Association of Income with Post-Stroke Cognition and the Underlying Neuroanatomical Mechanism
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Comparisons between Patients with Lower Income and Higher Income
3.2. Association between Income and Post-Stroke Cognitive Functions and MRI Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feigin, V.L.; Stark, B.A.; Johnson, C.O.; Roth, G.A.; Bisignano, C.; Abady, G.G.; Abbasifard, M.; Abbasi-Kangevari, M.; Abd-Allah, F.; Abedi, V.; et al. Global, Regional, and National Burden of Stroke and Its Risk Factors, 1990–2019: A Systematic Analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021, 20, 795–820. [Google Scholar] [CrossRef] [PubMed]
- Toyoda, K.; Yoshimura, S.; Nakai, M.; Koga, M.; Sasahara, Y.; Sonoda, K.; Kamiyama, K.; Yazawa, Y.; Kawada, S.; Sasaki, M.; et al. Twenty-Year Change in Severity and Outcome of Ischemic and Hemorrhagic Strokes. JAMA Neurol. 2022, 79, 61. [Google Scholar] [CrossRef] [PubMed]
- Lo, J.W.; Crawford, J.D.; Desmond, D.W.; Godefroy, O.; Jokinen, H.; Mahinrad, S.; Bae, H.-J.; Lim, J.-S.; Köhler, S.; Douven, E.; et al. Profile of and Risk Factors for Poststroke Cognitive Impairment in Diverse Ethnoregional Groups. Neurology 2019, 93, e2257–e2271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The PICASSO Investigators; Kwon, H.S.; Lee, D.; Lee, M.H.; Yu, S.; Lim, J.-S.; Yu, K.-H.; Oh, M.S.; Lee, J.-S.; Hong, K.-S.; et al. Post-Stroke Cognitive Impairment as an Independent Predictor of Ischemic Stroke Recurrence: PICASSO Sub-Study. J. Neurol. 2020, 267, 688–693. [Google Scholar] [CrossRef] [PubMed]
- Nys, G.M.S.; van Zandvoort, M.J.E.; de Kort, P.L.M.; van der Worp, H.B.; Jansen, B.P.W.; Algra, A.; de Haan, E.H.F.; Kappelle, L.J. The Prognostic Value of Domain-Specific Cognitive Abilities in Acute First-Ever Stroke. Neurology 2005, 64, 821–827. [Google Scholar] [CrossRef] [PubMed]
- Oksala, N.K.J.; Jokinen, H.; Melkas, S.; Oksala, A.; Pohjasvaara, T.; Hietanen, M.; Vataja, R.; Kaste, M.; Karhunen, P.J.; Erkinjuntti, T. Cognitive Impairment Predicts Poststroke Death in Long-Term Follow-Up. J. Neurol. Neurosurg. Psychiatry 2009, 80, 1230–1235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rost, N.S.; Brodtmann, A.; Pase, M.P.; van Veluw, S.J.; Biffi, A.; Duering, M.; Hinman, J.D.; Dichgans, M. Post-Stroke Cognitive Impairment and Dementia. Circ. Res. 2022, 130, 1252–1271. [Google Scholar] [CrossRef]
- Marden, J.R.; Tchetgen Tchetgen, E.J.; Kawachi, I.; Glymour, M.M. Contribution of Socioeconomic Status at 3 Life-Course Periods to Late-Life Memory Function and Decline: Early and Late Predictors of Dementia Risk. Am. J. Epidemiol. 2017, 186, 805–814. [Google Scholar] [CrossRef] [Green Version]
- Cadar, D.; Lassale, C.; Davies, H.; Llewellyn, D.J.; Batty, G.D.; Steptoe, A. Individual and Area-Based Socioeconomic Factors Associated with Dementia Incidence in England: Evidence From a 12-Year Follow-up in the English Longitudinal Study of Ageing. JAMA Psychiatry 2018, 75, 723. [Google Scholar] [CrossRef] [Green Version]
