Study on the Mechanism for SIRT1 during the Process of Exercise Improving Depression
Abstract
:1. Introduction
2. Mechanism of SIRT1 Regulation of Depression
2.1. SIRT1 Regulates Depression by Mediating Inflammatory Response
2.2. SIRT1 Regulates Depression by Mediating Related Gene Expression
2.3. SIRT1 Regulates Depression by Mediating Neurogenesis
3. Advances in SIRT1 during the Process of Exercise Improving Depression
3.1. SIRT1 Gene Expression Pattern during Exercise
3.2. SIRT1 Mediates Inflammatory Response during Exercise
3.3. SIRT1 Mediates Neurogenesis during Exercise
4. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ménard, C.; Hodes, G.E.; Russo, S.J. Pathogenesis of depression: Insights from human and rodent studies. Neuroscience 2016, 321, 138–162. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Anoopkumar-Dukie, S.; Davey, A.K. SIRT1 and SIRT2 Modulators: Potential Anti-Inflammatory Treatment for Depression? Biomolecules 2021, 11, 353. [Google Scholar] [CrossRef] [PubMed]
- Khan, H.; Tiwari, P.; Kaur, A.; Singh, T.G. Sirtuin Acetylation and Deacetylation: A Complex Paradigm in Neurodegenerative Disease. Mol. Neurobiol. 2021, 58, 3903–3917. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Ma, Y.; Zhang, R.; Zhong, H.; Wang, L.; Zhao, J.; Yang, L.; Fan, X. Resveratrol ameliorates estrogen deficiency-induced depression- and anxiety-like behaviors and hippocampal inflammation in mice. Psychopharmacology 2019, 236, 1385–1399. [Google Scholar] [CrossRef] [PubMed]
- Hou, L.; Miao, J.; Meng, H.; Liu, X.; Wang, D.; Tang, Y.; Li, C. Sirtuin Type 1 Mediates the Antidepressant Effect of S-Ketamine in a Chronic Unpredictable Stress Model. Front. Psychiatry 2022, 13, 855810. [Google Scholar] [CrossRef]
- Luo, X.J.; Zhang, C. Down-Regulation of SIRT1 gene expression in major depressive disorder. Am. J. Psychiatry 2016, 10, 1046. [Google Scholar] [CrossRef]
- Kishi, T.; Yoshimura, R.; Kitajima, T.; Okochi, T.; Okumura, T.; Tsunoka, T.; Yamanouchi, Y.; Kinoshita, Y.; Kawashima, K.; Fukuo, Y.; et al. SIRT1 gene is associated with major depressive disorder in the Japanese population. J. Affect. Disord. 2010, 126, 167–173. [Google Scholar] [CrossRef]
- Hu, S.; Tucker, L.; Wu, C.; Yang, L. Beneficial Effects of Exercise on Depression and Anxiety During the COVID-19 Pandemic: A Narrative Review. Front. Psychiatry 2020, 11, 587557. [Google Scholar] [CrossRef]
- Frodl, T.; Strehl, K.; Carballedo, A.; Tozzi, L.; Doyle, M.; Amico, F.; Gormley, J.; Lavelle, G.; O’Keane, V. Aerobic exercise increases hippocampal subfield volumes in younger adults and prevents volume decline in the elderly. Brain Imaging Behav. 2020, 14, 1577–1587. [Google Scholar] [CrossRef]
- Mikulska, J.; Juszczyk, G.; Gawrońska-Grzywacz, M.; Herbet, M. HPA Axis in the Pathomechanism of Depression and Schizophrenia: New Therapeutic Strategies Based on Its Participation. Brain Sci. 2021, 11, 1298. [Google Scholar] [CrossRef]
