Cognitive Orientation to Daily Occupational Performance: A Randomized Controlled Trial Examining Intervention Effects on Children with Developmental Coordination Disorder Traits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants and Procedures
2.3. Assessments
2.4. Intervention
2.4.1. First Session
2.4.2. Second to Eighth Sessions
2.5. Ethical Considerations
2.6. Statistical Analysis
3. Results
4. Discussion
4.1. Relationship between Occupational Performance and Motor Skills
4.2. Advantages of Considering S-AMPS Results as an Outcome Measure for Older Kindergarten Children with DCD-t or DAMP-t
4.3. Intervention Effects of CO-OP in Older Kindergarten Children with DCD-t
4.4. Difference in Intervention Effects When Children with DCD-t Were Divided into the DAMP-t and DCD-t Groups
- Although performance skills have been enhanced, it is difficult to generalize these skills to other motor skills and to rapidly acquire new motor skills.
- Many sub-items in the M-ABC2 assess the speed of physical activities but not the quality of performance.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-5); American Psychiatric Association: Washington, DC, USA, 2013. [Google Scholar]
- Van der Linde, B.W.; van Netten, J.J.; Otten, B.; Postema, K.; Geuze, R.H.; Schoemaker, M.M. Activities of daily living in children with developmental coordination disorder: Performance, learning, and participation. Phys. Ther. 2015, 95, 1496–1506. [Google Scholar] [CrossRef] [PubMed]
- Houwen, S.; van der Veer, G.; Visser, J.; Cantell, M. The relationship between motor performance and parent-rated executive functioning in 3-to 5-year-old children: What is the role of confounding variables? Hum. Mov. Sci. 2017, 53, 24–36. [Google Scholar] [CrossRef] [PubMed]
- Skinner, R.A.; Piek, J.P. Psychosocial implications of poor motor coordination in children and adolescents. Hum. Mov. Sci. 2001, 20, 73–94. [Google Scholar] [CrossRef] [PubMed]
- Jansen, D.E.; Veenstra, R.; Ormel, J.; Verhulst, F.C.; Reijneveld, S.A. Early risk factors for being a bully, victim, or bully/victim in late elementary and early secondary education. The longitudinal TRAILS study. BMC Public Health 2011, 11, 440. [Google Scholar] [CrossRef]
- Øksendal, E.; Brandlistuen, R.E.; Holte, A.; Wang, M.V. Associations between poor gross and fine motor skills in pre-school and peer victimization concurrently and longitudinally with follow-up in school age–results from a population-based study. Br. J. Educ. Psychol. 2021, 92, e12464. [Google Scholar] [CrossRef]
- Lingam, R.; Jongmans, M.J.; Ellis, M.; Hunt, L.P.; Golding, J.; Emond, A. Mental health difficulties in children with developmental coordination disorder. Pediatrics 2012, 129, E882–E891. [Google Scholar] [CrossRef]
- Piek, J.P.; Hands, B.; Licari, M.K. Assessment of motor functioning in the preschool period. Neuropsychol. Rev. 2012, 22, 402–413. [Google Scholar] [CrossRef]
- Taylor, S.; Fayed, N.; Mandich, A. CO-OP intervention for young children with developmental coordination disorder. OTJR 2007, 27, 124–130. [Google Scholar] [CrossRef]
- Bernardi, M.; Leonard, H.C.; Hill, E.L.; Botting, N.; Henry, L.A. Executive functions in children with developmental coordination disorder: A 2-year follow-up study. Dev. Med. Child Neurol. 2018, 60, 306–313. [Google Scholar] [CrossRef]
- Leonard, H.C.; Bernardi, M.; Hill, E.L.; Henry, L.A. Executive functioning, motor difficulties, and developmental coordination disorder. Dev. Neuropsychol. 2015, 40, 201–215. [Google Scholar] [CrossRef]
- Wilson, P.H.; Smits-Engelsman, B.; Caeyenberghs, K.; Steenbergen, B.; Sugden, D.; Clark, J.; Mumford, N.; Blank, R. Cognitive and neuroimaging findings in developmental coordination disorder: New insights from a systematic review of recent research. Dev. Med. Child Neurol. 2017, 59, 1117–1129. [Google Scholar] [CrossRef] [PubMed]
- Miyake, A.; Friedman, N.P.; Emerson, M.J.; Witzki, A.H.; Howerter, A.; Wager, T.D. The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cogn. Psychol. 2000, 41, 49–100. [Google Scholar] [CrossRef] [PubMed]
