresta, G.; Guirguis, A.; Corkery, J.M.; Catalani, V.; Martinotti, G.; Sensi, S.L.; Schifano, F. GLP-1 Receptor Agonists and Related Mental Health Issues; Insights from a Range of Social Media Platforms Using a Mixed-Methods Approach. Brain Sci. 2023, 13, 1503. https://doi.org/10.3390/brainsci13111503
Arillotta D, Floresta G, Guirguis A, Corkery JM, Catalani V, Martinotti G, Sensi SL, Schifano F. GLP-1 Receptor Agonists and Related Mental Health Issues; Insights from a Range of Social Media Platforms Using a Mixed-Methods Approach. Brain Sciences. 2023; 13(11):1503. https://doi.org/10.3390/brainsci13111503
Chicago/Turabian StyleArillotta, Davide, Giuseppe Floresta, Amira Guirguis, John Martin Corkery, Valeria Catalani, Giovanni Martinotti, Stefano L. Sensi, and Fabrizio Schifano. 2023. "GLP-1 Receptor Agonists and Related Mental Health Issues; Insights from a Range of Social Media Platforms Using a Mixed-Methods Approach" Brain Sciences 13, no. 11: 1503. https://doi.org/10.3390/brainsci13111503
APA StyleArillotta, D., Floresta, G., Guirguis, A., Corkery, J. M., Catalani, V., Martinotti, G., Sensi, S. L., & Schifano, F. (2023). GLP-1 Receptor Agonists and Related Mental Health Issues; Insights from a Range of Social Media Platforms Using a Mixed-Methods Approach. Brain Sciences, 13(11), 1503. https://doi.org/10.3390/brainsci13111503