- Xie, Y.; Wu, Z.; Zhou, L.; Sun, L.; Xiao, L.; Wang, G. Swimming Exercise Modulates Gut Microbiota in CUMS-Induced Depressed Mice. Neuropsychiatr. Dis. Treat. 2022, 18, 749–760. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Xu, Y.; Lu, J.; Zhang, Y.; Sheng, H.; Ni, X. Swimming exercise ameliorates depression-like behaviors induced by prenatal exposure to glucocorticoids in rats. Neurosci. Lett. 2012, 524, 119–123. [Google Scholar] [CrossRef]
- Paolucci, E.M.; Loukov, D.; Bowdish, D.M.E.; Heisz, J.J. Exercise reduces depression and inflammation but intensity matters. Biol. Psychol. 2018, 133, 79–84. [Google Scholar] [CrossRef]
- Serretti, A.; Calati, R.; Mandelli, L.; De Ronchi, D. Serotonin transporter gene variants and behavior: A comprehensive review. Curr. Drug Targets 2006, 7, 1659–1669. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.B.; Blakely, R.D.; Hewlett, W.A. The proinflammatory cytokines interleukin-1b and tumor necrosis factor-α activate serotonin transporters. Neuropsychopharmacology 2006, 31, 2121–2131. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, H.; Yang, G.; Yang, Y.; Li, W.; Song, M.; Shao, M.; Su, X.; Lv, L. Associations between expression of indoleamine 2, 3-dioxygenase enzyme and inflammatory cytokines in patients with first-episode drug-naive Schizophrenia. Transl. Psychiatry 2021, 11, 595. [Google Scholar] [CrossRef] [PubMed]
- Hunt, C.; Macedo, E.; Cordeiro, T.; Suchting, R.; de Dios, C.; Valeria, A.; Leal, C.; Soares, J.C.; Dantzer, R.; Teixeira, A.L.; et al. Effect of immune activation on the kynurenine pathway and depression symptoms—A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2020, 118, 514–523. [Google Scholar] [CrossRef]
- Song, Y.; Wu, Z.; Zhao, P. The protective effects of activating Sirt1/NF-κB pathway for neurological disorders. Rev. Neurosci. 2021, 33, 427–438. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Wang, J.; Wang, D.; Li, C.; Liu, B.; Fang, X.; You, J.; Guo, M.; Lu, X.-Y. SIRT1 in forebrain excitatory neurons produces sexually dimorphic effects on depressionrelated behaviors and modulates neuronal excitability and synaptic transmission in the medial prefrontal corte. Mol. Psychiatry 2020, 25, 1094–1111. [Google Scholar] [CrossRef]
- Xu, X.; Piao, H.N.; Aosai, F.; Zeng, X.-Y.; Cheng, J.-H.; Cui, Y.-X.; Li, J.; Ma, J.; Piao, H.-R.; Jin, X.; et al. Arctigenin protects against depression by inhibiting microglial activation and neuroinflammation via HMGB1/TLR4/NF-κB and TNF-α/TNFR1/NF-κB pathways. Br. J. Pharmacol. 2020, 177, 5224–5245. [Google Scholar] [CrossRef]
- Yan, J.; Luo, A.; Gao, J.; Tang, X.; Zhao, Y.; Zhou, B.; Zhou, Z.; Li, S. The role of SIRT1 in neuroinflammation and cognitive dysfunction in aged rats after anesthesia and surgery. Am. J. Transl. Res. 2019, 11, 1555–1568. [Google Scholar] [PubMed]
- Kinra, M.; Ranadive, N.; Mudgal, J.; Zhang, Y.; Govindula, A.; Anoopkumar-Dukie, S.; Davey, A.K.; Grant, G.D.; Nampoothiri, M.; Arora, D. Putative involvement of sirtuin modulators in LPS-induced sickness behaviour in mice. Metab. Brain Dis. 2022, 37, 1969–1976. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wan, T.; Duan, C.; Wang, L.; Chen, X.; Ward, F.C. Sirt1 ameliorates chronic mild unpredictable stress-induced depression-like behaviors in mice by promoting hippocampal microglia M2 polarization. J. Army Med. Univ. 2019, 41, 1301–1307. [Google Scholar]