- Piek, J.P.; Dyck, M.J.; Francis, M.; Conwell, A. Working memory, processing speed, and set-shifting in children with developmental coordination disorder and attention-deficit-hyperactivity disorder. Dev. Med. Child Neurol. 2007, 49, 678–683. [Google Scholar] [CrossRef]
- Pennington, B.F.; Ozonoff, S. Executive functions and developmental psychopathology. J. Child Psychol. Psychiatry 1996, 37, 51–87. [Google Scholar] [CrossRef]
- Stockel, T.; Hughes, C.M.L. The relation between measures of cognitive and motor functioning in 5-to 6-year-old children. Psychol. Res. 2016, 80, 543–554. [Google Scholar] [CrossRef]
- Gillberg, C. Deficits in attention, motor control, and perception: A brief review. Arch. Dis. Child. 2003, 88, 904–910. [Google Scholar] [CrossRef] [PubMed]
- Blank, R.; Barnett, A.L.; Cairney, J.; Green, D.; Kirby, A.; Polatajko, H.; Rosenblum, S.; Smits-Engelsman, B.; Sugden, D.; Wilson, P.; et al. International clinical practice recommendations on the definition, diagnosis, assessment, intervention, and psychosocial aspects of developmental coordination disorder. Dev. Med. Child Neurol. 2019, 61, 242–285. [Google Scholar] [CrossRef]
- Henderson, S.; Sugden, D.A.; Barnett, A. Movement Assessment Battery for Children, 2nd ed.; The Psychological Corporation: London, UK, 2007. [Google Scholar]
- Wilson, P.H.; Ruddock, S.; Smits-Engelsman, B.; Polatajko, H.; Blank, R. Understanding performance deficits in developmental coordination disorder: A meta-analysis of recent research. Dev. Med. Child Neurol. 2013, 55, 217–228. [Google Scholar] [CrossRef]
- Wilson, B.N.; Crawford, S.G. The Developmental Coordination Disorder Questionnaire 2007 (DCDQ’07): Administrative Manual for the DCDQ107 with Psychometric Properties; B.N. Wilson: Calgary, AB, Canada, 2007. [Google Scholar]
- Chan, D.Y.K. The application of cognitive orientation to daily occupational performance (CO-OP) in children with developmental coordination disorder (DCD) in Hong Kong: A pilot study. Hong Kong J. Occup. Ther. 2007, 17, 39–44. [Google Scholar] [CrossRef]
- Van Hartingsveldt, M.J.; de Groot, I.J.M.; Aarts, P.B.M.; Nijhuis-van der Sanden, M.W.G. Standardized tests of handwriting readiness: A systematic review of the literature. Dev. Med. Child Neurol. 2011, 53, 506–515. [Google Scholar] [CrossRef]
- Kizony, R.; Katz, N. Relationships between cognitive abilities and the process scale and skills of the Assessment of Motor and Process Skills (AMPS) in patients with stroke. OTJR 2002, 22, 82–92. [Google Scholar] [CrossRef]
- Björkdahl, A.; Åkerlund, E.; Svensson, S.; Esbjörnsson, E. A randomized study of computerized working memory training and effects on functioning in everyday life for patients with brain injury. Brain Inj. 2013, 27, 1658–1665. [Google Scholar] [CrossRef] [PubMed]
- Gol, D.; Jarus, T. Effect of a social skills training group on everyday activities of children with attention-deficit–hyperactivity disorder. Dev. Med. Child Neurol. 2005, 47, 539–545. [Google Scholar] [CrossRef]
- Polatajko, H.; Mandich, A. Enabling Occupation in Children: The Cognitive Orientation to Daily Occupational Performance (CO-OP) Approach; CAOT Publication: Ottawa, ON, Canada, 2004. [Google Scholar]
- Novak, I.; Honan, I. Effectiveness of paediatric occupational therapy for children with disabilities: A systematic review. Aust. Occup. Ther. J. 2019, 66, 258–273. [Google Scholar] [CrossRef] [PubMed]
- Smits-Engelsman, B.; Vincon, S.; Blank, R.; Quadrado, V.H.; Polatajko, H.; Wilson, P.H. Evaluating the evidence for motor-based interventions in developmental coordination disorder: A systematic review and meta-analysis. Res. Dev. Disabil. 2018, 74, 72–102. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. ICD-11: International Classification of Diseases 11th Revision. Available online: https://www.who.int/standards/classifications/classification-of-diseases (accessed on 17 April 2023).