- Bettger, J.P.; Zhao, X.; Bushnell, C.; Zimmer, L.; Pan, W.; Williams, L.S.; Peterson, E.D. The Association between Socioeconomic Status and Disability after Stroke: Findings from the Adherence EValuation After Ischemic Stroke Longitudinal (AVAIL) Registry. BMC Public Health 2014, 14, 281. [Google Scholar] [CrossRef] [Green Version]
- Akyea, R.K.; Vinogradova, Y.; Qureshi, N.; Patel, R.S.; Kontopantelis, E.; Ntaios, G.; Asselbergs, F.W.; Kai, J.; Weng, S.F. Sex, Age, and Socioeconomic Differences in Nonfatal Stroke Incidence and Subsequent Major Adverse Outcomes. Stroke 2021, 52, 396–405. [Google Scholar] [CrossRef]
- Duncan, G.J.; Magnuson, K. Socioeconomic Status and Cognitive Functioning: Moving from Correlation to Causation: Socioeconomic Status and Cognitive Functioning. WIREs Cogn. Sci. 2012, 3, 377–386. [Google Scholar] [CrossRef] [PubMed]
- Duncan, G.J.; Daly, M.C.; McDonough, P.; Williams, D.R. Optimal Indicators of Socioeconomic Status for Health Research. Am. J. Public Health 2002, 92, 1151–1157. [Google Scholar] [CrossRef] [PubMed]
- Miu, J.; Negin, J.; Salinas-Rodriguez, A.; Manrique-Espinoza, B.; Sosa-Ortiz, A.L.; Cumming, R.; Kowal, P. Factors Associated with Cognitive Function in Older Adults in Mexico. Glob. Health Action 2016, 9, 30747. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Cao, Q. Poverty Increases the Risk of Incident Cognitive Impairment among Older Adults: A Longitudinal Study in China. Aging Ment. Health 2020, 24, 1822–1827. [Google Scholar] [CrossRef] [PubMed]
- Zeki Al Hazzouri, A.; Elfassy, T.; Sidney, S.; Jacobs, D.; Pérez Stable, E.J.; Yaffe, K. Sustained Economic Hardship and Cognitive Function: The Coronary Artery Risk Development in Young Adults Study. Am. J. Prev. Med. 2017, 52, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, X.; Zhang, W.; Kobayashi, L.C. Duration of Poverty and Subsequent Cognitive Function and Decline Among Older Adults in China, 2005–2018. Neurology 2021, 97, e739–e746. [Google Scholar] [CrossRef] [PubMed]
- Katzan, I.L.; Thompson, N.R.; Uchino, K.; Lapin, B. The Most Affected Health Domains after Ischemic Stroke. Neurology 2018, 90, e1364–e1371. [Google Scholar] [CrossRef] [PubMed]
- Gianaros, P.J.; Kuan, D.C.-H.; Marsland, A.L.; Sheu, L.K.; Hackman, D.A.; Miller, K.G.; Manuck, S.B. Community Socioeconomic Disadvantage in Midlife Relates to Cortical Morphology via Neuroendocrine and Cardiometabolic Pathways. Cereb. Cortex 2015, 27, 460–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noble, K.G.; Grieve, S.M.; Korgaonkar, M.S.; Engelhardt, L.E.; Griffith, E.Y.; Williams, L.M.; Brickman, A.M. Hippocampal Volume Varies with Educational Attainment across the Life-Span. Front. Hum. Neurosci. 2012, 6, 307. [Google Scholar] [CrossRef] [Green Version]
- Elbejjani, M.; Fuhrer, R.; Abrahamowicz, M.; Mazoyer, B.; Crivello, F.; Tzourio, C.; Dufouil, C. Life-Course Socioeconomic Position and Hippocampal Atrophy in a Prospective Cohort of Older Adults. Psychosom. Med. 2017, 79, 14–23. [Google Scholar] [CrossRef] [PubMed]