- Singh, V.; Ubaid, S. Role of Silent Information Regulator 1 (SIRT1) in Regulating Oxidative Stress and Inflammation. Inflammation 2020, 43, 1589–1598, Erratum in Inflammation 2021, 44, 2142. [Google Scholar] [CrossRef]
- Lan, W.; Petznick, A.; Heryati, S.; Rifada, M.; Tong, L. Nuclear factor-Κb: Central regulator in ocular surface inflammation and disease. Ocul. Surf. 2012, 10, 137–148. [Google Scholar] [CrossRef]
- Rius-Pérez, S.; Pérez, S.; Martí-Andrés, P.; Monsalve, M.; Sastre, J. Nuclear Factor Kappa B Signaling Complexes in Acute Inflammation. Antioxid Redox Signal. 2020, 33, 145–165. [Google Scholar] [CrossRef]
- Sakamoto, S.; Zhu, X.; Hasegawa, Y.; Karma, S.; Obayashi, M.; Always, E.; Kamiya, A. Inflamed brain: Targeting immune changes and inflammation for treatment of depression. Psychiatry Clin. Neurosci. 2021, 75, 304–311. [Google Scholar] [CrossRef]
- Rose-John, S. Local and systemic effects of interleukin-6 (IL-6) in inflammation and cancer. FEBS Lett. 2022, 596, 557–566. [Google Scholar] [CrossRef]
- Wang, P. Role and Mechanisms of IL-6 within Hippocampal CA1 Region in the Pathogenesis and Treatment of Depression. Master’s Thesis, Shandong University, Shandong, China, 2020. [Google Scholar]
- Li, C.; Wang, Y.; Wang, H.; Zhao, H.; Li, Z.; Yang, H.; Huang, H. Effects of depression and insomnia on HPA axis and amino acid and monoamine neurotransmitters in hypothalamus of rats. Chin. Pharmacol. Bull. 2021, 37, 815–822. [Google Scholar]
- Delva, N.C.; Stanwood, G.D. Dysregulation of brain dopamine systems in major depressive disorder. Exp. Biol. Med. 2021, 246, 1084–1093. [Google Scholar] [CrossRef]
- Nikkheslat, N.; McLaughlin, A.P.; Hastings, C.; Zajkowska, Z.; Nettis, M.A.; Mariani, N.; Enache, D.; Lombardo, G.; Pointon, L.; Cowen, P.J.; et al. Childhood trauma, HPA axis activity and antidepressant response in patients with depression. Brain Behav. Immun. 2020, 87, 229–237. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.Y.; Li, L.; Yang, L.Q. Research progress of extracellular regulated protein kinase and depression. Guangxi Med. J. 2020, 42, 2274–2278. [Google Scholar]
- Abe-Higuchi, N.; Uchida, S.; Yamagata, H.; Higuchi, F.; Hobara, T.; Hara, K.; Kobayashi, A.; Watanabe, Y. Hippocampal Sirtuin 1 Signaling Mediates Depression-like Behavior. Biol. Psychiatry 2016, 80, 815–826. [Google Scholar] [CrossRef] [PubMed]
- Baldo, B.; Gabery, S.; Soylu-Kucharz, R.; Cheong, R.Y.; Henningsen, J.B.; Englund, E.; McLean, C.; Kirik, D.; Halliday, G.; Petersén, Å. SIRT1 is increased in affected brain regions and hypothalamic metabolic pathways are altered in Huntington disease. Neuropathol. Appl. Neurobiol. 2019, 45, 361–379. [Google Scholar] [CrossRef]
- Kim, H.D.; Hesterman, J.; Call, T.; Magazu, S.; Keeley, E.; Armenta, K.; Kronman, H.; Neve, R.L.; Nestler, E.J.; Ferguson, D. SIRT1 mediates depression-like behaviors in the nucleus accumbens. J. Neurosci. 2016, 36, 8441–8452. [Google Scholar] [CrossRef]