- Fisher, A.G.; Bryze, K.; Hume, V.; Gzriswold, L.A. School AMPS: School Version of the Assessment of Motor and Process Skills, 2nd ed.; Three Star Press: Fort Collins, CO, USA, 2007. [Google Scholar]
- Fisher, A.G.; Bryze, K.; Atchison, B.T. Naturalistic assessment of functional performance in school settings: Reliability and validity of the School AMPS scales. J. Outcome Meas. 2000, 4, 491–512. [Google Scholar]
- Wuang, Y.P.; Su, J.H.; Su, C.Y. Reliability and responsiveness of the Movement Assessment Battery for Children–Second Edition Test in children with developmental coordination disorder. Dev. Med. Child Neurol. 2012, 54, 160–165. [Google Scholar] [CrossRef]
- Kita, Y.; Suzuki, K.; Hirata, S.; Sakihara, K.; Inagaki, M.; Nakai, A. Applicability of the Movement Assessment Battery for Children- Second Edition to Japanese children: A study of the Age Band 2. Brain Dev. 2016, 38, 706–713. [Google Scholar] [CrossRef]
- Hirata, S.; Kita, Y.; Yasunaga, M.; Suzuki, K.; Okumura, Y.; Okuzumi, H.; Hosobuchi, T.; Kokubun, M.; Inagaki, M.; Nakai, A. Applicability of the Movement Assessment Battery for Children (M-ABC2) for Japanese children aged 3–6 years: A preliminary investigation emphasizing internal consistency and factorial validity. Front. Psychol. 2018, 9, 1452. [Google Scholar] [CrossRef]
- Nakai, A.; Miyachi, T.; Okada, R.; Tani, I.; Nakajima, S.; Onishi, M.; Fujita, C.; Tsujii, M. Evaluation of the Japanese version of the Developmental Coordination Disorder Questionnaire as a screening tool for clumsiness of Japanese children. Rev. Dev. Disabil. 2011, 32, 1615–1622. [Google Scholar] [CrossRef]
- Wilson, B.N.; Kaplan, B.J.; Crawford, S.G.; Campbellm, A.; Dewey, D. Reliability and validity of a parent questionnaire on childhood motor skills. Am. J. Occup. Ther. 2000, 54, 484–493. [Google Scholar] [CrossRef] [PubMed]
- School Version of the AMPS (School AMPS) Training Course Handouts (July 2014). Available online: https://raters.innovativeotsolutions.com/CORe (accessed on 1 December 2020).
