Identifying the Phenotypes of Diffuse Axonal Injury Following Traumatic Brain Injury
Abstract
:1. Introduction
2. Axon Structure
3. Axolemma
4. Sub-Axolemmal Proteins
5. Microtubules
6. Neurofilaments
7. Axon Initial Segment and Nodes of Ranvier
8. Co-Existence of Different Phenotypes of Axonal Injury
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dewan, M.C.; Rattani, A.; Gupta, S.; Baticulon, R.E.; Hung, Y.-C.; Punchak, M.; Agrawal, A.; Adeleye, A.O.; Shrime, M.G.; Rubiano, A.M.; et al. Estimating the Global Incidence of Traumatic Brain Injury. J. Neurosurg. 2019, 130, 1080–1097. [Google Scholar] [CrossRef]
- Finfer, S.R.; Cohen, J. Severe Traumatic Brain Injury. Resuscitation 2001, 48, 77–90. [Google Scholar] [CrossRef] [PubMed]
- Maas, A.I.R.; Stocchetti, N.; Bullock, R. Moderate and Severe Traumatic Brain Injury in Adults. Lancet Neurol. 2008, 7, 728–741. [Google Scholar] [CrossRef] [PubMed]
- Johnson, V.E.; Stewart, W.; Smith, D.H. Axonal Pathology in Traumatic Brain Injury. Exp. Neurol. 2013, 246, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Büki, A.; Povlishock, J.T. All Roads Lead to Disconnection?—Traumatic Axonal Injury Revisited. Acta Neurochir. Wien. 2006, 148, 181–193. [Google Scholar] [CrossRef]
- Ma, M. Role of Calpains in the Injury-Induced Dysfunction and Degeneration of the Mammalian Axon. Neurobiol. Dis. 2013, 60, 61–79. [Google Scholar] [CrossRef]
- Shin, S.S.; Karlsson, M.; Mazandi, V.M.; Ranganathan, A.; Hallowell, T.; Delso, N.; Kilbaugh, T.J. Axonal Transport Dysfunction of Mitochondria in Traumatic Brain Injury: A Novel Therapeutic Target. Exp. Neurol. 2020, 329, 113311. [Google Scholar] [CrossRef]
- Benaroya, H. Brain Energetics, Mitochondria, and Traumatic Brain Injury. Rev. Neurosci. 2020, 31, 363–390. [Google Scholar] [CrossRef]
- Svandova, E.; Lesot, H.; Sharpe, P.; Matalova, E. Making the Head: Caspases in Life and Death. Front. Cell Dev. Biol. 2023, 10, 1075751. [Google Scholar] [CrossRef]
- Baracaldo-Santamaría, D.; Ariza-Salamanca, D.F.; Corrales-Hernández, M.G.; Pachón-Londoño, M.J.; Hernandez-Duarte, I.; Calderon-Ospina, C.-A. Revisiting Excitotoxicity in Traumatic Brain Injury: From Bench to Bedside. Pharmaceutics 2022, 14, 152. [Google Scholar] [CrossRef]
- Shahim, P.; Politis, A.; van der Merwe, A.; Moore, B.; Chou, Y.-Y.; Pham, D.L.; Butman, J.A.; Diaz-Arrastia, R.; Gill, J.M.; Brody, D.L.; et al. Neurofilament Light as a Biomarker in Traumatic Brain Injury. Neurology 2020, 95, e610–e622. [Google Scholar] [CrossRef]
- Kevenaar, J.T.; Hoogenraad, C.C. The Axonal Cytoskeleton: From Organization to Function. Front. Mol. Neurosci. 2015, 8, 44. [Google Scholar] [CrossRef]
- Dubey, S.; Bhembre, N.; Bodas, S.; Veer, S.; Ghose, A.; Callan-Jones, A.; Pullarkat, P. The Axonal Actin-Spectrin Lattice Acts as a Tension Buffering Shock Absorber. eLife 2020, 9, e51772. [Google Scholar] [CrossRef]
- Maxwell, W.L.; Watt, C.; Pediani, J.D.; Graham, D.I.; Adams, J.H.; Gennarelli, T.A. Localisation of Calcium Ions and Calcium-ATPase Activity within Myelinated Nerve Fibres of the Adult Guinea-Pig Optic Nerve. J. Anat. 1991, 176, 71–79. [Google Scholar] [PubMed]
- Povlishock, J.T.; Becker, D.P.; Cheng, C.L.; Vaughan, G.W. Axonal Change in Minor Head Injury. J. Neuropathol. Exp. Neurol. 1983, 42, 225–242. [Google Scholar] [CrossRef]
- Duan, Y.; Huang, W.; Zhang, J.; Mu, J.; Zhou, Y.; Dong, H. Role of Integrin and Its Potential as a Novel Postmortem Biomarker in Traumatic Axonal Injury. Int. J. Legal Med. 2023, 137, 843–849. [Google Scholar] [CrossRef]
- Christman, C.W.; Grady, M.S.; Walker, S.A.; Holloway, K.L.; Povlishock, J.T. Ultrastructural Studies of Diffuse Axonal Injury in Humans. J. Neurotrauma 1994, 11, 173–186. [Google Scholar] [CrossRef]
- Povlishock, J.T.; Marmarou, A.; McIntosh, T.; Trojanowski, J.Q.; Moroi, J. Impact Acceleration Injury in the Rat: Evidence for Focal Axolemmal Change and Related Neurofilament Sidearm Alteration. J. Neuropathol. Exp. Neurol. 1997, 56, 347–359. [Google Scholar] [CrossRef]
- Pettus, E.H.; Povlishock, J.T. Characterization of a Distinct Set of Intra-Axonal Ultrastructural Changes Associated with Traumatically Induced Alteration in Axolemmal Permeability. Brain Res. 1996, 722, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Pettus, E.H.; Christman, C.W.; Giebel, M.L.; Povlishock, J.T. Traumatically Induced Altered Membrane Permeability: Its Relationship to Traumatically Induced Reactive Axonal Change. J. Neurotrauma 1994, 11, 507–522. [Google Scholar] [CrossRef]
- Czeiter, E.; Büki, A.; Bukovics, P.; Farkas, O.; Pál, J.; Kövesdi, E.; Dóczi, T.; Sándor, J. Calpain Inhibition Reduces Axolemmal Leakage in Traumatic Axonal Injury. Molecules 2009, 14, 5115–5123. [Google Scholar] [CrossRef] [PubMed]