- Noori, M.; Hasbi, A.; Sivasubramanian, M.; Milenkovic, M.; George, S.R. Maternal Separation Model of Postpartum Depression: Potential Role for Nucleus Accumbens Dopamine D1-D2 Receptor Heteromer. Neurochem. Res. 2020, 45, 2978–2990. [Google Scholar] [CrossRef]
- Li, W.; Guo, B.; Tao, K.; Li, F.; Liu, Z.; Yao, H.; Feng, D.; Liu, X. Inhibition of SIRT1 in hippocampal CA1 ameliorates PTSD-like behaviors in mice by protections of neuronal plasticity and serotonin homeostasis via NHLH2/MAO-A pathway. Biochem. Biophys. Res. Commun. 2019, 518, 344–350. [Google Scholar] [CrossRef]
- Duan, C.M.; Zhang, J.R.; Wan, T.F.; Wang, Y.; Chen, H.S.; Liu, L. SRT2104 attenuates chronic unpredictable mild stress-induced depressive-like behaviors and imbalance between microglial M1 and M2 phenotypes in the mice. Behav. Brain Res. 2020, 378, 112296. [Google Scholar] [CrossRef]
- Dai, G.L.; Yang, X.Y.; Chen, S.S.; Wang, Y.Q.; Liu, M.C.; Cao, Y.; Li, F.R.; Ma, C.Y.; Ju, W.Z. Effects of Jiaotai Pills on CUMS-induced depression model in mice based on changes of SIRT1 expression in hippocampus. China J. Chin. Mater. Med. 2021, 46, 6511–6519. [Google Scholar]
- Fagerli, E.; Escobar, I.; Ferrier, F.J.; Jackson, C.W.; Perez-Lao, E.J.; Perez-Pinzon, M.A. Sirtuins and cognition: Implications for learning and memory in neurological disorders. Front. Physiol. 2022, 13, 908689. [Google Scholar] [CrossRef]
- Sun, Z.; Zhao, S.; Suo, X.; Dou, Y. Sirt1 protects against hippocampal atrophy and its induced cognitive impairment in middle-aged mice. BMC Neurosci. 2022, 23, 33. [Google Scholar] [CrossRef] [PubMed]
- Abdolahi, S.; Zare-Chahoki, A.; Noorbakhsh, F.; Gorji, A. A Review of Molecular Interplay between Neurotrophins and miRNAs in Neuropsychological Disorders. Mol. Neurobiol. 2022, 59, 6260–6280. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.N.; Li, W.F.; Li, F.; Zhang, Z.; Dai, Y.D.; Xu, A.L.; Qi, C.; Gao, J.M.; Gao, J. Resveratrol improves learning and memory in normally aged mice through microRNA-CREB pathway. Biochem. Biophys. Res. Commun. 2013, 435, 597–602. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, A.H.; Seyedmoalemi, S.; Moghanlou, M.; Akhlagh, S.A.; Zavareh, S.A.T.; Hamblin, M.R.; Jafari, A.; Mirzaei, H. MicroRNAs and Synaptic Plasticity: From Their Molecular Roles to Response to Therapy. Mol. Neurobiol. 2022, 59, 5084–5102, Erratum in Mol. Neurobiol. 2022, 59, 5103. [Google Scholar] [CrossRef]
- Gu, C.Q.; Zhang, Y.K.; Yang, G.H.; Wu, J.T. Astaxanthin preconditoning ameliorates cognitive function in rats with cerebral ischemia/reperfusion by regulating Sirt1/miR-134 signaling pathway. Chin. J. Pathophysiol. 2021, 37, 1620–1627. [Google Scholar]
- Abozaid, O.A.R.; Sallam, M.W.; Ahmed, E.S.A. Mesenchymal Stem Cells Modulate SIRT1/MiR-134/ GSK3β Signaling Pathway in a Rat Model of Alzheimer’s Disease. J. Prev. Alzheimers Dis. 2022, 9, 458–468. [Google Scholar] [CrossRef]
- Shen, J.; Li, Y.; Qu, C.; Xu, L.; Sun, H.; Zhang, J. The enriched environment ameliorates chronic unpredictable mild stress-induced depressive-like behaviors and cognitive impairment by activating the SIRT1/miR-134 signaling pathway in hippocampus. Affect. Disord. 2019, 248, 81–90. [Google Scholar] [CrossRef]
