EEG Changes during Propofol Anesthesia Induction in Vegetative State Patients Undergoing Spinal Cord Stimulation Implantation Surgery
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Information
2.2. Anesthesia Method and Perioperative Management
2.3. Spinal Electrode Implantation Method
2.4. Observation Indicators and Data Collection
2.5. EEG Data Collection and Preprocessing
- (1)
- Removal of large-amplitude noise. Loop noise is likely to occur at points of abrupt data changes, and large-amplitude noise will also appear at the marked points in the EEG signal from the BIS monitor. These large noises are first removed (the data in their time period are visually manually excluded). Specifically, the collected data are imported into the EEGLAB toolbox, and each patient’s data are marked out using the eegplot.m function with a time window of 100 and an amplitude of 200 μV. The noise is visually selected, and the large noise data in that segment are deleted.
- (2)
- Eliminate baseline drift and head movement artifacts. The POP_eEGFiltNews.m function of EEGLAB toolbox is used to reduce the low-frequency components below 0.1 Hz in EEG signals, and the effect of baseline drift is reduced by bidirectional least square method or window function FIR filter.
- (3)
- Remove power frequency interference. In order to reduce AC interference, an adaptive notch filter is used to process signals in 50 Hz and its narrow neighborhood.
- (4)
- The Clean_rawdata function of EEGLAB is used to delete bad data parts. Firstly, the Artifact Subspace Reconstruction (ASR) algorithm is used to filter out bad parts of the data, When a given time window has a standard deviation threshold, excess bad data are rejected. Data areas will be rejected if they exceed the standard deviation of the calibration data 20 times. Using this function from the command line, the time window is adjusted to delete bad data that might have been missed by ASR.
- (5)
- Since some data time series are longer, the EEG signal is down-sampled from 128 Hz to 100 Hz to effectively reduce the computational pressure on the system while ensuring the integrity of the EEG signal.
2.6. Statistical Analysis
3. Results
3.1. Difference of BIS between the Two Groups during Low Dose Propofol Induction
3.2. Forehead EEG Time–Frequency Graph and Power Graph
- (1)
- Non-craniotomy, Non-Vegetative State Patient (NVS Group) EEG Time-Frequency Graph and Power Spectrum.
- (2)
- Traumatic Brain Injury VS Patient EEG Time-Frequency Graph and Power Spectrum.
- (3)
- Ischemic-Hypoxic VS Patient EEG Time-Frequency Graph and Power Spectrum.
3.3. Changes in CRS-R and Clinical Outcome after 3 Months of SCS Surgery in 7 VS Patients
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schnakers, C. Update on diagnosis in disorders of consciousness. Expert Rev. Neurother. 2020, 20, 997–1004. [Google Scholar] [CrossRef] [PubMed]
- Giacino, J.T.; Whyte, J.; Bagiella, E.; Kalmar, K.; Childs, N.; Khademi, A.; Eifert, B.; Long, D.; Katz, D.I.; Cho, S.; et al. Placebo-Controlled Trial of Amantadine for Severe Traumatic Brain Injury. N. Engl. J. Med. 2012, 366, 819–826. [Google Scholar] [CrossRef] [PubMed]