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum: Hillsdale, NJ, USA, 1998. [Google Scholar]
- Heus, I.; Weezenberg, D.; Severijnen, S.; Vliet Vlieland, T.; van der Holst, M. Measuring treatment outcome in children with developmental coordination disorder; responsiveness of six outcome measures. Disabil. Rehab. 2020, 44, 1023–1034. [Google Scholar] [CrossRef] [PubMed]
- Alesi, M.; Pecoraro, D.; Pepi, A. Executive functions in kindergarten children at risk for developmental coordination disorders. Eur. J. Spec. Needs Educ. 2019, 34, 285–296. [Google Scholar] [CrossRef]
- Wilson, P.; Ruddock, S.; Rahimi-Golkhandan, S.; Piek, J.; Sugden, D.; Green, D.; Steenbergen, B. Cognitive and motor function in developmental coordination disorder. Dev. Med. Child Neurol. 2020, 62, 1317–1323. [Google Scholar] [CrossRef]
- Alloway, T.P. Working memory, reading, and mathematical skills in children with developmental coordination disorder. J. Exp. Child Psychol. 2007, 96, 20–36. [Google Scholar] [CrossRef] [PubMed]
- Pratt, M.L.; Leonard, H.C.; Adeyinka, H.; Hill, E.L. The effect of motor load on planning and inhibition in developmental coordination disorder. Res. Dev. Disabil. 2014, 35, 1579–1587. [Google Scholar] [CrossRef] [PubMed]
- Fliers, E.; Rommelse, N.; Vermeulen, S.; Altink, M.; Buschgens, C.J.M.; Faraone, S.V.; Sergeant, J.A.; Franke, B.; Buitelaar, J.K. Motor coordination problems in children and adolescents with ADHD rated by parents and teachers: Effects of age and gender. J. Neural Transm. 2008, 115, 211–220. [Google Scholar] [CrossRef]
- Gillberg, C.; Gillberg, I.C.; Rasmussen, P.; Kadesjö, B.; Söderström, H.; Råstam, M.; Johnson, M.; Rothenberger, A.; Niklasson, L. Co-existing disorders in ADHD-implications for diagnosis and intervention. Eur. Child Adolesc. Psychiatry 2004, 13, 80–92. [Google Scholar] [CrossRef]
- Nakai, A. Motor coordination dysfunction in ADHD: New insights from the class room to genetics. In ADHD: Cognitive Symptoms, Genetics and Treatment Outcomes; Thompson, R.R., Miller, N.J., Eds.; Nova Science Publishers, Incorporated: New York, NY, USA, 2013; pp. 81–104. [Google Scholar]
- Sartori, R.F.; Valentini, N.C.; Fonseca, R.P. Executive function in children with and without developmental coordination disorder: A comparative study. Child Care Health Dev. 2020, 46, 294–302. [Google Scholar] [CrossRef]
- Zwicker, J.G.; Missiuna, C.; Harris, S.R.; Boyd, L.A. Brain activation associated with motor skill practice in children with developmental coordination disorder: An fMRI study. Int. J. Dev. Neurosci. 2011, 29, 145–152. [Google Scholar] [CrossRef]
- Blais, M.; Amarantini, D.; Albaret, J.M.; Chaix, Y.; Tallet, J. Atypical inter-hemispheric communication correlates with altered motor inhibition during learning of a new bimanual coordination pattern in developmental coordination disorder. Dev. Sci. 2018, 21, e12563. [Google Scholar] [CrossRef]
- Izadi-Najafabadi, S.; Gill, K.K.; Zwicker, J.G. Training-induced neuroplasticity in children with developmental coordination disorder. Curr. Dev. Disord. Rep. 2020, 7, 48–58. [Google Scholar] [CrossRef]