- Rajasethupathy, P.; Fiumara, F.; Sheridan, R.; Betel, D.; Puthanveettil, S.V.; Russo, J.J.; Sander, C.; Tuschl, T.; Kandel, E. Characterization of small RNAs in Aplysia reveals a role for miR-124 in constraining synaptic plasticity through CREB. Neuron 2009, 63, 803–817. [Google Scholar] [CrossRef]
- Brennan, G.P.; Dey, D.; Chen, Y.; Patterson, K.P.; Magnetta, E.J.; Hall, A.M.; Dube, C.M.; Mei, Y.T.; Baram, T.Z. Dual and Opposing Roles of MicroRNA-124 in Epilepsy Are Mediated through Inflammatory and NRSF-Dependent Gene Networks. Cell Rep. 2016, 14, 2402–2412. [Google Scholar] [CrossRef]
- Dong, Z.; Liu, Z.; Liu, Y.; Zhang, R.; Mo, H.; Gao, L.; Shi, Y. Physical exercise rectifies CUMS-induced aberrant regional homogeneity in mice accompanied by the adjustment of skeletal muscle PGC-1a/IDO1 signals and hippocampal function. Behav. Brain Res. 2020, 383, 112516. [Google Scholar] [CrossRef]
- Babaei, A.; Nourshahi, M.; Fani, M.; Entezari, Z.; Jameie, S.B.; Haghparast, A. The effectiveness of continuous and interval exercise preconditioning against chronic unpredictable stress: Involvement of hippocampal PGC-1α/FNDC5/BDNF pathway. J. Psychiatr. Res. 2021, 136, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Luo, X. Study on the Mechanism of “Muscle-Brain Crosstalk” of Exercise Intervention on Depression-like Behavior in CUMS Rats Based on Metabonomics. Master’s Thesis, Shanxi University, Taiyuan, China, 2021. [Google Scholar]
- Hayek, L.E.; Khalifeh, M.; Zibara, V.; Abi Assaad, R.; Emmanuel, N.; Karnib, N.; El-Ghandour, R.; Nasrallah, P.; Bilen, M.; Ibrahim, P.; et al. Lactate mediates the effects of exercise on learning and memory through SIRT1-dependent activation of hippocampal brain-derived neurotrophic factor (BDNF). J. Neurosci. 2019, 39, 2369–2382. [Google Scholar] [PubMed]
- Gao, J.; Wang, W.Y.; Mao, Y.W.; Gräff, J.; Guan, J.-S.; Pan, L.; Mak, G.; Kim, D.; Su, S.C.; Tsai, L.-H. A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature 2010, 466, 1105–1109. [Google Scholar] [CrossRef] [PubMed]
- Puig-Parnau, I.; Garcia-Brito, S.; Faghihi, N.; Gubern, C.; Aldavert-Vera, L.; Segura-Torres, P.; Huguet, G.; Kádár, E. Intracranial Self-Stimulation Modulates Levels of SIRT1 Protein and Neural Plasticity-Related microRNAs. Mol. Neurobiol. 2020, 57, 2551–2562. [Google Scholar] [CrossRef] [PubMed]
- Radak, Z.; Suzuki, K.; Posa, A.; Petrovszky, Z.; Koltai, E.; Boldogh, I. The systemic role of SIRT1 in exercise mediated adaptation. Redox Biol. 2020, 35, 101467. [Google Scholar] [CrossRef] [PubMed]
- Mojtahedi, S.; Shabkhiz, F.; Ravasi, A.A.; Rosenkranz, S.; Soori, R.; Soleimani, M.; Tavakoli, R. Voluntary wheel running promotes improvements in biomarkers associated with neurogenic activity in adult male rats. Biochem. Biophys. Res. Commun. 2020, 533, 1505–1511. [Google Scholar] [CrossRef]