- McEwen, B.S.; Gianaros, P.J. Central Role of the Brain in Stress and Adaptation: Links to Socioeconomic Status, Health, and Disease: Central Links between Stress and SES. Ann. N. Y. Acad. Sci. 2010, 1186, 190–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casolla, B.; Caparros, F.; Cordonnier, C.; Bombois, S.; Hénon, H.; Bordet, R.; Orzi, F.; Leys, D. Biological and Imaging Predictors of Cognitive Impairment after Stroke: A Systematic Review. J. Neurol. 2019, 266, 2593–2604. [Google Scholar] [CrossRef] [PubMed]
- Callahan, B.L.; Ramirez, J.; Berezuk, C.; Duchesne, S.; Black, S.E.; for the Alzheimer’s Disease Neuroimaging Initiative. Predicting Alzheimer’s Disease Development: A Comparison of Cognitive Criteria and Associated Neuroimaging Biomarkers. Alz. Res. Ther. 2015, 7, 68. [Google Scholar] [CrossRef] [Green Version]
- Bigler, E.D.; Neeley, E.S.; Miller, M.J.; Tate, D.F.; Rice, S.A.; Cleavinger, H.; Wolfson, L.; Tschanz, J.; Welsh-Bohmer, K. Cerebral Volume Loss, Cognitive Deficit and Neuropsychological Performance: Comparative Measures of Brain Atrophy: I. Dementia. J. Int. Neuropsychol. Soc. 2004, 10, 442–452. [Google Scholar] [CrossRef]
- Bigler, E.D.; Tate, D.F. Brain Volume, Intracranial Volume, and Dementia. Investig. Radiol. 2001, 36, 539–546. [Google Scholar] [CrossRef]
- Dougherty, R.J.; Moonen, J.; Yaffe, K.; Sidney, S.; Davatzikos, C.; Habes, M.; Launer, L.J. Smoking Mediates the Relationship between SES and Brain Volume: The CARDIA Study. PLoS ONE 2020, 15, e0239548. [Google Scholar] [CrossRef]
- Zhang, X.; Lv, L.; Min, G.; Wang, Q.; Zhao, Y.; Li, Y. Overview of the Complex Figure Test and Its Clinical Application in Neuropsychiatric Disorders, Including Copying and Recall. Front. Neurol. 2021, 12, 1304. [Google Scholar] [CrossRef]
- Scarpina, F.; Tagini, S. The Stroop Color and Word Test. Front. Psychol. 2017, 8, 557. [Google Scholar] [CrossRef] [Green Version]
- Oosterman, J.M.; Vogels, R.L.C.; van Harten, B.; Gouw, A.A.; Poggesi, A.; Scheltens, P.; Kessels, R.P.C.; Scherder, E.J.A. Assessing Mental Flexibility: Neuroanatomical and Neuropsychological Correlates of the Trail Making Test in Elderly People. Clin. Neuropsychol. 2010, 24, 203–219. [Google Scholar] [CrossRef]
- Sheridan, L.; Fitzgerald, H.; Adams, K.; Nigg, J.; Martel, M.; Puttler, L.; Wong, M.; Zucker, R. Normative Symbol Digit Modalities Test Performance in a Community-Based Sample. Arch. Clin. Neuropsychol. 2006, 21, 23–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sunderland, T.; Hill, J.L.; Mellow, A.M.; Lawlor, B.A.; Gundersheimer, J.; Newhouse, P.A.; Grafman, J.H. Clock Drawing in Alzheimer’s Disease: A Novel Measure of Dementia Severity. J. Am. Geriatr. Soc. 1989, 37, 725–729. [Google Scholar] [CrossRef]