- Fregni, F.; Li, S.; Zaninotto, A.L.; Neville, I.S.; Paiva, W.S.; Nunn, D. Clinical utility of brain stimulation modalities following traumatic brain injury: Current evidence. Neuropsychiatr. Dis. Treat. 2015, 11, 1573–1586. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Li, J.; Xia, X.; Wang, Y.; Li, X.; He, J.; Bai, Y. Long-Range Temporal Correlations of Patients in Minimally Conscious State Modulated by Spinal Cord Stimulation. Front. Physiol. 2018, 9, 1511. [Google Scholar] [CrossRef]
- Mattogno, P.P.; Barbagallo, G.; Iacopino, G.; Pappalardo, G.; LA Rocca, G.; Signorelli, F.; Zhong, J.; Visocchi, M. Recovery from Chronic Diseases of Consciousness: State of the Art in Neuromodulation for Persistent Vegetative State and Minimally Conscious State. Acta Neurochir. 2017, 124, 19–25. [Google Scholar] [CrossRef]
- Franks, N.P. Molecular targets underlying general anaesthesia. Br. J. Pharmacol. 2006, 147, S72–S81. [Google Scholar] [CrossRef]
- Antkowiak, B. Different Actions of General Anesthetics on the Firing Patterns of Neocortical Neurons Mediated by the GABAAReceptor. Anesthesiology 1999, 91, 500–511. [Google Scholar] [CrossRef]
- Franks, N.P. General anaesthesia: From molecular targets to neuronal pathways of sleep and arousal. Nat. Rev. Neurosci. 2008, 9, 370–386. [Google Scholar] [CrossRef]
- Brown, E.N.; Purdon, P.L.; Van Dort, C.J. General Anesthesia and Altered States of Arousal: A Systems Neuroscience Analysis. Annu. Rev. Neurosci. 2011, 34, 601–628. [Google Scholar] [CrossRef]
- He, C.; Yang, H.; Jiang, L. Analysis of the Effect of Propofol Anesthesia for Severe Traumatic Brain Injury. China Foreign Med. Treat. 2023, 42, 68–71+76. [Google Scholar] [CrossRef]
- Hao, S.Y.; Wang, Q.; Jia, C.X.; Pan, L.X.; Wang, S.L. Discussion on the value of propofol intravenous anesthesia in the operation of acute severe craniocerebral injury. Chin. Community Dr. 2018, 34, 24–25. [Google Scholar] [CrossRef]
- Pan, L. To explore the brain protection value of propofol intravenous anesthesia in the operation of acute severe craniocerebral injury. Med. Theory Pract. 2017, 30, 3520–3521. [Google Scholar] [CrossRef]
- Coburn, M.; Pandharipande, P.P.M.; Sanders, R.D.B. Are We Offtrack Using Propofol for Sedation after Traumatic Brain Injury? Crit. Care Med. 2014, 42, 211–212. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Steyn-Ross, M.L.; Steyn-Ross, D.A.; Wilson, M.T.; Sleigh, J.W. EEG slow-wave coherence changes in propofol-induced general anesthesia: Experiment and theory. Front. Syst. Neurosci. 2014, 8, 215. [Google Scholar] [CrossRef] [PubMed]
- Mahon, P.; Greene, B.; Greene, C.; Boylan, G.; Shorten, G. Behaviour of spectral entropy, spectral edge frequency 90%, and alpha and beta power parameters during low-dose propofol infusion. Br. J. Anaesth. 2008, 101, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Jaggi, P.; Schwabe, M.J.; Gill, K.; Horowitz, I.N. Use of an anesthesia cerebral monitor bispectral index to assess burst-suppression in pentobarbital coma. Pediatr. Neurol. 2003, 28, 219–222. [Google Scholar] [CrossRef]
- Morimoto, Y.; Hagihira, S.; Koizumi, Y.; Ishida, K.; Matsumoto, M.; Sakabe, T. The Relationship between Bispectral Index and Electroencephalographic Parameters during Isoflurane Anesthesia. Obstet. Anesthesia Dig. 2004, 98, 1336–1340. [Google Scholar] [CrossRef]
- Dahaba, A.A. Different Conditions That Could Result in the Bispectral Index Indicating an Incorrect Hypnotic State. Obstet. Anesthesia Dig. 2005, 101, 765–773. [Google Scholar] [CrossRef]
