A Comparison of the Safety, Efficacy, and Accuracy of Frame-Based versus Remebot Robot-Assisted Stereotactic Systems for Biopsy of Brainstem Tumors
Abstract
:1. Introduction
2. Methods
2.1. Patients
2.2. Surgical Procedure
2.3. Data Acquisition
2.4. Statistical Analysis
3. Results
3.1. Clinical Characteristics
3.2. Procedure and Complications
3.3. Histopathology
3.4. Treatment and Follow-Up
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ostrom, Q.T.; Price, M.; Ryan, K.; Edelson, J.; Neff, C.; Cioffi, G.A.; Waite, K.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Pediatric Brain Tumor Foundation Childhood and Adolescent Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2014–2018. Neuro-Oncol. 2022, 24, iii1–iii38. [Google Scholar] [CrossRef] [PubMed]
- Ostrom, Q.T.; Price, M.; Neff, C.; Cioffi, G.A.; Waite, K.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2015–2019. Neuro-Oncol. 2022, 24, v1–v95. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Wang, J.; Gao, P.; Liu, W.; Hu, F.; Jiang, W.; Lei, T.; Shu, K. A comparison of the efficacy, safety, and duration of frame-based and Remebot robot-assisted frameless stereotactic biopsy. Br. J. Neurosurg. 2021, 35, 319–323. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Wang, H.; Wang, J.; Hu, F.; Jiang, W.; Lei, T.; Shu, K. Effect of Robot-Assisted Neuroendoscopic Hematoma Evacuation Combined Intracranial Pressure Monitoring for the Treatment of Hypertensive Intracerebral Hemorrhage. Front. Neurol. 2021, 12, 722924. [Google Scholar] [CrossRef]
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A summary. Neuro-Oncol. 2021, 23, 1231–1251. [Google Scholar] [CrossRef]
- Gupta, M.; Chan, T.M.; Santiago-Dieppa, D.R.; Yekula, A.; Sanchez, C.E.; Elster, J.D.; Crawford, J.R.; Levy, M.L.; Gonda, D.D. Robot-assisted stereotactic biopsy of pediatric brainstem and thalamic lesions. J. Neurosurg. Pediatr. 2020, 27, 317–324. [Google Scholar] [CrossRef]
- Machetanz, K.; Grimm, F.; Wang, S.; Schuhmann, M.U.; Tatagiba, M.; Gharabaghi, A.; Naros, G. Rediscovery of the transcerebellar approach: Improving the risk-benefit ratio in robot-assisted brainstem biopsies. Neurosurg. Focus 2022, 52, E12. [Google Scholar] [CrossRef]
- Peciu-Florianu, I.; Legrand, V.; Monfilliette-Djelad, A.; Maurage, C.-A.; Vannod-Michel, Q.; Blond, S.; Touzet, G.; Reyns, N. Frameless robot-assisted stereotactic biopsies for lesions of the brainstem—A series of 103 consecutive biopsies. J. Neuro-Oncol. 2022, 157, 109–119. [Google Scholar] [CrossRef]
- Bahrami, E.; Parvaresh, M.; Bahrami, M.; Fattahi, A. An Experience with Frame-Based Stereotactic Biopsy of Posterior Fossa Lesions via Transcerebellar Route. World Neurosurg. 2020, 136, e380–e385. [Google Scholar] [CrossRef]
- Khatab, S.; Spliet, W.; Woerdeman, P.A. Frameless image-guided stereotactic brain biopsies: Emphasis on diagnostic yield. Acta Neurochir. 2014, 156, 1441–1450. [Google Scholar] [CrossRef]
- Air, E.L.; Leach, J.L.; Warnick, R.; McPherson, C.M. Comparing the risks of frameless stereotactic biopsy in eloquent and noneloquent regions of the brain: A retrospective review of 284 cases. J. Neurosurg. 2009, 111, 820–824. [Google Scholar] [CrossRef]
- Moriarty, T.M.; Quinones-Hinojosa, A.; Larson, P.S.; Alexander, E.; Gleason, P.L.; Schwartz, R.B.; Jolesz, F.A.; Black, P.M. Frameless Stereotactic Neurosurgery Using Intraoperative Magnetic Resonance Imaging: Stereotactic Brain Biopsy. Neurosurgery 2000, 47, 1138–1146. [Google Scholar] [CrossRef] [PubMed]