- Puy, L.; Barbay, M.; Roussel, M.; Canaple, S.; Lamy, C.; Arnoux, A.; Leclercq, C.; Mas, J.-L.; Tasseel-Ponche, S.; Constans, J.-M.; et al. Neuroimaging Determinants of Poststroke Cognitive Performance: The GRECogVASC Study. Stroke 2018, 49, 2666–2673. [Google Scholar] [CrossRef] [PubMed]
- Marshall, I.J.; Wang, Y.; Crichton, S.; McKevitt, C.; Rudd, A.G.; Wolfe, C.D.A. The Effects of Socioeconomic Status on Stroke Risk and Outcomes. Lancet Neurol. 2015, 14, 1206–1218. [Google Scholar] [CrossRef] [Green Version]
- Douiri, A.; Rudd, A.G.; Wolfe, C.D.A. Prevalence of Poststroke Cognitive Impairment: South London Stroke Register 1995–2010. Stroke 2013, 44, 138–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, W.S.; Chong, M.S.; Sahadevan, S. Utility of the Clinical Dementia Rating in Asian Populations. Clin. Med. Res. 2007, 5, 61–70. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, J.A.; Emory, E. Executive Function and the Frontal Lobes: A Meta-Analytic Review. Neuropsychol. Rev. 2006, 16, 17–42. [Google Scholar] [CrossRef]
- Lezak, M.D.; Howieson, D.B.; Loring, D.W.; Hannay, H.J.; Fischer, J.S. Neuropsychological Assessment; Oxford University Press: New York, NY, USA, 2004; ISBN 978-0-19-511121-7. [Google Scholar]
- Moorhouse, P.; Rockwood, K. Vascular Cognitive Impairment: Current Concepts and Clinical Developments. Lancet Neurol. 2008, 7, 246–255. [Google Scholar] [CrossRef]
- Grasset, L.; Glymour, M.M.; Elfassy, T.; Swift, S.L.; Yaffe, K.; Singh-Manoux, A.; Zeki Al Hazzouri, A. Relation between 20-Year Income Volatility and Brain Health in Midlife: The CARDIA Study. Neurology 2019, 93, e1890–e1899. [Google Scholar] [CrossRef]
- Hunt, J.F.V.; Buckingham, W.; Kim, A.J.; Oh, J.; Vogt, N.M.; Jonaitis, E.M.; Hunt, T.K.; Zuelsdorff, M.; Powell, R.; Norton, D.; et al. Association of Neighborhood-Level Disadvantage with Cerebral and Hippocampal Volume. JAMA Neurol. 2020, 77, 451. [Google Scholar] [CrossRef]
- Waldstein, S.R.; Dore, G.A.; Davatzikos, C.; Katzel, L.I.; Gullapalli, R.; Seliger, S.L.; Kouo, T.; Rosenberger, W.F.; Erus, G.; Evans, M.K.; et al. Differential Associations of Socioeconomic Status with Global Brain Volumes and White Matter Lesions in African American and White Adults: The HANDLS SCAN Study. Psychosom. Med. 2017, 79, 327–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Echouffo-Tcheugui, J.B.; Conner, S.C.; Himali, J.J.; Maillard, P.; DeCarli, C.S.; Beiser, A.S.; Vasan, R.S.; Seshadri, S. Circulating Cortisol and Cognitive and Structural Brain Measures: The Framingham Heart Study. Neurology 2018, 91, e1961–e1970. [Google Scholar] [CrossRef] [PubMed]
- Durazzo, T.; Meyerhoff, D.; Murray, D. Comparison of Regional Brain Perfusion Levels in Chronically Smoking and Non-Smoking Adults. IJERPH 2015, 12, 8198–8213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gow, A.J.; Bastin, M.E.; Munoz Maniega, S.; Valdes Hernandez, M.C.; Morris, Z.; Murray, C.; Royle, N.A.; Starr, J.M.; Deary, I.J.; Wardlaw, J.M. Neuroprotective Lifestyles and the Aging Brain: Activity, Atrophy, and White Matter Integrity. Neurology 2012, 79, 1802–1808. [Google Scholar] [CrossRef]