- Araujo, C.R.S.; Cardoso, A.A.; Polatajko, H.J.; de Castro Magalhães, L. Efficacy of the Cognitive Orientation to daily Occupational Performance (CO-OP) approach with and without parental coaching on activity and participation for children with developmental coordination disorder: A randomized clinical trial. Res. Dev. Disabil. 2021, 110, 103862. [Google Scholar] [CrossRef]
- Fitts, P.M.; Posner, M.I. Human Performance (Basic Concepts in Psychology); Brooks/Cole Company: Belmont, CA, USA, 1967. [Google Scholar]
- Magil, F.A. Knowledge is more than we can talk about: Implicit learning in motor skill acquisition. Res. Q. Exerc. Sport 1998, 69, 2. [Google Scholar] [CrossRef] [PubMed]
- Green, D.; Chambers, M.E.; Sugden, D.A. Does subtype of developmental coordination disorder count: Is there a differential effect on outcome following intervention? Hum. Mov. Sci. 2008, 27, 363–382. [Google Scholar] [CrossRef]
- Adams, I.L.; Smits-Engelsman, B.; Lust, J.M.; Wilson, P.H.; Steenbergen, B. Feasibility of motor imagery training in children with developmental coordination disorders: A pilot study. Front. Psychol. 2017, 8, 1271. [Google Scholar] [CrossRef] [PubMed]
- Izadi-Najafabadi, S.; Rinat, S.; Zwicker, J.G. Brain functional connectivity in children with developmental coordination disorder following rehabilitation intervention. Pediatr. Res. 2022, 91, 1459–1468. [Google Scholar] [CrossRef]
- Izawa, J.; Pekny, S.E.; Marko, M.K.; Haswell, C.C.; Shadmehr, R.; Mostofsky, S.H. Motor learning relies on integrated sensory inputs in ADHD, but over-selectively on proprioception in autism spectrum conditions. Autism Res. 2012, 5, 124–136. [Google Scholar] [CrossRef]
- Happé, F.; Booth, R.; Charlton, R.; Hughes, C. Executive function deficits in autism spectrum disorders and attention-deficit/hyperactivity disorder: Examining profiles across domains and ages. Brain Cogn. 2006, 61, 25–39. [Google Scholar] [CrossRef] [PubMed]
- Law, M.; Carswell, A.; Baptiste, S.; McColl, M.A.; Polatajko, H.; Pollock, N. Canadian Occupational Performance Measure Manual, 5th ed.; CAOT Publications ACE: Ottawa, ON, Canada, 2014. [Google Scholar]
- Martini, R.; Rios, J.; Polatajko, H.; Wolf, T.; McEwen, S. The performance quality rating scale (PQRS): Reliability, convergent validity, and internal responsiveness for two scoring systems. Disabil. Rehabil. 2015, 37, 231–238. [Google Scholar] [CrossRef]
- Hartman, E.; Houwen, S.; Scherder, E.; Visscher, C. On the relationship between motor performance and executive functioning in children with intellectual disabilities. J. Intellect. Disabil. Res. 2010, 54, 468–477. [Google Scholar] [CrossRef] [PubMed]
- Roording-Ragetlie, S.; Klip, H.; Buitelaar, J.; Slaats-Willemse, D. Working memory training in children with neuropsychiatric disorders and mild to borderline intellectual functioning, the role of coaching; a double-blind randomized controlled trial. BMC Psychiatry 2017, 17, 114. [Google Scholar] [CrossRef] [PubMed]
Baseline Assessment | |||||
---|---|---|---|---|---|
Outcome measure | Intervention group | Control group | |||
(n = 14) | (n = 14) | ||||
