A Novel Exploratory Graph-Based Analytical Tool for Functional Near-Infrared Spectroscopy in Naturalistic Experiments: An Illustrative Application in Typically Developing Children
Abstract
:1. Introduction
2. Material and Methods
2.1. Participants
2.2. Task
2.3. fNIRS Instrumentation
2.4. Signal Preprocessing
2.5. A New Statistical Approach to Naturalistic fNIRS Signal Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zaki, J.; Ochsner, K. The Need for a Cognitive Neuroscience of Naturalistic Social Cognition. Ann. NY Acad. Sci. 2009, 1167, 16–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fishell, A.K.; Burns-Yocum, T.M.; Bergonzi, K.M.; Eggebrecht, A.T.; Culver, J.P. Mapping Brain Function during Naturalistic Viewing Using High-Density Diffuse Optical Tomography. Sci. Rep. 2019, 9, 11115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanderwal, T.; Eilbott, J.; Castellanos, F.X. Movies in the Magnet: Naturalistic Paradigms in Developmental Functional Neuroimaging. Dev. Cogn. Neurosci. 2019, 36, 100600. [Google Scholar] [CrossRef]
- Finn, E.S.; Glerean, E.; Hasson, U.; Vanderwal, T. Naturalistic Imaging: The Use of Ecologically Valid Conditions to Study Brain Function. Neuroimage 2022, 247, 118776. [Google Scholar] [CrossRef] [PubMed]
- Hasson, U.; Nastase, S.A.; Goldstein, A. Direct Fit to Nature: An Evolutionary Perspective on Biological and Artificial Neural Networks. Neuron 2020, 105, 416–434. [Google Scholar] [CrossRef]
- Quaresima, V.; Ferrari, M. Functional Near-Infrared Spectroscopy (FNIRS) for Assessing Cerebral Cortex Function during Human Behavior in Natural/Social Situations: A Concise Review. Organ. Res. Methods 2019, 22, 46–68. [Google Scholar] [CrossRef]
- Marek, S.; Tervo-Clemmens, B.; Calabro, F.J.; Montez, D.F.; Kay, B.P.; Hatoum, A.S.; Donohue, M.R.; Foran, W.; Miller, R.L.; Hendrickson, T.J.; et al. Reproducible Brain-Wide Association Studies Require Thousands of Individuals. Nature 2022, 603, 654–660. [Google Scholar] [CrossRef]
- Ioannidis, J.P.A. Why Most Published Research Findings Are False. PLoS Med. 2005, 2, e124. [Google Scholar] [CrossRef] [Green Version]
- Eickhoff, S.B.; Milham, M.; Vanderwal, T. Towards Clinical Applications of Movie FMRI. Neuroimage 2020, 217, 116860. [Google Scholar] [CrossRef]
- Fekete, T.; Beacher, F.D.C.C.; Cha, J.; Rubin, D.; Mujica-Parodi, L.R. Small-World Network Properties in Prefrontal Cortex Correlate with Predictors of Psychopathology Risk in Young Children: A NIRS Study. Neuroimage 2014, 85 Pt 1, 345–353. [Google Scholar] [CrossRef]
- Sato, J.R.; Junior, C.E.B.; de Araújo, E.L.M.; de Souza Rodrigues, J.; Andrade, S.M. A Guide for the Use of FNIRS in Microcephaly Associated to Congenital Zika Virus Infection. Sci. Rep. 2021, 11, 19270. [Google Scholar] [CrossRef]
- Pinti, P.; Merla, A.; Aichelburg, C.; Lind, F.; Power, S.; Swingler, E.; Hamilton, A.; Gilbert, S.; Burgess, P.W.; Tachtsidis, I. A Novel GLM-Based Method for the Automatic IDentification of Functional Events (AIDE) in FNIRS Data Recorded in Naturalistic Environments. Neuroimage 2017, 155, 291–304. [Google Scholar] [CrossRef]
- Pinti, P.; Aichelburg, C.; Gilbert, S.; Hamilton, A.; Hirsch, J.; Burgess, P.; Tachtsidis, I. A Review on the Use of Wearable Functional Near-Infrared Spectroscopy in Naturalistic Environments. Jpn. Psychol. Res. 2018, 60, 347–373. [Google Scholar] [CrossRef] [Green Version]
- Vanderwal, T.; Kelly, C.; Eilbott, J.; Mayes, L.C.; Castellanos, F.X. Inscapes: A Movie Paradigm to Improve Compliance in Functional Magnetic Resonance Imaging. Neuroimage 2015, 122, 222–232. [Google Scholar] [CrossRef] [Green Version]
- Achenbach, T.M.; Edelbrock, C.S. Behavioral Problems and Competencies Reported by Parents of Normal and Disturbed Children Aged Four through Sixteen. Monogr. Soc. Res. Child. Dev. 1981, 46, 1–82. [Google Scholar] [CrossRef]
- Peterson, J.L.; Zill, N. Marital Disruption, Parent–Child Relationships, and Behavior Problems in Children. J. Marriage Fam. 1986, 48, 295–307. [Google Scholar] [CrossRef] [Green Version]
- Molavi, B.; Dumont, G.A. Wavelet-Based Motion Artifact Removal for Functional near-Infrared Spectroscopy. Physiol. Meas. 2012, 33, 259–270. [Google Scholar] [CrossRef]
- Goodwin, J.R.; Gaudet, C.R.; Berger, A.J. Short-Channel Functional near-Infrared Spectroscopy Regressions Improve When Source-Detector Separation Is Reduced. Neurophotonics 2014, 1, 015002. [Google Scholar] [CrossRef] [Green Version]