- Ho, A.J.; Raji, C.A.; Becker, J.T.; Lopez, O.L.; Kuller, L.H.; Hua, X.; Dinov, I.D.; Stein, J.L.; Rosano, C.; Toga, A.W.; et al. The Effects of Physical Activity, Education, and Body Mass Index on the Aging Brain. Hum. Brain Mapp. 2011, 32, 1371–1382. [Google Scholar] [CrossRef] [Green Version]
- Muller, M.; Appelman, A.P.; van der Graaf, Y.; Vincken, K.L.; Willem, P.T.M.; Geerlings, M.I. Brain Atrophy and Cognition: Interaction with Cerebrovascular Pathology? Neurobiol. Aging 2011, 32, 885–893. [Google Scholar] [CrossRef]
- Xu, X.; Phua, A.; Collinson, S.L.; Hilal, S.; Ikram, M.K.; Wong, T.Y.; Cheng, C.Y.; Venketasubramanian, N.; Chen, C. Additive Effect of Cerebral Atrophy on Cognition in Dementia-Free Elderly with Cerebrovascular Disease. Stroke Vasc. Neurol. 2019, 4, 135–140. [Google Scholar] [CrossRef]
- Yatawara, C.; Ng, K.P.; Chander, R.; Kandiah, N. Associations between Lesions and Domain-Specific Cognitive Decline in Poststroke Dementia. Neurology 2018, 91, e45–e54. [Google Scholar] [CrossRef]
- Satz, P. Brain Reserve Capacity on Symptom Onset After Brain Injury: A Formulation and Review of Evidence for Threshold Theory. Neuropsychology 1993, 7, 273. [Google Scholar] [CrossRef]
- Shaked, D.; Katzel, L.I.; Seliger, S.L.; Gullapalli, R.P.; Davatzikos, C.; Erus, G.; Evans, M.K.; Zonderman, A.B.; Waldstein, S.R. Dorsolateral Prefrontal Cortex Volume as a Mediator between Socioeconomic Status and Executive Function. Neuropsychology 2018, 32, 985–995. [Google Scholar] [CrossRef]
- Yuan, P.; Raz, N. Prefrontal Cortex and Executive Functions in Healthy Adults: A Meta-Analysis of Structural Neuroimaging Studies. Neurosci. Biobehav. Rev. 2014, 42, 180–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables | Total (n = 294) | Income ≤ 5000 (n = 178) | Income > 5000 (n = 116) | p Value |
---|---|---|---|---|
Age, mean (SD), y | 58.3 (9.2) | 57.8 (9.1) | 59.0 (9.4) | 0.269 |
Gender, male, n (%) | 226 (76.9%) | 134 (75.3%) | 92 (79.3%) | 0.423 |
Education, mean (SD), y | 10.7 (3.3) | 9.9 (2.9) | 12.0 (3.5) | <0.001 |
Diabetes, n (%) | 93 (31.6%) | 51 (28.7%) | 42 (36.2%) | 0.173 |
Hypertension, n (%) | 167 (56.8%) | 98 (55.1%) | 69 (59.5%) | 0.454 |
Hyperlipidemia, n (%) | 64 (21.8%) | 40 (22.5%) | 24 (20.7%) | 0.717 |
Smoking, n (%) | 132 (44.9%) | 80 (44.9%) | 52 (44.8%) | 0.984 |
Drinking, n (%) | 107 (36.4%) | 63 (35.4%) | 44 (37.9%) | 0.658 |
Neuropsychological Tests a | Income ≤ 5000 | Income > 5000 | p Value |
---|---|---|---|
MMSE | 23.9 (4.6) | 25.5 (2.8) | <0.001 |
MoCA | 19.8 (5.3) | 21.6 (4.5) | 0.003 |
Global CDR score | 0.3 (0.4) | 0.2 (0.2) | <0.001 |
Total CDR score | 1.0 (1.5) | 0.5 (0.8) | <0.001 |
DST total | 10.8 (2.8) | 11.7 (2.8) | 0.004 |
RAVLT total learning | 32.1 (11.4) | 35.8 (12.0) | 0.008 |
RAVLT long-delayed recall | 5.4 (3.7) | 6.0 (4.0) | 0.149 |
RAVLT recognition | 7.7 (7.3) | 7.7 (8.5) | 0.928 |
ROCF copy | 28.6 (32.0) | 24.6 (11.9) | 0.395 |
ROCF immediate recall | 13.0 (10.3) | 11.7 (10.4) | 0.475 |