- Liu, W.; Xue, X.; Xia, J.; Liu, J.; Qi, Z. Swimming exercise reverses CUMS-induced changes in depression-like behaviors and hippocampal plasticity-related proteins. J. Affect. Disord. 2018, 227, 126–135. [Google Scholar] [CrossRef]
- Motaghinejad, M.; Safari, S.; Feizipour, S.; Sadr, S. Crocin may be useful to prevent or treatment of alcohol induced neurodegeneration and neurobehavioral sequels via modulation of CREB/BDNF and Akt/GSK signaling pathway. Med. Hypotheses 2019, 124, 21–25. [Google Scholar] [CrossRef]
- Casadio, A.; Martin, K.C.; Giustetto, M.; Zhu, H.; Chen, M.; Bartsch, D.; Bailey, C.H.; Kandel, E.R. A transient, neuron-wide form of CREB-mediated long-term facilitation can be stabilized at specific synapses by local protein synthesis. Cell 1999, 99, 221–237. [Google Scholar] [CrossRef]
- Sharma, P.; Kumar, A.; Singh, D. Dietary Flavonoids Interaction with CREB-BDNF Pathway: An Unconventional Approach for Comprehensive Management of Epilepsy. Curr. Neuropharmacol. 2019, 17, 1158–1175. [Google Scholar] [CrossRef]
- Kim, H.G.; Lim, E.Y.; Jung, W.R.; Shin, M.K.; Ann, E.S.; Kim, K.L. Effects of treadmill exercise on hypoactivity of the hypothalamo-pituitary-adrenal axis induced by chronic administration of corticosterone in rats. Neuroci. Lett. 2008, 434, 46–49. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ma, S.F.; Yun, Q.; Liu, W.-J.; Guo, M.-N.; Zhu, Y.-Q.; Liu, Z.-Z.; Qian, J.-J.; Zhang, W.-N. Ameliorative effect of SIRT1 in postpartum depression mediated by upregulation of the glucocorticoid receptor. Neurosci. Lett. 2021, 761, 136112. [Google Scholar] [CrossRef] [PubMed]
- Mihailova, S.; Ivanova-Genova, E.; Lukanov, T.; Stoyanova, V.; Milanova, V.; Naumova, E. A study of TNF-α, TGF-β, IL-10, IL-6, and IFN-γ gene polymorphisms in patients with depression. J. Neuroimmunol. 2016, 293, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.L.; Qu, H.L. Effect of aerobic exercise on hippocampal neuroinflammation and improvement of NF-κB, TNF-α/IDO/5-HT signal pathway against in CUMS depressive mice. Chin. J. Immunol. 2021, 37, 1563–1570. [Google Scholar]
- Ventura, J.; McEwen, S.; Subotnik, K.L.; Hellemann, G.S.; Ghadiali, M.; Rahimdel, A.; Seo, M.J.; Irwin, M.R.; Nuechterlein, K.H. Changes in inflammation are related to depression and amount of aerobic exercise in first episode schizophrenia. Early Interv. Psychiatry 2021, 15, 213–216. [Google Scholar] [CrossRef]
- Zhao, C.; Ma, H.; Yang, L.; Xiao, Y. Long-term bicycle riding ameliorates the depression of the patients undergoing hemodialysis by affecting the levels of interleukin-6 and interleukin-18. Neuropsychiatr. Dis. Treat. 2017, 13, 91–100. [Google Scholar] [CrossRef]
- Hao, Z. Effects of Aerobic Exercise on Brain Learning and Memory Ability and Hippocampal TGF-β1 in Depressed Rats. Master’s Thesis, Chengdu Sport University, Chengdu, China, 2018. [Google Scholar]
- Tuon, T.; Souza, P.S.; Santos, M.F.; Pereira, F.T.; Pedroso, G.S.; Luciano, T.F.; De Souza, C.T.; Dutra, R.C.; Silveira, P.C.L.; Pinho, R.A. Physical training regulates mitochondrial parameters and neuroinflammatory mechanisms in an experimental model of Parkinson’s disease. Oxid. Med. Cell Longev. 2015, 2015, 261809. [Google Scholar] [CrossRef]