- Dravida, S.; Noah, J.A.; Zhang, X.; Hirsch, J. Comparison of Oxyhemoglobin and Deoxyhemoglobin Signal Reliability with and without Global Mean Removal for Digit Manipulation Motor Tasks. Neurophotonics 2018, 5, 011006. [Google Scholar] [CrossRef]
- Luke, R.; Shader, M.J.; Gramfort, A.; Larson, E.; Lee, A.K.; McAlpine, D. Oxygenated Hemoglobin Signal Provides Greater Predictive Performance of Experimental Condition than De-Oxygenated. bioRxiv 2021. BioRxiv:2021.11.19.469225. [Google Scholar]
- Lahiri, S.N. Resampling Methods for Dependent Data; Springer Series in Statistics; Springer: New York, NY, USA, 2003; ISBN 978-1-4419-1848-2. [Google Scholar]
- Sabidussi, G. The Centrality Index of a Graph. Psychometrika 1966, 31, 581–603. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Farivar, R. Natural Scene Representations in the Gamma Band Are Prototypical across Subjects. NeuroImage 2020, 221, 117010. [Google Scholar] [CrossRef] [PubMed]
- Di, X.; Biswal, B.B. Intersubject Consistent Dynamic Connectivity during Natural Vision Revealed by Functional MRI. NeuroImage 2020, 216, 116698. [Google Scholar] [CrossRef] [PubMed]
- Nastase, S.A.; Liu, Y.-F.; Hillman, H.; Norman, K.A.; Hasson, U. Leveraging Shared Connectivity to Aggregate Heterogeneous Datasets into a Common Response Space. Neuroimage 2020, 217, 116865. [Google Scholar] [CrossRef]
- Li, L.; Lu, B.; Yan, C.-G. Stability of Dynamic Functional Architecture Differs between Brain Networks and States. NeuroImage 2020, 216, 116230. [Google Scholar] [CrossRef]
- Sato, J.R.; Biazoli, C.E.; Salum, G.A.; Gadelha, A.; Crossley, N.; Satterthwaite, T.D.; Vieira, G.; Zugman, A.; Picon, F.A.; Pan, P.M.; et al. Temporal Stability of Network Centrality in Control and Default Mode Networks: Specific Associations with Externalizing Psychopathology in Children and Adolescents. Hum. Brain Mapp. 2015, 36, 4926–4937. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Ruesch, A.; Kang, N.R.; Huppert, T.J.; Kainerstorfer, J.; Thiessen, E.D.; Fisher, A.V. A Paradigm for Measuring Resting State Functional Connectivity in Young Children Using FNIRS and Freeplay. bioRxiv 2020. bioRxiv:2020.01.13.904029. [Google Scholar]
- Rohr, C.S.; Vinette, S.A.; Parsons, K.A.L.; Cho, I.Y.K.; Dimond, D.; Benischek, A.; Lebel, C.; Dewey, D.; Bray, S. Functional Connectivity of the Dorsal Attention Network Predicts Selective Attention in 4–7 Year-Old Girls. Cereb. Cortex 2017, 27, 4350–4360. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.; Liu, G.; Dong, Q.; Niu, H. Applications of Resting-State FNIRS in the Developing Brain: A Review from the Connectome Perspective. Front. Neurosci. 2020, 14, 476. [Google Scholar] [CrossRef]
- Xu, S.-Y.; Lu, F.-M.; Wang, M.-Y.; Hu, Z.-S.; Zhang, J.; Chen, Z.-Y.; Armada-da-Silva, P.A.S.; Yuan, Z. Altered Functional Connectivity in the Motor and Prefrontal Cortex for Children with Down’s Syndrome: An FNIRS Study. Front. Hum. Neurosci. 2020, 14, 6. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sato, J.R.; Pereira, T.D.; Martins, C.M.d.L.; Bezerra, T.A.; Queiroz, M.E.; Costa, L.P.; Andrade, S.M.; Biazoli, C.E. A Novel Exploratory Graph-Based Analytical Tool for Functional Near-Infrared Spectroscopy in Naturalistic Experiments: An Illustrative Application in Typically Developing Children. Brain Sci. 2023, 13, 905. https://doi.org/10.3390/brainsci13060905
Sato JR, Pereira TD, Martins CMdL, Bezerra TA, Queiroz ME, Costa LP, Andrade SM, Biazoli CE. A Novel Exploratory Graph-Based Analytical Tool for Functional Near-Infrared Spectroscopy in Naturalistic Experiments: An Illustrative Application in Typically Developing Children. Brain Sciences. 2023; 13(6):905. https://doi.org/10.3390/brainsci13060905
Chicago/Turabian StyleSato, João Ricardo, Tiago Duarte Pereira, Clarice Maria de Lucena Martins, Thaynã Alves Bezerra, Maria Eduarda Queiroz, Larissa Pereira Costa, Suellen Marinho Andrade, and Claudinei Eduardo Biazoli. 2023. "A Novel Exploratory Graph-Based Analytical Tool for Functional Near-Infrared Spectroscopy in Naturalistic Experiments: An Illustrative Application in Typically Developing Children" Brain Sciences 13, no. 6: 905. https://doi.org/10.3390/brainsci13060905
APA StyleSato, J. R., Pereira, T. D., Martins, C. M. d. L., Bezerra, T. A., Queiroz, M. E., Costa, L. P., Andrade, S. M., & Biazoli, C. E. (2023). A Novel Exploratory Graph-Based Analytical Tool for Functional Near-Infrared Spectroscopy in Naturalistic Experiments: An Illustrative Application in Typically Developing Children. Brain Sciences, 13(6), 905. https://doi.org/10.3390/brainsci13060905