ROCF long-delayed recall | 11.9 (10.0) | 11.1 (10.3) | 0.669 |
ROCF recognition | 17.7 (3.1) | 17.9 (3.3) | 0.441 |
Stroop D time | 25.7 (11.4) | 21.5 (7.7) | <0.001 |
Stroop W time | 34.9 (23.6) | 27.9 (10.2) | 0.001 |
Stroop C time | 41.0 (19.7) | 35.0 (12.2) | 0.002 |
TMT A | 62.5 (31.0) | 54.8 (34.4) | 0.173 |
TMT B | 139.5 (98.3) | 125.0 (82.2) | 0.363 |
SDMT | 27.5 (13.6) | 31.5 (14.6) | 0.082 |
VFT | 14.1 (4.8) | 16.4 (5.2) | <0.001 |
BNT | 21.0 (4.2) | 22.8 (3.5) | <0.001 |
CDT | 8.0 (2.5) | 8.3 (2.1) | 0.210 |
NPI | 2.0 (5.9) | 1.3 (2.9) | 0.261 |
GDS | 3.0 (2.7) | 3.1 (2.7) | 0.808 |
MRI Outcomes | Income ≤ 5000 | Income > 5000 | p Value |
---|---|---|---|
Left cortex volume a | 224,321.8 (21,002.0) | 221,565.4 (20,003.6) | 0.263 |
Right cortex volume a | 223,867.0 (21,842.3) | 221,201.2 (19,530.9) | 0.287 |
White matter volume a | 457,446.2 (54,594.2) | 453,105.5 (51,407.8) | 0.496 |
Gray matter volume a | 604,332.8 (53,542.4) | 597,600.6 (50,852.4) | 0.283 |
TBV a | 1,117,680.1 (105,441.6) | 1,108,126.8 (101,394.5) | 0.441 |
TBV/TICV ratio b | 74.4 (3.8) | 75.5 (4.6) | 0.022 |
Left hippocampus volume a | 3523.2 (363.1) | 3483.8 (408.4) | 0.387 |
Right hippocampus volume a | 3652.4 (401.9) | 3573.4 (370.8) | 0.091 |
Left mean cortical thickness c | 2.4 (0.1) | 2.4 (0.1) | 0.352 |
Right mean cortical thickness c | 2.4 (0.1) | 2.4 (0.1) | 0.399 |
Dependent Variables a | Standardized β Coefficient | 95%CI | p Value |
---|---|---|---|
MMSE | 0.094 | (−1.108 to 1.653) | 0.085 |
MoCA | 0.061 | (−0.413 to 1.663) | 0.237 |
Global CDR score | −0.120 | (−0.163 to −0.005) | 0.038 |
Total CDR score | −0.147 | (−0.689 to −0.088) | 0.011 |
DST total | 0.110 | (−0.026 to 1.277) | 0.060 |
RAVLT total learning | 0.086 | (−0.490 to 4.604) | 0.113 |
Stroop D time | −0.163 | (−5.837 to −0.951) | 0.007 |
Stroop W time | −0.158 | (−11.153 to −1.517) | 0.010 |
Stroop C time | −0.144 | (−9.181 to −0.946) | 0.016 |
VFT | 0.142 | (0.308 to 2.630) | 0.013 |
BNT | 0.113 | (0.060 to 1.811) | 0.036 |
TBV/TICV ratio | 0.166 | (0.004 to 0.024) | 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, J.; Wang, Y.; Guo, L.; Li, S. Association of Income with Post-Stroke Cognition and the Underlying Neuroanatomical Mechanism. Brain Sci. 2023, 13, 363. https://doi.org/10.3390/brainsci13020363
Tian J, Wang Y, Guo L, Li S. Association of Income with Post-Stroke Cognition and the Underlying Neuroanatomical Mechanism. Brain Sciences. 2023; 13(2):363. https://doi.org/10.3390/brainsci13020363
Chicago/Turabian StyleTian, Jingyuan, Yue Wang, Li Guo, and Shiping Li. 2023. "Association of Income with Post-Stroke Cognition and the Underlying Neuroanatomical Mechanism" Brain Sciences 13, no. 2: 363. https://doi.org/10.3390/brainsci13020363
APA StyleTian, J., Wang, Y., Guo, L., & Li, S. (2023). Association of Income with Post-Stroke Cognition and the Underlying Neuroanatomical Mechanism. Brain Sciences, 13(2), 363. https://doi.org/10.3390/brainsci13020363