- Stone, J.R.; Okonkwo, D.O.; Dialo, A.O.; Rubin, D.G.; Mutlu, L.K.; Povlishock, J.T.; Helm, G.A. Impaired Axonal Transport and Altered Axolemmal Permeability Occur in Distinct Populations of Damaged Axons Following Traumatic Brain Injury. Exp. Neurol. 2004, 190, 59–69. [Google Scholar] [CrossRef]
- Okonkwo, D.O.; Pettus, E.H.; Moroi, J.; Povlishock, J.T. Alteration of the Neurofilament Sidearm and Its Relation to Neurofilament Compaction Occurring with Traumatic Axonal Injury. Brain Res. 1998, 784, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Geddes, J.F.; Vowles, G.H.; Nicoll, J.A.R.; Révész, T. Neuronal Cytoskeletal Changes Are an Early Consequence of Repetitive Head Injury. Acta Neuropathol. 1999, 98, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Geddes, D.M.; LaPlaca, M.C.; Cargill, R.S. Susceptibility of Hippocampal Neurons to Mechanically Induced Injury. Exp. Neurol. 2003, 184, 420–427. [Google Scholar] [CrossRef]
- Smith, D.H.; Wolf, J.A.; Lusardi, T.A.; Lee, V.M.; Meaney, D.F. High Tolerance and Delayed Elastic Response of Cultured Axons to Dynamic Stretch Injury. J. Neurosci. Off. J. Soc. Neurosci. 1999, 19, 4263–4269. [Google Scholar] [CrossRef]
- Prado, G.R.; Ross, J.D.; DeWeerth, S.P.; LaPlaca, M.C. Mechanical Trauma Induces Immediate Changes in Neuronal Network Activity. J. Neural Eng. 2005, 2, 148. [Google Scholar] [CrossRef]
- Cullen, D.K.; Vernekar, V.N.; LaPlaca, M.C. Trauma-Induced Plasmalemma Disruptions in Three-Dimensional Neural Cultures Are Dependent on Strain Modality and Rate. J. Neurotrauma 2011, 28, 2219–2233. [Google Scholar] [CrossRef]
- Harris, J.P.; Mietus, C.J.; Browne, K.D.; Wofford, K.L.; Keating, C.E.; Brown, D.P.; Johnson, B.N.; Wolf, J.A.; Smith, D.H.; Cohen, A.S.; et al. Neuronal Somatic Plasmalemmal Permeability and Dendritic Beading Caused by Head Rotational Traumatic Brain Injury in Pigs–An Exploratory Study. Front. Cell. Neurosci. 2023, 17, 1055455. [Google Scholar] [CrossRef]
- Farkas, O.; Lifshitz, J.; Povlishock, J.T. Mechanoporation Induced by Diffuse Traumatic Brain Injury: An Irreversible or Reversible Response to Injury? J. Neurosci. 2006, 26, 3130–3140. [Google Scholar] [CrossRef]
- Saatman, K.E.; Abai, B.; Grosvenor, A.; Vorwerk, C.K.; Smith, D.H.; Meaney, D.F. Traumatic Axonal Injury Results in Biphasic Calpain Activation and Retrograde Transport Impairment in Mice. J. Cereb. Blood Flow Metab. 2003, 23, 34–42. [Google Scholar] [CrossRef]
- Pozo Devoto, V.M.; Lacovich, V.; Feole, M.; Bhat, P.; Chovan, J.; Čarna, M.; Onyango, I.G.; Dragišić, N.; Sűsserová, M.; Barrios-Llerena, M.E.; et al. Unraveling Axonal Mechanisms of Traumatic Brain Injury. Acta Neuropathol. Commun. 2022, 10, 140. [Google Scholar] [CrossRef]
- Iwata, A.; Stys, P.K.; Wolf, J.A.; Chen, X.-H.; Taylor, A.G.; Meaney, D.F.; Smith, D.H. Traumatic Axonal Injury Induces Proteolytic Cleavage of the Voltage-Gated Sodium Channels Modulated by Tetrodotoxin and Protease Inhibitors. J. Neurosci. 2004, 24, 4605–4613. [Google Scholar] [CrossRef]
- von Reyn, C.R.; Mott, R.E.; Siman, R.; Smith, D.H.; Meaney, D.F. Mechanisms of Calpain Mediated Proteolysis of Voltage Gated Sodium Channel α-Subunits Following in Vitro Dynamic Stretch Injury: Mechanisms of Calpain Mediated NaCh Proteolysis. J. Neurochem. 2012, 121, 793–805. [Google Scholar] [CrossRef] [PubMed]
- Yuen, T.J.; Browne, K.D.; Iwata, A.; Smith, D.H. Sodium Channelopathy Induced by Mild Axonal Trauma Worsens Outcome after a Repeat Injury. J. Neurosci. Res. 2009, 87, 3620–3625. [Google Scholar] [CrossRef]
- Geddes-Klein, D.M.; Serbest, G.; Mesfin, M.N.; Cohen, A.S.; Meaney, D.F. Pharmacologically Induced Calcium Oscillations Protect Neurons from Increases in Cytosolic Calcium after Trauma. J. Neurochem. 2006, 97, 462–474. [Google Scholar] [CrossRef]
- Fineman, I.; Hovda, D.A.; Smith, M.; Yoshino, A.; Becker, D.P. Concussive Brain Injury Is Associated with a Prolonged Accumulation of Calcium: A 45Ca Autoradiographic Study. Brain Res. 1993, 624, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.A.; Lin, W.; Morris, T.; Banderali, U.; Juranka, P.F.; Morris, C.E. Membrane Trauma and Na+ Leak from Nav1.6 Channels. Am. J. Physiol.-Cell Physiol. 2009, 297, C823–C834. [Google Scholar] [CrossRef] [PubMed]
- Wolf, J.A.; Stys, P.K.; Lusardi, T.; Meaney, D.; Smith, D.H. Traumatic Axonal Injury Induces Calcium Influx Modulated by Tetrodotoxin-Sensitive Sodium Channels. J. Neurosci. 2001, 21, 1923–1930. [Google Scholar] [CrossRef] [PubMed]
- Staal, J.A.; Dickson, T.C.; Gasperini, R.; Liu, Y.; Foa, L.; Vickers, J.C. Initial Calcium Release from Intracellular Stores Followed by Calcium Dysregulation Is Linked to Secondary Axotomy Following Transient Axonal Stretch Injury. J. Neurochem. 2010, 112, 1147–1155. [Google Scholar] [CrossRef]