- Lin, J.Y.; Kuo, W.W.; Baskaran, R.; Kuo, C.H.; Chen, Y.A.; Chen, W.S.; Ho, T.J.; Day, C.H.; Mahalakshmi, B.; Huang, C.Y. Swimming exercise stimulates IGF1/PI3K/Akt and AMPK/SIRT1/PGC1alpha survival signaling to suppress apoptosis and inflammation in aging hippocampus. Aging 2020, 12, 6852–6864. [Google Scholar] [CrossRef]
- Sun, P.; Yin, J.B.; Liu, L.H.; Guo, J.; Wang, S.-H.; Qu, C.-H.; Wang, C.-X. Protective role of dihydromyricetin in Alzheimer’s disease rat model associated with activating AMPK/SIRT1 signaling pathway. Biosci. Rep. 2019, 39, BSR20180902. [Google Scholar] [CrossRef]
- Mee-Inta, O.; Zhao, Z.W.; Kuo, Y.M. Physical exercise inhibits inflammation and microglial activation. Cells 2019, 8, 691. [Google Scholar] [CrossRef]
- Zhang, X.L. Effects of Aerobic Exercise and Resveratrol on Hippocampal Amyloid Deposit of APP /PSl Transgenic Mice. Ph.D. Thesis, East China Normal University, Shanghai, China, 2016. [Google Scholar]
- Ji, R.F.; Bian, X.P.; Liu, B.B.; Hu, J.-Y.; Xue, X.-L.; Lou, S.-J. Effects of resistance exercise on pyroptosis-related proteins in hippocampus of insulin resistant mice. Chin. J. Appl. Physiol. 2020, 36, 456–461. [Google Scholar]
- Planchez, B.; Surget, A.; Belzung, C. Adult hippocampal neurogenesis and antidepressants effects. Curr. Opin. Pharm. 2020, 50, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.W.; Bressel, E.; Kim, D.Y. Effects of aquatic exercise on insulin-like growth factor-1, brain-derived neurotrophic factor, vascular endothelial growth factor, and cognitive function in elderly women. Exp. Gerontol. 2020, 132, 110842. [Google Scholar] [CrossRef]
- Mokhtari-Zaer, A.; Saadat, S.; Marefati, N.; Hosseini, M.; Boskabady, M.H. Treadmill exercise restores memory and hippocampal synaptic plasticity impairments in ovalbumin-sensitized juvenile rats: Involvement of brain-derived neurotrophic factor (BDNF). Neurochem. Int. 2020, 135, 104691. [Google Scholar] [CrossRef]
- Luo, L.; Li, C.; Du, X.; Shi, Q.; Huang, Q.; Xu, X.; Wang, Q. Effect of aerobic exercise on BDNF/proBDNF expression in the ischemic hippocampus and depression recovery of rats after stroke. Behav. Brain Res. 2019, 362, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Sohroforouzani, A.M.; Shakerian, S.; Ghanbarzadeh, M.; Alaei, H. Effect of forced treadmill exercise on stimulation of BDNF expression, depression symptoms, tactile memory and working memory in LPS-treated rats. Behav. Brain Res. 2022, 418, 113645. [Google Scholar] [CrossRef]
- Luo, L.; Li, C.; Deng, Y.; Wang, Y.; Meng, P.; Wang, Q. High-intensity interval training on neuroplasticity, balance between brain-derived neurotrophic factor and precursor brain-derived neurotrophic factor in poststroke depression rats. J. Stroke Cereb. 2019, 28, 672–682. [Google Scholar] [CrossRef] [PubMed]
- Al-qahtani, A.M.; Shaikh, M.A.K.; Shaikh, I.A. Exercise as a treatment modality for depression: A narrative review. Alex. J. Med. 2019, 54, 429–435. [Google Scholar] [CrossRef]