- Barnett, T.P.; Johnson, L.C.; Naitoh, P.; Hicks, N.; Nute, C. Bispectrum Analysis of Electroencephalogram Signals during Waking and Sleeping. Science 1971, 172, 401–402. [Google Scholar] [CrossRef]
- Hu, F.; Gao, M.; Li, T.; Li, K. Application status of bispectral index in clinical anesthesia. Chin. J. Lab. Diagn. 2019, 23, 743–746. [Google Scholar]
- Yin, J.; Lin, H.; Wu, Z.; Lv, B. Effect of bispectral index-guided anesthesia on the prognosis of patients with traumatic brain injury. Int. Med. Health Guid. 2019, 25, 4. [Google Scholar] [CrossRef]
- Rizkallah, J.; Annen, J.; Modolo, J.; Gosseries, O.; Benquet, P.; Mortaheb, S.; Amoud, H.; Cassol, H.; Mheich, A.; Thibaut, A.; et al. Decreased integration of EEG source-space networks in disorders of consciousness. NeuroImage Clin. 2019, 23, 101841. [Google Scholar] [CrossRef] [PubMed]
- Purdon, P.L.; Pierce, E.T.; Mukamel, E.A.; Prerau, M.J.; Walsh, J.L.; Wong, K.F.K.; Salazar-Gomez, A.F.; Harrell, P.G.; Sampson, A.L.; Cimenser, A.; et al. Electroencephalogram signatures of loss and recovery of consciousness from propofol. Proc. Natl. Acad. Sci. USA 2013, 110, E1142–E1151. [Google Scholar] [CrossRef]
- McCarthy, M.M.; Brown, E.N.; Kopell, N. Potential Network Mechanisms Mediating Electroencephalographic Beta Rhythm Changes during Propofol-Induced Paradoxical Excitation. J. Neurosci. 2008, 28, 13488–13504. [Google Scholar] [CrossRef]
- Gross, W.L.; Lauer, K.K.; Liu, X.; Roberts, C.J.; Liu, S.; Gollapudy, S.; Binder, J.R.; Li, S.-J.; Hudetz, A.G. Propofol Sedation Alters Perceptual and Cognitive Functions in Healthy Volunteers as Revealed by Functional Magnetic Resonance Imaging. Anesthesiology 2019, 131, 254–265. [Google Scholar] [CrossRef]
- Pullon, R.M.; Yan, L.; Sleigh, J.W.; Warnaby, C.E. Granger Causality of the Electroencephalogram Reveals Abrupt Global Loss of Cortical Information Flow during Propofol-induced Loss of Responsiveness. Anesthesiology 2020, 133, 774–786. [Google Scholar] [CrossRef] [PubMed]
- Hutt, A. The anesthetic propofol shifts the frequency of maximum spectral power in EEG during general anesthesia: Analytical insights from a linear model. Front. Comput. Neurosci. 2013, 7, 2. [Google Scholar] [CrossRef]
- Leon-Carrion, J.; Martin-Rodriguez, J.; Damas-Lopez, J.; Martin, J.B.Y.; Dominguez-Morales, M. Brain function in the minimally conscious state: A quantitative neurophysiological study. Clin. Neurophysiol. 2008, 119, 1506–1514. [Google Scholar] [CrossRef]
- Babiloni, C.; Sarà, M.; Vecchio, F.; Pistoia, F.; Sebastiano, F.; Onorati, P.; Albertini, G.; Pasqualetti, P.; Cibelli, G.; Buffo, P.; et al. Cortical sources of resting-state alpha rhythms are abnormal in persistent vegetative state patients. Clin. Neurophysiol. 2009, 120, 719–729. [Google Scholar] [CrossRef]
- Naro, A.; Bramanti, A.; Leo, A.; Cacciola, A.; Manuli, A.; Bramanti, P.; Calabrò, R.S. Shedding new light on disorders of consciousness diagnosis: The dynamic functional connectivity. Cortex 2018, 103, 316–328. [Google Scholar] [CrossRef]
- Lehembre, R.; Gosseries, O.; Lugo, Z.; Jedidi, Z.; Chatelle, C.; Sadzot, B.; Laureys, S.; Noirhomme, Q. Electrophysiological investigations of brain function in coma, vegetative and minimally conscious patients. Arch. Ital. Biol. 2012, 150, 122–139. [Google Scholar]