- Gaub, B.M.; Kasuba, K.C.; Mace, E.; Strittmatter, T.; Laskowski, P.R.; Geissler, S.A.; Hierlemann, A.; Fussenegger, M.; Roska, B.; Müller, D.J. Neurons Differentiate Magnitude and Location of Mechanical Stimuli. Proc. Natl. Acad. Sci. USA 2020, 117, 848–856. [Google Scholar] [CrossRef]
- Barsukova, A.G.; Forte, M.; Bourdette, D. Focal Increases of Axoplasmic Ca2+, Aggregation of Sodium–Calcium Exchanger, N-Type Ca2+ Channel, and Actin Define the Sites of Spheroids in Axons Undergoing Oxidative Stress. J. Neurosci. 2012, 32, 12028–12037. [Google Scholar] [CrossRef]
- Büki, A.; Okonkwo, D.O.; Wang, K.K.W.; Povlishock, J.T. Cytochrome c Release and Caspase Activation in Traumatic Axonal Injury. J. Neurosci. 2000, 20, 2825–2834. [Google Scholar] [CrossRef]
- Saatman, K.E.; Creed, J.; Raghupathi, R. Calpain as a Therapeutic Target in Traumatic Brain Injury. Neurotherapeutics 2010, 7, 31–42. [Google Scholar] [CrossRef]
- Büki, A.; Siman, R.; Trojanowski, J.Q.; Povlishock, J.T. The Role of Calpain-Mediated Spectrin Proteolysis in Traumatically Induced Axonal Injury. J. Neuropathol. Exp. Neurol. 1999, 58, 365–375. [Google Scholar] [CrossRef]
- von Reyn, C.R.; Spaethling, J.M.; Mesfin, M.N.; Ma, M.; Neumar, R.W.; Smith, D.H.; Siman, R.; Meaney, D.F. Calpain Mediates Proteolysis of the Voltage-Gated Sodium Channel α-Subunit. J. Neurosci. 2009, 29, 10350–10356. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; McEwan, P.P.; Ameen-Ali, K.E.; Tomasevich, A.; Kennedy-Dietrich, C.; Palma, A.; Arroyo, E.J.; Dolle, J.-P.; Johnson, V.E.; Stewart, W.; et al. Concussion Leads to Widespread Axonal Sodium Channel Loss and Disruption of the Node of Ranvier. Acta Neuropathol. 2022, 144, 967–985. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ou, S.-W.; Wang, Y.-J. Distribution and Function of Voltage-Gated Sodium Channels in the Nervous System. Channels 2017, 11, 534–554. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Li, Z.; Jiang, Y.; Pan, X.; Wu, J.; Cristofori-Armstrong, B.; Smith, J.J.; Chin, Y.K.Y.; Lei, J.; Zhou, Q.; et al. Structural Basis for the Modulation of Voltage-Gated Sodium Channels by Animal Toxins. Science 2018, 362, eaau2596. [Google Scholar] [CrossRef] [PubMed]
- Lukinavičius, G.; Reymond, L.; D’Este, E.; Masharina, A.; Göttfert, F.; Ta, H.; Güther, A.; Fournier, M.; Rizzo, S.; Waldmann, H.; et al. Fluorogenic Probes for Live-Cell Imaging of the Cytoskeleton. Nat. Methods 2014, 11, 731–733. [Google Scholar] [CrossRef]
- Yang, Y.; Lacas-Gervais, S.; Morest, D.K.; Solimena, M.; Rasband, M.N. βIV Spectrins Are Essential for Membrane Stability and the Molecular Organization of Nodes of Ranvier. J. Neurosci. 2004, 24, 7230–7240. [Google Scholar] [CrossRef]
- Ogawa, Y.; Schafer, D.P.; Horresh, I.; Bar, V.; Hales, K.; Yang, Y.; Susuki, K.; Peles, E.; Stankewich, M.C.; Rasband, M.N. Spectrins and ankyrinB Constitute a Specialized Paranodal Cytoskeleton. J. Neurosci. Off. J. Soc. Neurosci. 2006, 26, 5230–5239. [Google Scholar] [CrossRef] [PubMed]
- Hammarlund, M.; Jorgensen, E.M.; Bastiani, M.J. Axons Break in Animals Lacking β-Spectrin. J. Cell Biol. 2007, 176, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Chai, Z.; Gu, S.; Lykotrafitis, G. Dynamics of the Axon Plasma Membrane Skeleton. Soft Matter 2023, 19, 2514–2528. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.C.; Akle, V.; Zheng, W.; Dave, J.R.; Tortella, F.C.; Hayes, R.L.; Wang, K.K. Comparing Calpain- and Caspase-3-Mediated Degradation Patterns in Traumatic Brain Injury by Differential Proteome Analysis. Biochem. J. 2006, 394, 715–725. [Google Scholar] [CrossRef]
- Pike, B.R.; Zhao, X.; Newcomb, J.K.; Posmantur, R.M.; Wang, K.K.; Hayes, R.L. Regional Calpain and Caspase-3 Proteolysis of Alpha-Spectrin after Traumatic Brain Injury. Neuroreport 1998, 9, 2437–2442. [Google Scholar] [CrossRef]
- Deng, Y.; Thompson, B.M.; Gao, X.; Hall, E.D. Temporal Relationship of Peroxynitrite-Induced Oxidative Damage, Calpain-Mediated Cytoskeletal Degradation and Neurodegeneration after Traumatic Brain Injury. Exp. Neurol. 2007, 205, 154–165. [Google Scholar] [CrossRef]
- Pike, B.R.; Flint, J.; Dutta, S.; Johnson, E.; Wang, K.K.; Hayes, R.L. Accumulation of Non-Erythroid Alpha II-Spectrin and Calpain-Cleaved Alpha II-Spectrin Breakdown Products in Cerebrospinal Fluid after Traumatic Brain Injury in Rats. J. Neurochem. 2001, 78, 1297–1306. [Google Scholar] [CrossRef]
- Mondello, S.; Robicsek, S.A.; Gabrielli, A.; Brophy, G.M.; Papa, L.; Tepas, J.; Robertson, C.; Buki, A.; Scharf, D.; Jixiang, M.; et al. αII-Spectrin Breakdown Products (SBDPs): Diagnosis and Outcome in Severe Traumatic Brain Injury Patients. J. Neurotrauma 2010, 27, 1203–1213. [Google Scholar] [CrossRef]