Mean (SD) | Median | Mean | Median | p-value | |
(25th–75th percentile) | (SD) | (25th–75th percentile) | |||
Sex | 9 boys, 5 girls | 9 boys, 5 girls | 0.13 † | ||
Age | 70.00 (5.23) | 70 (64.0–75.25) | 68.93 (3.91) | 69.50 (65.75–71.25) | 0.53 ‡ |
DCDQ-J | |||||
Total score | 37.90 (0.98) | 39 (34.40–40.0) | 37.93 (0.518) | 38.5 (36–40) | 0.95 ‡ |
CDM | 13.57 (0.98) | 13.5 (10.75–17.0) | 14.29 (0.90) | 14 (11.75–17.00) | 0.60 § |
FM/HW | 10.14 (0.61) | 10.5 (8.0–12.0) | 10.57 (0.69) | 10 (8–12.5) | 0.80 ‡ |
GC | 13.86 (0.44) | 14 (12.75–15.0) | 13.07 (0.53) | 13 (11.75–14.25) | 0.27 § |
School AMPS motor skill | 2.5 (0.11) | 2.50 (2.25–2.83) | 2.34 (0.11) | 2.35 (1.91–2.63) | 0.34 § |
School AMPS process skill | 0.54 (0.10) | 0.48 (0.30–0.75) | 0.54 (0.14) | 0.50 (0.08–1.10) | 0.98 § |
M-ABC2 | |||||
Total score | 74.14 (2.50) | 74.00 (64.75–81.25) | 75.50 (1.71) | 76.0 (69.75–79.50) | 0.66 § |
MD | 29.79 (1.08) | 31.0 (25.75–33.25) | 29.07 (0.92) | 29.50 (35.75–31.0) | 0.62 § |
AC | 13.79 (1.27) | 12.0 (10.0–17.75) | 14.0 (0.86) | 13.5 (11.0–17.0) | 0.57 ‡ |
Bal | 32.9 (1.40) | 31.5 (28.75–35.25) | 32.29 (0.87) | 32.50 (29.0–35.0) | 0.55 § |
D-Total | D-CDM | D-FM | D-GC | S-Motor | S-Process | M-Total | M-MD | M-AC | M-FM | |
---|---|---|---|---|---|---|---|---|---|---|
D-Total | ― | |||||||||
D-CDM | 0.63 * | ― | ||||||||
D-FM | 0.31 | −0.38 | ― | |||||||
D-GC | 0.20 | −0.13 | 0.00 | ― | ||||||
S-Motor | 0.29 | −0.19 | 0.60 * | −0.03 | ― | |||||
S-Process | 0.19 | −0.35 | 0.63 * | 0.22 | 0.65 * | ― | ||||
M-Total | −0.08 | −0.09 | 0.14 | 0.00 | −0.40 | −0.11 | ― | |||
M-MD | −0.04 | −0.24 | 0.25 | 0.12 | −0.20 | −0.06 | 0.72 * | ― | ||
M-AC | −0.04 | 0.11 | −0.12 | −0.08 | −0.44 | −0.30 | 0.68 * | 0.31 | ― | |
M-Bal | −0.21 | −0.13 | 0.05 | −0.06 | −0.26 | 0.11 | 0.72 * | 0.26 | 0.27 | ― |
Baseline | Post | Post Three Months | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Median (25th–75th percentiles) | SD | Median (25th–75th percentiles) | SD | P (a) | Effect size | Median (25th–75th percentiles) | SD | P (b) | Effect size | |||
Assessment | n | |||||||||||
School AMPS motor skill | Intervention | 14 | 2.50 (2.25–2.83) | 0.43 | 2.50 (2.23–2.83) | 0.34 | 0.75 | 0.08 | 2.68 (2.31–2.80) | 0.39 | 0.48 | 0.19 |
Control | 14 | 2.35 (1.91–2.63) | 0.41 | 2.25 (1.89–2.51) | 0.33 | 0.43 | 0.21 | 2.6 (2.28–2.80) | 0.41 | 0.21 | 0.34 | |
School AMPS process skill | Intervention | 14 | 0.48 (0.30–0.73) | 0.38 | 0.89 (0.80–1.15) | 0.35 | 0.004 * | 0.78 | 0.79 (0.53–1.03) | 0.39 | 0.03 | 0.60 |
Control | 14 | 0.50 (0.08–1.10) | 0.53 | 0.5 (0.25–0.68) | 0.33 | 0.51 | 0.18 | 0.65 (0.25–0.80) | 0.38 | 0.03 | 0.13 | |
M-ABC2 total score | Intervention | 14 | 74.00 (64.8–81.25) | 9.36 | 81.0 (74.0–86.5) | 7.73 | 0.05 | 0.52 | 82.0 (76.5–92.5) | 8.08 | 0.005 * | 0.75 |
Control | 14 | 76.0 (69.75–79.50) | 6.39 | 74.0 (65.50–81.25) | 9.70 | 0.59 | 0.14 | 79.0 (70.50–89.25 | 12.79 | 0.47 | 0.20 | |
M-ABC2 MD | Intervention | 14 | 31.0 (25.75–33.25) | 4.04 | 29.0 (26.50–34.0) | 5.34 | 0.92 | 0.03 | 31.50 (28.75–34.25) | 4.28 | 0.46 | 0.20 |
Control | 14 | 29.50 (35.75–31.0) | 3.40 | 26.0 (20.75–34.25) | 7.03 | 0.43 | 0.21 | 32.0 (29.25–36.0) | 6.32 | 0.03 | 0.57 | |