- Lee, H.; Mashour, G.A.; Noh, G.-J.; Kim, S.; Lee, U. Reconfiguration of Network Hub Structure after Propofol-induced Unconsciousness. Anesthesiology 2013, 119, 1347–1359. [Google Scholar] [CrossRef] [PubMed]
- Piarulli, A.; Bergamasco, M.; Thibaut, A.; Cologan, V.; Gosseries, O.; Laureys, S. EEG ultradian rhythmicity differences in disorders of consciousness during wakefulness. J. Neurol. 2016, 263, 1746–1760. [Google Scholar] [CrossRef] [PubMed]
- Chennu, S.; Finoia, P.; Kamau, E.; Allanson, J.; Williams, G.B.; Monti, M.M.; Noreika, V.; Arnatkeviciute, A.; Canales-Johnson, A.; Olivares, F.; et al. Spectral Signatures of Reorganised Brain Networks in Disorders of Consciousness. PLOS Comput. Biol. 2014, 10, e1003887. [Google Scholar] [CrossRef]
- Jin, X.; Liang, Z.; Wen, X.; Wang, Y.; Bai, Y.; Xia, X.; He, J.; Sleigh, J.; Li, X. The Characteristics of Electroencephalogram Signatures in Minimally Conscious State Patients Induced by General Anesthesia. IEEE Trans. Biomed. Eng. 2023, 70, 3239–3247. [Google Scholar] [CrossRef]
- Ayorinde, B.; Scudamore, I.; Buggy, D. Anaesthetic management of a pregnant patient in a persistent vegetative state. Br. J. Anaesth. 2000, 85, 479–481. [Google Scholar] [CrossRef] [PubMed]
- Laureys, S.; Faymonville, M.; Luxen, A.; Lamy, M.; Franck, G.; Maquet, P. Restoration of thalamocortical connectivity after recovery from persistent vegetative state. Lancet 2000, 355, 1790–1791. [Google Scholar] [CrossRef] [PubMed]
- Van den Brink, R.L.; Nieuwenhuis, S.; van Boxtel, G.J.M.; van Luijtelaar, G.; Eilander, H.J.; Wijnen, V.J.M. Task-free spectral EEG dynamics track and predict patient recovery from severe acquired brain injury. NeuroImage Clin. 2017, 17, 43–52. [Google Scholar] [CrossRef]
- Lechinger, J.; Bothe, K.; Pichler, G.; Michitsch, G.; Donis, J.; Klimesch, W.; Schabus, M. CRS-R score in disorders of consciousness is strongly related to spectral EEG at rest. J. Neurol. 2013, 260, 2348–2356. [Google Scholar] [CrossRef]
- Maschke, C.; Duclos, C.; Blain-Moraes, S. Paradoxical markers of conscious levels: Effects of propofol on patients in disorders of consciousness. Front Hum Neurosci. 2022, 16, 992649. [Google Scholar] [CrossRef]
- Duclos, C.; Maschke, C.; Mahdid, Y.; Nadin, D.; Rokos, A.; Arbour, C.; Badawy, M.; Létourneau, J.; Owen, A.M.; Plourde, G.; et al. Brain Responses to Propofol in Advance of Recovery from Coma and Disorders of Consciousness: A Preliminary Study. Am. J. Respir. Crit. Care Med. 2022, 205, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Bonhomme, V.; Staquet, C.; Montupil, J.; Defresne, A.; Kirsch, M.; Martial, C.; Vanhaudenhuyse, A.; Chatelle, C.; Larroque, S.K.; Raimondo, F.; et al. General Anesthesia: A Probe to Explore Consciousness. Front. Syst. Neurosci. 2019, 13, 36. [Google Scholar] [CrossRef] [PubMed]
- Vesper, J.; Mainzer, B.; Senemmar, F.; Schnitzler, A.; Groiss, S.J.; Slotty, P.J. Anesthesia for deep brain stimulation system implantation: Adapted protocol for awake and asleep surgery using microelectrode recordings. Acta Neurochir. 2022, 164, 1175–1182. [Google Scholar] [CrossRef] [PubMed]
- Stefan, S.; Schorr, B.; Lopez-Rolon, A.; Kolassa, I.T.; Shock, J.P.; Rosenfelder, M.; Heck, S.; Bender, A. Consciousness Indexing and Outcome Prediction with Resting-State EEG in Severe Disorders of Consciousness. Brain Topogr. 2018, 31, 848–862. [Google Scholar] [CrossRef]