- Siman, R.; Cui, H.; Wewerka, S.S.; Hamel, L.; Smith, D.H.; Zwank, M.D. Serum SNTF, a Surrogate Marker of Axonal Injury, Is Prognostic for Lasting Brain Dysfunction in Mild TBI Treated in the Emergency Department. Front. Neurol. 2020, 11, 249. [Google Scholar] [CrossRef]
- Kim, J.H.; Kwon, S.J.; Stankewich, M.C.; Huh, G.Y.; Glantz, S.B.; Morrow, J.S. Reactive Protoplasmic and Fibrous Astrocytes Contain High Levels of Calpain-Cleaved Alpha 2 Spectrin. Exp. Mol. Pathol. 2016, 100, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Roberts-Lewis, J.; Savage, M.; Marcy, V.; Pinsker, L.; Siman, R. Immunolocalization of Calpain I-Mediated Spectrin Degradation to Vulnerable Neurons in the Ischemic Gerbil Brain. J. Neurosci. 1994, 14, 3934–3944. [Google Scholar] [CrossRef]
- Lemasters, J.J.; Theruvath, T.P.; Zhong, Z.; Nieminen, A.-L. Mitochondrial Calcium and the Permeability Transition in Cell Death. Biochim. Biophys. Acta 2009, 1787, 1395–1401. [Google Scholar] [CrossRef]
- Johnson, V.E.; Stewart, W.; Weber, M.T.; Cullen, D.K.; Siman, R.; Smith, D.H. SNTF Immunostaining Reveals Previously Undetected Axonal Pathology in Traumatic Brain Injury. Acta Neuropathol. 2016, 131, 115–135. [Google Scholar] [CrossRef] [PubMed]
- Kant, A.; Johnson, V.E.; Arena, J.D.; Dollé, J.P.; Smith, D.H.; Shenoy, V.B. Modeling Links Softening of Myelin and Spectrin Scaffolds of Axons after a Concussion to Increased Vulnerability to Repeated Injuries. Proc. Natl. Acad. Sci. USA 2021, 118, e2024961118. [Google Scholar] [CrossRef]
- Sharkey, J.M.; Quarrington, R.D.; Krieg, J.L.; Kaukas, L.; Turner, R.J.; Leonard, A.; Jones, C.F.; Corrigan, F. Evaluating the Effect of Post-Traumatic Hypoxia on the Development of Axonal Injury Following Traumatic Brain Injury in Sheep. Brain Res. 2023, 1817, 148475. [Google Scholar] [CrossRef] [PubMed]
- Kobeissy, F.H.; Liu, M.C.; Yang, Z.; Zhang, Z.; Zheng, W.; Glushakova, O.; Mondello, S.; Anagli, J.; Hayes, R.L.; Wang, K.K. Degradation of βII-Spectrin Protein by Calpain-2 and Caspase-3 Under Neurotoxic and Traumatic Brain Injury Conditions. Mol. Neurobiol. 2015, 52, 696–709. [Google Scholar] [CrossRef] [PubMed]
- Fadić, R.; Vergara, J.; Alvarez, J. Microtubules and Caliber of Central and Peripheral Processes of Sensory Axons. J. Comp. Neurol. 1985, 236, 258–264. [Google Scholar] [CrossRef]
- Krebs, A.; Goldie, K.N.; Hoenger, A. Structural Rearrangements in Tubulin Following Microtubule Formation. EMBO Rep. 2005, 6, 227–232. [Google Scholar] [CrossRef]
- Kadavath, H.; Hofele, R.V.; Biernat, J.; Kumar, S.; Tepper, K.; Urlaub, H.; Mandelkow, E.; Zweckstetter, M. Tau Stabilizes Microtubules by Binding at the Interface between Tubulin Heterodimers. Proc. Natl. Acad. Sci. USA 2015, 112, 7501–7506. [Google Scholar] [CrossRef]
- Gittes, F.; Mickey, B.; Nettleton, J.; Howard, J. Flexural Rigidity of Microtubules and Actin Filaments Measured from Thermal Fluctuations in Shape. J. Cell Biol. 1993, 120, 923–934. [Google Scholar] [CrossRef]
- O’Brien, E.T.; Salmon, E.D.; Erickson, H.P. How Calcium Causes Microtubule Depolymerization. Cell Motil. Cytoskeleton 1997, 36, 125–135. [Google Scholar] [CrossRef]
- Yoshimura, N.; Tsukahara, I.; Murachi, T. Calpain and Calpastatin in Porcine Retina. Identification and Action on Microtubule-Associated Proteins. Biochem. J. 1984, 223, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, W.L. Histopathological Changes at Central Nodes of Ranvier after Stretch-Injury. Microsc. Res. Tech. 1996, 34, 522–535. [Google Scholar] [CrossRef]
- Maxwell, W.L.; Graham, D.I. Loss of Axonal Microtubules and Neurofilaments after Stretch-Injury to Guinea Pig Optic Nerve Fibers. J. Neurotrauma 1997, 14, 603–614. [Google Scholar] [CrossRef] [PubMed]
- Castejón, O.J.; de Castejón, H.V. Structural Patterns of Injured Mitochondria in Human Oedematous Cerebral Cortex. Brain Inj. 2004, 18, 1107–1126. [Google Scholar] [CrossRef]
- Tang-Schomer, M.D.; Johnson, V.E.; Baas, P.W.; Stewart, W.; Smith, D.H. Partial Interruption of Axonal Transport Due to Microtubule Breakage Accounts for the Formation of Periodic Varicosities after Traumatic Axonal Injury. Exp. Neurol. 2012, 233, 364–372. [Google Scholar] [CrossRef]
- Ahmadzadeh, H.; Smith, D.H.; Shenoy, V.B. Viscoelasticity of Tau Proteins Leads to Strain Rate-Dependent Breaking of Microtubules during Axonal Stretch Injury: Predictions from a Mathematical Model. Biophys. J. 2014, 106, 1123–1133. [Google Scholar] [CrossRef] [PubMed]
- Kilinc, D.; Gallo, G.; Barbee, K.A. Mechanical Membrane Injury Induces Axonal Beading through Localized Activation of Calpain. Exp. Neurol. 2009, 219, 553–561. [Google Scholar] [CrossRef]
- Smith, D.H.; Hicks, R.; Povlishock, J.T. Therapy Development for Diffuse Axonal Injury. J. Neurotrauma 2013, 30, 307–323. [Google Scholar] [CrossRef]