- Capitanio, J.F.; Camporesi, S.; Franzin, A.; Barzaghi, L.R.; Picozzi, P.; Mortini, P. Inverted positioning of Leksell Frame G for very low posterior fossa and brain stem lesions biopsies. J. Neurosurg. Sci. 2019, 63, 194–199. [Google Scholar] [CrossRef] [PubMed]
- Guberinic, A.; Elshout, R.V.D.; Kozicz, T.; ter Laan, M.; Henssen, D. Overview of the microanatomy of the human brainstem in relation to the safe entry zones. J. Neurosurg. 2022, 137, 1524–1534. [Google Scholar] [CrossRef] [PubMed]
- Woodworth, G.F.; McGirt, M.J.; Samdani, A.; Garonzik, I.; Olivi, A.; Weingart, J.D. Frameless image-guided stereotactic brain biopsy procedure: Diagnostic yield, surgical morbidity, and comparison with the frame-based technique. J. Neurosurg. 2006, 104, 233–237. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Yeung, C.; Radmanesh, A.; Wiemann, R.; Black, P.M.; Golby, A.J. Comparative Effectiveness of Frame-Based, Frameless, and Intraoperative Magnetic Resonance Imaging–Guided Brain Biopsy Techniques. World Neurosurg. 2015, 83, 261–268. [Google Scholar] [CrossRef] [Green Version]
- Bradac, O.; Steklacova, A.; Nebrenska, K.; Vrana, J.; de Lacy, P.; Benes, V. Accuracy of VarioGuide Frameless Stereotactic System Against Frame-Based Stereotaxy: Prospective, Randomized, Single-Center Study. World Neurosurg. 2017, 104, 831–840. [Google Scholar] [CrossRef]
- Bekelis, K.; Radwan, T.A.; Desai, A.; Roberts, D.W. Frameless robotically targeted stereotactic brain biopsy: Feasibility, diagnostic yield, and safety. J. Neurosurg. 2012, 116, 1002–1006. [Google Scholar] [CrossRef]
- Kickingereder, P.; Willeit, P.; Simon, T.; Ruge, M.I. Diagnostic Value and Safety of Stereotactic Biopsy for Brainstem Tumors. Neurosurgery 2013, 72, 873–882. [Google Scholar] [CrossRef]
- Gupta, N.; Goumnerova, L.C.; Manley, P.; Chi, S.N.; Neuberg, D.; Puligandla, M.; Fangusaro, J.; Goldman, S.; Tomita, T.; Alden, T.; et al. Prospective feasibility and safety assessment of surgical biopsy for patients with newly diagnosed diffuse intrinsic pontine glioma. Neuro-Oncol. 2018, 20, 1547–1555. [Google Scholar] [CrossRef]
- Hamisch, C.; Kickingereder, P.; Fischer, M.; Simon, T.; Ruge, M.I. Update on the diagnostic value and safety of stereotactic biopsy for pediatric brainstem tumors: A systematic review and meta-analysis of 735 cases. J. Neurosurg. Pediatr. 2017, 20, 261–268. [Google Scholar] [CrossRef] [Green Version]
- Coca, H.; Cebula, H.; Benmekhbi, M.; Chenard, M.; Entz-Werle, N.; Proust, F. Diffuse intrinsic pontine gliomas in children: Interest of robotic frameless assisted biopsy. A technical note. Neurochirurgie 2016, 62, 327–331. [Google Scholar] [CrossRef]
- Carai, A.; Mastronuzzi, A.; De Benedictis, A.; Messina, R.; Cacchione, A.; Miele, E.; Randi, F.; Esposito, G.; Trezza, A.; Colafati, G.S.; et al. Robot-Assisted Stereotactic Biopsy of Diffuse Intrinsic Pontine Glioma: A Single-Center Experience. World Neurosurg. 2017, 101, 584–588. [Google Scholar] [CrossRef]
- Vitanza, N.A.; Biery, M.C.; Myers, C.; Ferguson, E.; Zheng, Y.; Girard, E.J.; Przystal, J.M.; Park, G.; Noll, A.; Pakiam, F.; et al. Optimal therapeutic targeting by HDAC inhibition in biopsy-derived treatment-naïve diffuse midline glioma models. Neuro-Oncol. 2021, 23, 376–386. [Google Scholar] [CrossRef]