- Li, G.M. Study on SIRT1/CREB/BDNF Signal Pathway Involved in Cognitive Dysfunction in OSAS Rats. Master’s Thesis, Zunyi Medical University, Zunyi, China, 2021. [Google Scholar]
- Segaran, R.C.; Chan, L.Y.; Wang, H.; Sethi, G.; Tang, F.R. Neuronal Development-Related miRNAs as Biomarkers for Alzheimer’s Disease, Depression, Schizophrenia and Ionizing Radiation Exposure. Curr. Med. Chem. 2021, 28, 19–52. [Google Scholar] [CrossRef]
- Maass, A.; Düzel, S.; Brigadski, T.; Goerke, M.; Becke, A.; Sobieray, U.; Neumann, K.; Lövdén, M.; Lindenberger, U.; Bäckman, L.; et al. Relationships of peripheral IGF-1, VEGF and BDNF levels to exercise-related changes in memory, hippocampal perfusion and volumes in older adults. NeuroImage 2016, 131, 142–154. [Google Scholar] [CrossRef]
- González-García, I.; Gruber, T.; García-Cáceres, C. Insulin action on astrocytes: From energy homeostasis to behaviour. J. Neuroendocrinol. 2021, 33, e12953. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.J.; Russo-Neustadt, A.A. Running exercise- and antidepressant-induced increases in growth and survival-associated signaling molecules are IGF-dependent. Growth Factors 2007, 25, 118–131. [Google Scholar] [CrossRef] [PubMed]
- Leiter, O.; Seidemann, S.; Overall, R.W.; Ramasz, B.; Rund, N.; Schallenberg, S.; Grinenko, T.; Wielockx, B.; Kempermann, G.; Walker, T.L. Exercise-Induced activated platelets increase adult hippocampal precursor proliferation and promote neuronal differentiation. Stem. Cell Rep. 2019, 12, 667–679. [Google Scholar] [CrossRef] [PubMed]
Scope of Regulation | Functional Changes | Molecular Mechanism |
---|---|---|
Inflammatory reaction | Hippocampal inflammatory factor↓; Inflammatory reaction↓. | RelA/p65 subunit activity↓; NF-κB deacetylates, Activity and transcription↓; NF-κB p65 acetylation↓; GSK3β↓, TNF-α↓. |
Gene expression | Hippocampal dendritic structure recovers; Nucleus accumbens function is damaged; Synaptic plasticity in the ventral CA1 region is damaged. | ERK1/2 phosphorylation↑; NHLH2 deacetylates, MAO-A↑, 5-HT, NE↓; IL-6 in CA1↓. |
Neurogenesis | Hippocampal dendritic structure recovers; Synaptic plasticity↑; Neuron function improves. | CREB phosphorylation↑; miR-134↓, miR-124↓; BDNF, CREB, SYN, PSD95↑. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, X.; Lu, P.; Zeng, X.; Jin, S.; Chen, X. Study on the Mechanism for SIRT1 during the Process of Exercise Improving Depression. Brain Sci. 2023, 13, 719. https://doi.org/10.3390/brainsci13050719
Qiu X, Lu P, Zeng X, Jin S, Chen X. Study on the Mechanism for SIRT1 during the Process of Exercise Improving Depression. Brain Sciences. 2023; 13(5):719. https://doi.org/10.3390/brainsci13050719
Chicago/Turabian StyleQiu, Xiao, Pengcheng Lu, Xinyu Zeng, Shengjie Jin, and Xianghe Chen. 2023. "Study on the Mechanism for SIRT1 during the Process of Exercise Improving Depression" Brain Sciences 13, no. 5: 719. https://doi.org/10.3390/brainsci13050719
APA StyleQiu, X., Lu, P., Zeng, X., Jin, S., & Chen, X. (2023). Study on the Mechanism for SIRT1 during the Process of Exercise Improving Depression. Brain Sciences, 13(5), 719. https://doi.org/10.3390/brainsci13050719