- Weber, M.T.; Arena, J.D.; Xiao, R.; Wolf, J.A.; Johnson, V.E. CLARITY Reveals a More Protracted Temporal Course of Axon Swelling and Disconnection than Previously Described Following Traumatic Brain Injury. Brain Pathol. 2019, 29, 437–450. [Google Scholar] [CrossRef] [PubMed]
- Hortobágyi, T.; Wise, S.; Hunt, N.; Cary, N.; Djurovic, V.; Fegan-Earl, A.; Shorrock, K.; Rouse, D.; Al-Sarraj, S. Traumatic Axonal Damage in the Brain Can Be Detected Using β-APP Immunohistochemistry within 35 Min after Head Injury to Human Adults. Neuropathol. Appl. Neurobiol. 2007, 33, 226–237. [Google Scholar] [CrossRef]
- Morrison, C.; MacKenzie, J.M. Axonal Injury in Head Injuries with Very Short Survival Times. Neuropathol. Appl. Neurobiol. 2008, 34, 124–125. [Google Scholar] [CrossRef] [PubMed]
- McKenzie, K.J.; McLellan, D.R.; Gentleman, S.M.; Maxwell, W.L.; Gennarelli, T.A.; Graham, D.I. Is Beta-APP a Marker of Axonal Damage in Short-Surviving Head Injury? Acta Neuropathol. 1996, 92, 608–613. [Google Scholar] [CrossRef] [PubMed]
- Gentleman, S.M.; Roberts, G.W.; Gennarelli, T.A.; Maxwell, W.L.; Adams, J.H.; Kerr, S.; Graham, D.I. Axonal Injury: A Universal Consequence of Fatal Closed Head Injury? Acta Neuropathol. 1995, 89, 537–543. [Google Scholar] [CrossRef]
- Adams, J.H.; Doyle, D.; Ford, I.; Gennarelli, T.A.; Graham, D.I.; McLellan, D.R. Diffuse Axonal Injury in Head Injury: Definition, Diagnosis and Grading. Histopathology 1989, 15, 49–59. [Google Scholar] [CrossRef]
- Johnson, V.E.; Stewart, J.E.; Begbie, F.D.; Trojanowski, J.Q.; Smith, D.H.; Stewart, W. Inflammation and White Matter Degeneration Persist for Years after a Single Traumatic Brain Injury. Brain 2013, 136, 28–42. [Google Scholar] [CrossRef]
- Blumbergs, P.C.; Scott, G.; Manavis, J.; Wainwright, H.; Simpson, D.A.; McLean, A.J. Stalning Af Amyloid Percursor Protein to Study Axonal Damage in Mild Head Injury. Lancet 1994, 344, 1055–1056. [Google Scholar] [CrossRef]
- McKee, A.C.; Daneshvar, D.H.; Alvarez, V.E.; Stein, T.D. The Neuropathology of Sport. Acta Neuropathol. 2014, 127, 29–51. [Google Scholar] [CrossRef]
- Hellewell, S.C.; Yan, E.B.; Agyapomaa, D.A.; Bye, N.; Morganti-Kossmann, M.C. Post-Traumatic Hypoxia Exacerbates Brain Tissue Damage: Analysis of Axonal Injury and Glial Responses. J. Neurotrauma 2010, 27, 1997–2010. [Google Scholar] [CrossRef]
- Mohamed, A.Z.; Corrigan, F.; Collins-Praino, L.E.; Plummer, S.L.; Soni, N.; Nasrallah, F.A. Evaluating Spatiotemporal Microstructural Alterations Following Diffuse Traumatic Brain Injury. NeuroImage Clin. 2020, 25, 102136. [Google Scholar] [CrossRef] [PubMed]
- Hoshino, S.; Kobayashi, S.; Furukawa, T.; Asakura, T.; Teramoto, A. Multiple Immunostaining Methods to Detect Traumatic Axonal Injury in the Rat Fluid-Percussion Brain Injury Model. Neurol. Med.-Chir. 2003, 43, 165–173. [Google Scholar] [CrossRef]
- Bramlett, H.M.; Green, E.J.; Dietrich, W.D. Hippocampally Dependent and Independent Chronic Spatial Navigational Deficits Following Parasagittal Fluid Percussion Brain Injury in the Rat. Brain Res. 1997, 762, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Stone, J.R.; Singleton, R.H.; Povlishock, J.T. Intra-Axonal Neurofilament Compaction Does Not Evoke Local Axonal Swelling in All Traumatically Injured Axons. Exp. Neurol. 2001, 172, 320–331. [Google Scholar] [CrossRef]
- Mouzon, B.C.; Bachmeier, C.; Ferro, A.; Ojo, J.-O.; Crynen, G.; Acker, C.M.; Davies, P.; Mullan, M.; Stewart, W.; Crawford, F. Chronic Neuropathological and Neurobehavioral Changes in a Repetitive Mild Traumatic Brain Injury Model. Ann. Neurol. 2014, 75, 241–254. [Google Scholar] [CrossRef]
- Mouzon, B.; Saltiel, N.; Ferguson, S.; Ojo, J.; Lungmus, C.; Lynch, C.; Algamal, M.; Morin, A.; Carper, B.; Bieler, G.; et al. Impact of Age on Acute Post-TBI Neuropathology in Mice Expressing Humanized Tau: A Chronic Effects of Neurotrauma Consortium Study. Brain Inj. 2018, 32, 1285–1294. [Google Scholar] [CrossRef] [PubMed]
- Pierce, J.E.S.; Smith, D.H.; Trojanowski, J.Q.; McIntosh, T.K. Enduring Cognitive, Neurobehavioral and Histopathological Changes Persist for up to One Year Following Severe Experimental Brain Injury in Rats. Neuroscience 1998, 87, 359–369. [Google Scholar] [CrossRef]
- Krieg, J.L.; Leonard, A.V.; Tuner, R.J.; Corrigan, F. Characterization of Traumatic Brain Injury in a Gyrencephalic Ferret Model Using the Novel Closed Head Injury Model of Engineered Rotational Acceleration (CHIMERA). Neurotrauma Rep. 2023, 4, 761–780. [Google Scholar] [CrossRef]
- Chen, S.-F.; Richards, H.K.; Smielewski, P.; Johnström, P.; Salvador, R.; Pickard, J.D.; Harris, N.G. Relationship between Flow-Metabolism Uncoupling and Evolving Axonal Injury after Experimental Traumatic Brain Injury. J. Cereb. Blood Flow Metab. 2004, 24, 1025–1036. [Google Scholar] [CrossRef]