- Wu, G.; Broniscer, A.; McEachron, T.A.; Lu, C.; Paugh, B.S.; Becksfort, J.; Qu, C.; Ding, L.; Huether, R.; Parker, M.; et al. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat. Genet. 2012, 44, 251–253. [Google Scholar] [CrossRef] [Green Version]
- Schwartzentruber, J.; Korshunov, A.; Liu, X.-Y.; Jones, D.T.W.; Pfaff, E.; Jacob, K.; Sturm, D.; Fontebasso, A.M.; Khuong-Quang, D.-A.; Tönjes, M.; et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 2012, 482, 226–231. [Google Scholar] [CrossRef] [PubMed]
- Aziz-Bose, R.; Monje, M. Diffuse intrinsic pontine glioma: Molecular landscape and emerging therapeutic targets. Curr. Opin. Oncol. 2019, 31, 522–530. [Google Scholar] [CrossRef] [PubMed]
- Majzner, R.G.; Ramakrishna, S.; Yeom, K.W.; Patel, S.; Chinnasamy, H.; Schultz, L.M.; Richards, R.M.; Jiang, L.; Barsan, V.; Mancusi, R.; et al. GD2-CAR T cell therapy for H3K27M-mutated diffuse midline gliomas. Nature 2022, 603, 934–941. [Google Scholar] [CrossRef]
- Lu, V.M.; Power, E.A.; Zhang, L.; Daniels, D.J. Liquid biopsy for diffuse intrinsic pontine glioma: An update. J. Neurosurg. Pediatr. 2019, 24, 593–600. [Google Scholar] [CrossRef] [PubMed]
Remebot Robot Group (n = 22) | Frame-Based Group (n = 11) | p | |
---|---|---|---|
Age (mean ± SD), years | 17.3 ± 18.7 | 32.8 ± 17.1 | 0.027 |
Sex ratio (male/female) | 7:15 | 7:4 | 0.136 |
Symptoms | |||
Vertigo | 5 | 4 | 0.438 |
Ataxia | 8 | 5 | 0.714 |
Motor deficit and/or sensory deficit | 5 | 4 | 0.438 |
IIP | 7 | 4 | >0.999 |
Region of biopsy | |||
Midbrain | 2 | 6 | 0.008 |
Pons | 20 | 5 | 0.008 |
Remebot Robot Group (n = 22) | Frame-Based Group (n = 11) | p | |
---|---|---|---|
Trajectory (supra: infratentorial) | 2/20 | 6/5 | 0.032 |
Trajectory length, mm | 71.27 ± 1.49 | 91.11 ± 5.71 | <0.001 |
Total procedure duration, mean, min | 84.73 ± 2.19 | 124.5 ± 2.78 | <0.001 |
Operation time, mean, min | 44.14 ± 1.40 | 45.45 ± 2.67 | 0.632 |
Complication | 2/20 | 2:9 | 0.586 |
Histopathological Finding | Remebot Robot Group (n = 22) | Frame-Based Group (n = 11) | p |
---|---|---|---|
Diagnostic yield | 21/22 | 10/11 | >0.999 |
Diffuse low-grade glioma | 11 | 5 | |
Diffuse high-grade glioma | 8 | 4 | |
Diffuse large B cell lymphoma | 1 | 1 | |
Nonconclusive diagnosis | 1 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Wu, S.; Huang, K.; Li, R.; Jiang, W.; Wang, J.; Shu, K.; Lei, T. A Comparison of the Safety, Efficacy, and Accuracy of Frame-Based versus Remebot Robot-Assisted Stereotactic Systems for Biopsy of Brainstem Tumors. Brain Sci. 2023, 13, 362. https://doi.org/10.3390/brainsci13020362
Li C, Wu S, Huang K, Li R, Jiang W, Wang J, Shu K, Lei T. A Comparison of the Safety, Efficacy, and Accuracy of Frame-Based versus Remebot Robot-Assisted Stereotactic Systems for Biopsy of Brainstem Tumors. Brain Sciences. 2023; 13(2):362. https://doi.org/10.3390/brainsci13020362
Chicago/Turabian StyleLi, Chaoxi, Shiqiang Wu, Kuan Huang, Ran Li, Wei Jiang, Junwen Wang, Kai Shu, and Ting Lei. 2023. "A Comparison of the Safety, Efficacy, and Accuracy of Frame-Based versus Remebot Robot-Assisted Stereotactic Systems for Biopsy of Brainstem Tumors" Brain Sciences 13, no. 2: 362. https://doi.org/10.3390/brainsci13020362
APA StyleLi, C., Wu, S., Huang, K., Li, R., Jiang, W., Wang, J., Shu, K., & Lei, T. (2023). A Comparison of the Safety, Efficacy, and Accuracy of Frame-Based versus Remebot Robot-Assisted Stereotactic Systems for Biopsy of Brainstem Tumors. Brain Sciences, 13(2), 362. https://doi.org/10.3390/brainsci13020362