Item | NVS Group (n = 5) | VS Group (n = 7) | p |
---|---|---|---|
Gender ratio (male/female) | 2/3 | 4/3 | 1.000 |
Age (years) | 41 (33–57) | 41 (26–58) | 0.745 |
Height (cm) | 168 (160.5–171.5) | 169 (163–172) | 0.370 |
Weight (kg) | 64 (57.5–70) | 67 (60–72) | 0.935 |
BIS value at room entry | 97 (96.5–98) | 89 (87–92) | 0.004 |
Operation duration (min) | 99 (89–118.5) | 97 (89–116) | 1.000 |
Patient | Age/Sex | Distance from Doc (Months) | Etiology | CRS-R Total Score | Diagnosis | Saturation (%) |
---|---|---|---|---|---|---|
VS1 | 65/M | 5 | Traumatic | 7 | Hydrocephalus, L frontal Contusion, SAH | 97 |
VS2 | 33/F | 7 | Traumatic | 8 | Bi frontal and temporal contusion, Left temporal haemorrhage | 96 |
VS3 | 55/F | 4 | Anoxic | 6 | ---- | 97 |
VS4 | 58/M | 9 | Traumatic | 9 | R temporal and frontal contusion, thalamus hemorrhage | 95 |
VS5 | 21/M | 2 | Anoxic | 8 | ---- | 97 |
VS6 | 41/F | 5 | Traumatic | 8 | Bifrontal and R occipital contusion, SAH | 94 |
VS7 | 26/M | 6 | Traumatic | 9 | R temporal and frontal contusion, Right frontal haemorrhage | 98 |
0 min | 1 min | 2 min | 3 min | 4 min | 5 min | |
---|---|---|---|---|---|---|
VS Group | 89.43 ± 2.64 | 48.57 ± 4.50 | 40.86 ± 2.12 | 42.57 ± 1.62 | 44.00 ± 1.63 | 45.71 ± 1.11 |
NVS Group | 96.80 ± 0.84 | 89.80 ± 3.03 | 79.60 ± 3.05 | 81.00 ± 2.12 | 81.40 ± 2.41 | 82.20 ± 5.89 |
t-value | −6.925 | −17.685 | −26.143 | −35.743 | −32.261 | −13.677 |
p-value | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Preoperative CRS-R Score | 3 Mouths Postoperative CRS-R Score | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Case | Hearing | Language | Vision | Communication | Motor | Arousal | Hearing | Language | Vision | Communication | Motor | Arousal |
1 | 1 | 1 | 1 | 1 | 0 | 2 | 2 | 2 | 2 | 1 | 0 | 2 |
2 | 1 | 1 | 3 | 1 | 0 | 2 | 2 | 1 | 3 | 1 | 0 | 2 |
3 | 1 | 1 | 2 | 1 | 0 | 2 | 2 | 2 | 3 | 1 | 0 | 2 |
4 | 1 | 3 | 1 | 1 | 0 | 2 | 1 | 3 | 1 | 1 | 0 | 2 |
5 | 0 | 3 | 1 | 1 | 0 | 2 | 1 | 3 | 2 | 1 | 0 | 2 |
6 | 1 | 1 | 2 | 1 | 0 | 2 | 1 | 1 | 2 | 1 | 0 | 2 |
7 | 1 | 1 | 2 | 1 | 0 | 2 | 1 | 1 | 2 | 1 | 0 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, X.; Chen, X.; Wang, B.; Zhao, X.; Tang, Y.; Yao, L.; Liang, Z.; He, J.; Li, X. EEG Changes during Propofol Anesthesia Induction in Vegetative State Patients Undergoing Spinal Cord Stimulation Implantation Surgery. Brain Sci. 2023, 13, 1608. https://doi.org/10.3390/brainsci13111608
Qin X, Chen X, Wang B, Zhao X, Tang Y, Yao L, Liang Z, He J, Li X. EEG Changes during Propofol Anesthesia Induction in Vegetative State Patients Undergoing Spinal Cord Stimulation Implantation Surgery. Brain Sciences. 2023; 13(11):1608. https://doi.org/10.3390/brainsci13111608
Chicago/Turabian StyleQin, Xuewei, Xuanling Chen, Bo Wang, Xin Zhao, Yi Tang, Lan Yao, Zhenhu Liang, Jianghong He, and Xiaoli Li. 2023. "EEG Changes during Propofol Anesthesia Induction in Vegetative State Patients Undergoing Spinal Cord Stimulation Implantation Surgery" Brain Sciences 13, no. 11: 1608. https://doi.org/10.3390/brainsci13111608
APA StyleQin, X., Chen, X., Wang, B., Zhao, X., Tang, Y., Yao, L., Liang, Z., He, J., & Li, X. (2023). EEG Changes during Propofol Anesthesia Induction in Vegetative State Patients Undergoing Spinal Cord Stimulation Implantation Surgery. Brain Sciences, 13(11), 1608. https://doi.org/10.3390/brainsci13111608