- Harper, M.M.; Rudd, D.; Meyer, K.J.; Kanthasamy, A.G.; Anantharam, V.; Pieper, A.A.; Vázquez-Rosa, E.; Shin, M.-K.; Chaubey, K.; Koh, Y.; et al. Identification of Chronic Brain Protein Changes and Protein Targets of Serum Auto-Antibodies after Blast-Mediated Traumatic Brain Injury. Heliyon 2020, 6, e03374. [Google Scholar] [CrossRef]
- Elder, G.A.; Friedrich, V.L.; Kang, C.; Bosco, P.; Gourov, A.; Tu, P.H.; Zhang, B.; Lee, V.M.; Lazzarini, R.A. Requirement of Heavy Neurofilament Subunit in the Development of Axons with Large Calibers. J. Cell Biol. 1998, 143, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.R.; Pinto-Costa, R.; Sousa, S.C.; Sousa, M.M. The Regulation of Axon Diameter: From Axonal Circumferential Contractility to Activity-Dependent Axon Swelling. Front. Mol. Neurosci. 2018, 11, 319. [Google Scholar] [CrossRef] [PubMed]
- Lariviere, R.C.; Julien, J.-P. Functions of Intermediate Filaments in Neuronal Development and Disease. J. Neurobiol. 2004, 58, 131–148. [Google Scholar] [CrossRef] [PubMed]
- Janmey, P.A.; Leterrier, J.-F.; Herrmann, H. Assembly and Structure of Neurofilaments. Curr. Opin. Colloid Interface Sci. 2003, 8, 40–47. [Google Scholar] [CrossRef]
- Leermakers, F.A.M.; Zhulina, E.B. How the Projection Domains of NF-L and Alpha-Internexin Determine the Conformations of NF-M and NF-H in Neurofilaments. Eur. Biophys. J. EBJ 2010, 39, 1323–1334. [Google Scholar] [CrossRef]
- Julien, J.P.; Mushynski, W.E. Multiple Phosphorylation Sites in Mammalian Neurofilament Polypeptides. J. Biol. Chem. 1982, 257, 10467–10470. [Google Scholar] [CrossRef]
- Leterrier, J.F.; Käs, J.; Hartwig, J.; Vegners, R.; Janmey, P.A. Mechanical Effects of Neurofilament Cross-Bridges. Modulation by Phosphorylation, Lipids, and Interactions with F-Actin. J. Biol. Chem. 1996, 271, 15687–15694. [Google Scholar] [CrossRef]
- Gotow, T.; Tanaka, J. Phosphorylation of Neurofilament H Subunit as Related to Arrangement of Neurofilaments. J. Neurosci. Res. 1994, 37, 691–713. [Google Scholar] [CrossRef] [PubMed]
- Yuan, A.; Rao, M.V.; Veeranna; Nixon, R.A. Neurofilaments and Neurofilament Proteins in Health and Disease. Cold Spring Harb. Perspect. Biol. 2017, 9, a018309. [Google Scholar] [CrossRef]
- Nixon, R.A.; Paskevich, P.A.; Sihag, R.K.; Thayer, C.Y. Phosphorylation on Carboxyl Terminus Domains of Neurofilament Proteins in Retinal Ganglion Cell Neurons in Vivo: Influences on Regional Neurofilament Accumulation, Interneurofilament Spacing, and Axon Caliber. J. Cell Biol. 1994, 126, 1031–1046. [Google Scholar] [CrossRef] [PubMed]
- Rao, M.V.; Campbell, J.; Yuan, A.; Kumar, A.; Gotow, T.; Uchiyama, Y.; Nixon, R.A. The Neurofilament Middle Molecular Mass Subunit Carboxyl-Terminal Tail Domains Is Essential for the Radial Growth and Cytoskeletal Architecture of Axons but Not for Regulating Neurofilament Transport Rate. J. Cell Biol. 2003, 163, 1021–1031. [Google Scholar] [CrossRef] [PubMed]
- Malka-Gibor, E.; Kornreich, M.; Laser-Azogui, A.; Doron, O.; Zingerman-Koladko, I.; Harapin, J.; Medalia, O.; Beck, R. Phosphorylation-Induced Mechanical Regulation of Intrinsically Disordered Neurofilament Proteins. Biophys. J. 2017, 112, 892–900. [Google Scholar] [CrossRef] [PubMed]
- Yuan, A.; Sasaki, T.; Kumar, A.; Peterhoff, C.M.; Rao, M.V.; Liem, R.K.; Julien, J.-P.; Nixon, R.A. Peripherin Is a Subunit of Peripheral Nerve Neurofilaments: Implications for Differential Vulnerability of CNS and Peripheral Nervous System Axons. J. Neurosci. 2012, 32, 8501–8508. [Google Scholar] [CrossRef]
- Chung, R.S.; Staal, J.A.; McCormack, G.H.; Dickson, T.C.; Cozens, M.A.; Chuckowree, J.A.; Quilty, M.C.; Vickers, J.C. Mild Axonal Stretch Injury In Vitro Induces a Progressive Series of Neurofilament Alterations Ultimately Leading to Delayed Axotomy. J. Neurotrauma 2005, 22, 1081–1091. [Google Scholar] [CrossRef]
- Gallyas, F.; Pál, J.; Farkas, O.; Dóczi, T. The Fate of Axons Subjected to Traumatic Ultrastructural (Neurofilament) Compaction: An Electron-Microscopic Study. Acta Neuropathol. 2006, 111, 229–237. [Google Scholar] [CrossRef]
- Garcia, M.L.; Lobsiger, C.S.; Shah, S.B.; Deerinck, T.J.; Crum, J.; Young, D.; Ward, C.M.; Crawford, T.O.; Gotow, T.; Uchiyama, Y.; et al. NF-M Is an Essential Target for the Myelin-Directed “Outside-in” Signaling Cascade That Mediates Radial Axonal Growth. J. Cell Biol. 2003, 163, 1011–1020. [Google Scholar] [CrossRef] [PubMed]
- Rao, M.V.; Yuan, A.; Campbell, J.; Kumar, A.; Nixon, R.A. The C-Terminal Domains of NF-H and NF-M Subunits Maintain Axonal Neurofilament Content by Blocking Turnover of the Stationary Neurofilament Network. PLoS ONE 2012, 7, e44320. [Google Scholar] [CrossRef]