M-ABC2 AC | Intervention | 14 | 12.0 (10.0–17.75) | 4.74 | 16.0 (13.75–20.50) | 3.83 | 0.13 | 0.40 | 16.0 (14.75–23.25) | 4.78 | 0.02 | 0.65 |
Control | 14 | 13.5 (11.0–17.0) | 3.23 | 14.0 (13.0–16.0) | 3.39 | 0.84 | 0.50 | 15.5 (11.0–19.50) | 4.27 | 0.45 | 0.20 | |
M-ABC2 Bal | Intervention | 14 | 31.5 (28.75–35.25) | 5.25 | 33.0 (30.0–36.25) | 2.85 | 0.16 | 0.38 | 34.50 (33.0–36.0) | 2.41 | 0.03 | 0.57 |
Control | 14 | 32.50 (29.0–35.0) | 3.25 | 31.5 (30.75–35.25) | 3.43 | 0.92 | 0.92 | 32.0 (29.25–36.0) | 4.22 | 0.65 | 0.65 |
DAMP-t | DCD-t | |||||
---|---|---|---|---|---|---|
Intervention Group | Control Group | p-Value | Intervention Group | Control Group | p-Value | |
(n = 8) | (n = 9) | (n = 6) | (n = 5) | |||
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | |||
DCDQ-J | ||||||
Total score | 8.5 ± 10.13 | 5.56 ± 7.88 | 0.511 § | 9 ± 4.10 | 0.8 ± 6.10 | 0.52 ‡ |
CDM | 5 ± 5.40 | 1.78 ± 4.47 | 0.321 ‡ | 4.83 ± 3.37 | 2.4 ± 5.03 | 0.363 § |
FM/HW | 2.13 ± 4.61 | 2.22 ± 3.77 | 0.962 § | 2.17 ± 1.94 | −2.4 ± 2.70 | 0.01 §* |
GC | 0.63 ± 3.42 | 1.56 ± 1.01 | 0.48 § | 1.67 ± 2.16 | 0.8 ± 3.96 | 0.655 § |
School AMPS | 0.35 ± 0.35 | 0.078 ± 0.47 | 0.198 § | −0.32 ± 0.43 | −0.48 ± 0.40 | 0.542 § |
motor skill | ||||||
School AMPS | 0.54 ± 0.31 | 0.119 ± 0.40 | 0.021 ‡* | 0.298 ± 0.45 | −0.46 ± 0.24 | 0.008 §** |
process skill | ||||||
M-ABC2 | ||||||
Total score | 4.13 ± 10.73 | −1 ± 11.49 | 0.359 § | 8.67 ± 9.03 | −0.24 ± 8.88 | 0.72 § |
MD | −1.5 ± 5.56 | −2 ± 7.35 | 0.879 § | 2.5 ± 3.89 | −1.4 ± 9.61 | 0.038 §* |
AC | 1.25 ± 6.78 | 1.0 ± 4.82 | 0.931 § | 5.33 ± 6.77 | −0.6 ± 4.83 | 0.126 ‡ |
Bal | 3.13 ± 6.66 | 0 ± 2.35 | 0.241 § | 0.83 ± 2.99 | 0 ± 3.67 | 0.688 § |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yasunaga, M.; Miyaguchi, H.; Ishizuki, C.; Kita, Y.; Nakai, A. Cognitive Orientation to Daily Occupational Performance: A Randomized Controlled Trial Examining Intervention Effects on Children with Developmental Coordination Disorder Traits. Brain Sci. 2023, 13, 721. https://doi.org/10.3390/brainsci13050721
Yasunaga M, Miyaguchi H, Ishizuki C, Kita Y, Nakai A. Cognitive Orientation to Daily Occupational Performance: A Randomized Controlled Trial Examining Intervention Effects on Children with Developmental Coordination Disorder Traits. Brain Sciences. 2023; 13(5):721. https://doi.org/10.3390/brainsci13050721
Chicago/Turabian StyleYasunaga, Masanori, Hideki Miyaguchi, Chinami Ishizuki, Yosuke Kita, and Akio Nakai. 2023. "Cognitive Orientation to Daily Occupational Performance: A Randomized Controlled Trial Examining Intervention Effects on Children with Developmental Coordination Disorder Traits" Brain Sciences 13, no. 5: 721. https://doi.org/10.3390/brainsci13050721
APA StyleYasunaga, M., Miyaguchi, H., Ishizuki, C., Kita, Y., & Nakai, A. (2023). Cognitive Orientation to Daily Occupational Performance: A Randomized Controlled Trial Examining Intervention Effects on Children with Developmental Coordination Disorder Traits. Brain Sciences, 13(5), 721. https://doi.org/10.3390/brainsci13050721