- Pant, H.C. Dephosphorylation of Neurofilament Proteins Enhances Their Susceptibility to Degradation by Calpain. Biochem. J. 1988, 256, 665–668. [Google Scholar] [CrossRef]
- Chen, X.-H.; Meaney, D.F.; Xu, B.-N.; Nonaka, M.; Mcintosh, T.K.; Wolf, J.A.; Saatman, K.E.; Smith, D.H. Evolution of Neurofilament Subtype Accumulation in Axons Following Diffuse Brain Injury in the Pig. J. Neuropathol. Exp. Neurol. 1999, 58, 588–596. [Google Scholar] [CrossRef] [PubMed]
- Grady, M.S.; McLaughlin, M.R.; Christman, C.W.; Valadka, A.B.; Fligner, C.L.; Povlishock, J.T. The Use of Antibodies Targeted Against the Neurofilament Subunits for the Detection of Diffuse Axonal Injury in Humans. J. Neuropathol. Exp. Neurol. 1993, 52, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Yaghmai, A.; Povlishock, J. Traumatically Induced Reactive Change as Visualized through the Use of Monoclonal Antibodies Targeted to Neurofilament Subunits. J. Neuropathol. Exp. Neurol. 1992, 51, 158–176. [Google Scholar] [CrossRef]
- Smith, D.H.; Chen, X.-H.; Xu, B.-N.; McIntosh, T.K.; Gennarelli, T.A.; Meaney, D.E. Characterization of Diffuse Axonal Pathology and Selective Hippocampal Damage Following Inertial Brain Trauma in the Pig. J. Neuropathol. Exp. Neurol. 1997, 56, 822–834. [Google Scholar] [CrossRef]
- Christman, C.W.; Salvant, J.B.; Walker, S.A.; Povlishock, J.T. Characterization of a Prolonged Regenerative Attempt by Diffusely Injured Axons Following Traumatic Brain Injury in Adult Cat: A Light and Electron Microscopic Immunocytochemical Study. Acta Neuropathol. 1997, 94, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Doust, Y.V.; Rowe, R.K.; Adelson, P.D.; Lifshitz, J.; Ziebell, J.M. Age-at-Injury Determines the Extent of Long-Term Neuropathology and Microgliosis After a Diffuse Brain Injury in Male Rats. Front. Neurol. 2021, 12, 722526. [Google Scholar] [CrossRef] [PubMed]
- Iliff, J.J.; Chen, M.J.; Plog, B.A.; Zeppenfeld, D.M.; Soltero, M.; Yang, L.; Singh, I.; Deane, R.; Nedergaard, M. Impairment of Glymphatic Pathway Function Promotes Tau Pathology after Traumatic Brain Injury. J. Neurosci. Off. J. Soc. Neurosci. 2014, 34, 16180–16193. [Google Scholar] [CrossRef]
- Yu, F.; Iacono, D.; Perl, D.P.; Lai, C.; Gill, J.; Le, T.Q.; Lee, P.; Sukumar, G.; Armstrong, R.C. Neuronal Tau Pathology Worsens Late-Phase White Matter Degeneration after Traumatic Brain Injury in Transgenic Mice. Acta Neuropathol. 2023, 146, 585–610. [Google Scholar] [CrossRef] [PubMed]
- Pleasure, S.; Selzer, M.; Lee, V. Lamprey Neurofilaments Combine in One Subunit the Features of Each Mammalian NF Triplet Protein but Are Highly Phosphorylated Only in Large Axons. J. Neurosci. 1989, 9, 698–709. [Google Scholar] [CrossRef]
- Hall, G.F.; Lee, V.M. Neurofilament Sidearm Proteolysis Is a Prominent Early Effect of Axotomy in Lamprey Giant Central Neurons. J. Comp. Neurol. 1995, 353, 38–49. [Google Scholar] [CrossRef]
- Marmarou, C.R.; Walker, S.A.; Davis, C.L.; Povlishock, J.T. Quantitative Analysis of the Relationship between Intra-Axonal Neurofilament Compaction and Impaired Axonal Transport Following Diffuse Traumatic Brain Injury. J. Neurotrauma 2005, 22, 1066–1080. [Google Scholar] [CrossRef]
- Kallakuri, S.; Li, Y.; Zhou, R.; Bandaru, S.; Zakaria, N.; Zhang, L.; Cavanaugh, J.M. Impaired Axoplasmic Transport Is the Dominant Injury Induced by an Impact Acceleration Injury Device: An Analysis of Traumatic Axonal Injury in Pyramidal Tract and Corpus Callosum of Rats. Brain Res. 2012, 1452, 29–38. [Google Scholar] [CrossRef]
- Mills, J.D.; Bailes, J.E.; Sedney, C.L.; Hutchins, H.; Sears, B. Omega-3 Fatty Acid Supplementation and Reduction of Traumatic Axonal Injury in a Rodent Head Injury Model. J. Neurosurg. 2011, 114, 77–84. [Google Scholar] [CrossRef]
- Creed, J.A.; DiLeonardi, A.M.; Fox, D.P.; Tessler, A.R.; Raghupathi, R. Concussive Brain Trauma in the Mouse Results in Acute Cognitive Deficits and Sustained Impairment of Axonal Function. J. Neurotrauma 2011, 28, 547–563. [Google Scholar] [CrossRef]
- Bennett, R.E.; Brody, D.L. Array Tomography for the Detection of Non-Dilated, Injured Axons in Traumatic Brain Injury. J. Neurosci. Methods 2015, 245, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wu, H.; Zeng, J.; Pluimer, B.; Dong, S.; Xie, X.; Guo, X.; Ge, T.; Liang, X.; Feng, S.; et al. Mild Traumatic Brain Injury Induces Microvascular Injury and Accelerates Alzheimer-like Pathogenesis in Mice. Acta Neuropathol. Commun. 2021, 9, 74. [Google Scholar] [CrossRef] [PubMed]
- Shaw, G.; Madorsky, I.; Li, Y.; Wang, Y.; Jorgensen, M.; Rana, S.; Fuller, D.D. Uman-Type Neurofilament Light Antibodies Are Effective Reagents for the Imaging of Neurodegeneration. Brain Commun. 2023, 5, fcad067. [Google Scholar] [CrossRef] [PubMed]
- Hossain, I.; Mohammadian, M.; Takala, R.S.K.; Tenovuo, O.; Lagerstedt, L.; Ala-Seppälä, H.; Frantzén, J.; van Gils, M.; Hutchinson, P.; Katila, A.J.; et al. Early Levels of Glial Fibrillary Acidic Protein and Neurofilament Light Protein in Predicting the Outcome of Mild Traumatic Brain Injury. J. Neurotrauma 2019, 36, 1551–1560. [Google Scholar] [CrossRef]
- McDonald, S.J.; O’Brien, W.T.; Symons, G.F.; Chen, Z.; Bain, J.; Major, B.P.; Costello, D.; Yamakawa, G.; Sun, M.; Brady, R.D.; et al. Prolonged Elevation of Serum Neurofilament Light after Concussion in Male Australian Football Players. Biomark. Res. 2021, 9, 4. [Google Scholar] [CrossRef]
- Arancibia-Carcamo, I.L.; Attwell, D. The Node of Ranvier in CNS Pathology. Acta Neuropathol. 2014, 128, 161–175. [Google Scholar] [CrossRef]
- Walker, C.L.; Uchida, A.; Li, Y.; Trivedi, N.; Fenn, J.D.; Monsma, P.C.; Lariviére, R.C.; Julien, J.-P.; Jung, P.; Brown, A. Local Acceleration of Neurofilament Transport at Nodes of Ranvier. J. Neurosci. 2019, 39, 663–677. [Google Scholar] [CrossRef]
- Reles, A.; Friede, R.L. Axonal Cytoskeleton at the Nodes of Ranvier. J. Neurocytol. 1991, 20, 450–458. [Google Scholar] [CrossRef]
- Hsieh, S.T.; Kidd, G.J.; Crawford, T.O.; Xu, Z.; Lin, W.M.; Trapp, B.D.; Cleveland, D.W.; Griffin, J.W. Regional Modulation of Neurofilament Organization by Myelination in Normal Axons. J. Neurosci. 1994, 14, 6392–6401. [Google Scholar] [CrossRef] [PubMed]
- Price, R.L.; Lasek, R.J.; Katz, M.J. Internal Axonal Cytoarchitecture Is Shaped Locally by External Compressive Forces. Brain Res. 1990, 530, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.; Sherman, D.L.; Brophy, P.J. The Axonal Cytoskeleton and the Assembly of Nodes of Ranvier. Neuroscientist 2018, 24, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Gatti, D.L.; Yang, K.H. Nodal versus Total Axonal Strain and the Role of Cholesterol in Traumatic Brain Injury. J. Neurotrauma 2016, 33, 859–870. [Google Scholar] [CrossRef]
- Greer, J.E.; Hånell, A.; McGinn, M.J.; Povlishock, J.T. Mild Traumatic Brain Injury in the Mouse Induces Axotomy Primarily within the Axon Initial Segment. Acta Neuropathol. 2013, 126, 59–74. [Google Scholar] [CrossRef] [PubMed]
- Vascak, M.; Sun, J.; Baer, M.; Jacobs, K.M.; Povlishock, J.T. Mild Traumatic Brain Injury Evokes Pyramidal Neuron Axon Initial Segment Plasticity and Diffuse Presynaptic Inhibitory Terminal Loss. Front. Cell. Neurosci. 2017, 11, 157. [Google Scholar] [CrossRef]
- Gennarelli, T.A.; Thibault, L.E.; Tipperman, R.; Tomei, G.; Sergot, R.; Brown, M.; Maxwell, W.L.; Graham, D.I.; Adams, J.H.; Irvine, A.; et al. Axonal Injury in the Optic Nerve: A Model Simulating Diffuse Axonal Injury in the Brain. J. Neurosurg. 1989, 71, 244–253. [Google Scholar] [CrossRef]
- Marion, C.M.; Radomski, K.L.; Cramer, N.P.; Galdzicki, Z.; Armstrong, R.C. Experimental Traumatic Brain Injury Identifies Distinct Early and Late Phase Axonal Conduction Deficits of White Matter Pathophysiology, and Reveals Intervening Recovery. J. Neurosci. 2018, 38, 8723–8736. [Google Scholar] [CrossRef]
- Adams, A.A.; Wood, T.L.; Kim, H.A. Mature and Myelinating Oligodendrocytes Are Specifically Vulnerable to Mild Fluid Percussion Injury in Mice. Neurotrauma Rep. 2023, 4, 433–446. [Google Scholar] [CrossRef]
- Özen, I.; Arkan, S.; Clausen, F.; Ruscher, K.; Marklund, N. Diffuse Traumatic Injury in the Mouse Disrupts Axon-Myelin Integrity in the Cerebellum. J. Neurotrauma 2022, 39, 411–422. [Google Scholar] [CrossRef]
- Reeves, T.M.; Greer, J.E.; Vanderveer, A.S.; Phillips, L.L. Proteolysis of Submembrane Cytoskeletal Proteins Ankyrin-G and αII-Spectrin Following Diffuse Brain Injury: A Role in White Matter Vulnerability at Nodes of Ranvier. Brain Pathol. 2010, 20, 1055–1068. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krieg, J.L.; Leonard, A.V.; Turner, R.J.; Corrigan, F. Identifying the Phenotypes of Diffuse Axonal Injury Following Traumatic Brain Injury. Brain Sci. 2023, 13, 1607. https://doi.org/10.3390/brainsci13111607
Krieg JL, Leonard AV, Turner RJ, Corrigan F. Identifying the Phenotypes of Diffuse Axonal Injury Following Traumatic Brain Injury. Brain Sciences. 2023; 13(11):1607. https://doi.org/10.3390/brainsci13111607
Chicago/Turabian StyleKrieg, Justin L., Anna V. Leonard, Renée J. Turner, and Frances Corrigan. 2023. "Identifying the Phenotypes of Diffuse Axonal Injury Following Traumatic Brain Injury" Brain Sciences 13, no. 11: 1607. https://doi.org/10.3390/brainsci13111607
APA StyleKrieg, J. L., Leonard, A. V., Turner, R. J., & Corrigan, F. (2023). Identifying the Phenotypes of Diffuse Axonal Injury Following Traumatic Brain Injury. Brain Sciences, 13(11), 1607. https://doi.org/10.3390/brainsci13111607