The Effect of Physical Exercise on People with Psychosis: A Qualitative Critical Review of Neuroimaging Findings
Abstract
:1. Introduction
Aims
2. Materials and Methods
2.1. Inclusion Criteria
2.2. Search Strategy and Selection of Studies
3. Results
3.1. Exercise Effects on Structural Plasticity in Psychosis
3.1.1. Anatomical MRI
3.1.2. Diffusion MRI
3.2. Exercise Effects on Functional Plasticity in Psychosis
Functional MRI
3.3. Behavioral Correlation with Neuroimaging Findings
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Harvey, P.D.; Strassnig, M. Predicting the severity of everyday functional disability in people with schizophrenia: Cognitive deficits, functional capacity, symptoms, and health status. World Psychiatry 2012, 11, 73–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernard, J.A.; Mittal, V.A. Updating the research domain criteria: The utility of a motor dimension. Psychol. Med. 2015, 45, 2685–2689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mittal, V.A. Cross-Cutting Advancements Usher in a New Era for Motor Research in Psychosis. Schizophr. Bull. 2016, 42, 1322–1325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walther, S.; Mittal, V.A. Motor Behavior is Relevant for Understanding Mechanism, Bolstering Prediction, And Improving Treatment: A Transdiagnostic Perspective. Schizophr. Bull. 2022, 48, 741–748. [Google Scholar] [CrossRef] [PubMed]
- Callaway, D.A.; Perkins, D.O.; Woods, S.W.; Liu, L.; Addington, J. Movement abnormalities predict transitioning to psychosis in individuals at clinical high risk for psychosis. Schizophr. Res. 2014, 159, 263–266. [Google Scholar] [CrossRef] [Green Version]
- Mittal, V.A.; Neumann, C.; Saczawa, M.; Walker, E.F. Longitudinal progression of movement abnormalities in relation to psychotic symptoms in adolescents at high risk of schizophrenia. Arch. Gen. Psychiatry 2008, 65, 165–171. [Google Scholar] [CrossRef] [Green Version]
- Mittal, V.A.; Walker, E.F.; Bearden, C.E.; Walder, D.; Trottman, H.; Daley, M.; Simone, A.; Cannon, T.D. Markers of Basal Ganglia Dysfunction and Conversion to Psychosis: Neurocognitive Deficits and Dyskinesias in the Prodromal Period. Biol. Psychiatry 2010, 68, 93–99. [Google Scholar] [CrossRef] [Green Version]
- Shenton, M.E.; Dickey, C.C.; Frumin, M.; McCarley, R.W. A review of MRI findings in schizophrenia. Schizophr. Res. 2001, 49, 1–52. [Google Scholar] [CrossRef] [Green Version]
- Kubicki, M.; Park, H.; Westin, C.F.; Nestor, P.G.; Mulkern, R.V.; Maier, S.E.; Niznikiewicz, M.; Connor, E.E.; Levitt, J.J.; Frumin, M.; et al. DTI and MTR abnormalities in schizophrenia: Analysis of white matter integrity. Neuroimage 2005, 26, 1109–1118. [Google Scholar] [CrossRef] [Green Version]
- Lynall, M.E.; Bassett, D.S.; Kerwin, R.; McKenna, P.J.; Kitzbichler, M.; Muller, U.; Bullmore, E. Functional connectivity and brain networks in schizophrenia. J. Neurosci. 2010, 30, 9477–9487. [Google Scholar] [CrossRef] [Green Version]
- Kuperberg, G.R.; Broome, M.R.; McGuire, P.K.; David, A.S.; Eddy, M.; Ozawa, F.; Goff, D.; West, W.C.; Williams, S.C.R.; Van der Kouwe, A.J.W.; et al. Regionally localized thinning of the cerebral cortex in schizophrenia. Arch. Gen. Psychiatry 2003, 60, 878–888. [Google Scholar] [CrossRef] [Green Version]
- De Peri, L.; Crescini, A.; Deste, G.; Fusar-Poli, P.; Sacchetti, E.; Vita, A. Brain Structural Abnormalities at the Onset of Schizophrenia and Bipolar Disorder: A Meta-analysis of Controlled Magnetic Resonance Imaging Studies. Curr. Pharm. Des. 2012, 18, 486–494. [Google Scholar] [CrossRef]
- Mittal, V.A.; Bernard, J.A.; Northoff, G. What can different motor circuits tell us about psychosis? An RDoC perspective. Schizophr. Bull. 2017, 43, 949–955. [Google Scholar] [CrossRef] [Green Version]
- Uddin, L.Q.; Yeo, B.T.T.; Spreng, R.N. Towards a Universal Taxonomy of Macro-scale Functional Human Brain Networks. Brain Topogr. 2019, 32, 926–942. [Google Scholar] [CrossRef]
- Kebets, V.; Holmes, A.J.; Orban, C.; Tang, S.; Li, J.; Sun, N.; Kong, R.; Poldrack, R.A.; Yeo, B.T.T. Somatosensory-Motor Dysconnectivity Spans Multiple Transdiagnostic Dimensions of Psychopathology. Biol. Psychiatry 2019, 86, 779–791. [Google Scholar] [CrossRef]
- Huang, C.C.; Luo, Q.; Palaniyappan, L.; Yang, A.C.; Hung, C.C.; Chou, K.H.; Zac Lo, C.Y.; Liu, M.N.; Tsai, S.J.; Barch, D.M.; et al. Transdiagnostic and Illness-Specific Functional Dysconnectivity Across Schizophrenia, Bipolar Disorder, and Major Depressive Disorder. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2020, 5, 542–553. [Google Scholar] [CrossRef]
- Hirjak, D.; Meyer-Lindenberg, A.; Fritze, S.; Sambataro, F.; Kubera, K.M.; Wolf, R.C. Motor dysfunction as research domain across bipolar, obsessive-compulsive and neurodevelopmental disorders. Neurosci. Biobehav. Rev. 2018, 95, 315–335. [Google Scholar] [CrossRef]
- Solmi, M.; Croatto, G.; Piva, G.; Rosson, S.; Fusar-Poli, P.; Rubio, J.M.; Carvalho, A.F.; Vieta, E.; Arango, C.; DeTore, N.R.; et al. Efficacy and acceptability of psychosocial interventions in schizophrenia: Systematic overview and quality appraisal of the meta-analytic evidence. Mol. Psychiatry 2023, 28, 354–368. [Google Scholar] [CrossRef]
- Maj, M.; van Os, J.; De Hert, M.; Gaebel, W.; Galderisi, S.; Green, M.F.; Guloksuz, S.; Harvey, P.D.; Jones, P.B.; Malaspina, D.; et al. The clinical characterization of the patient with primary psychosis aimed at personalization of management. World Psychiatry 2021, 20, 4–33. [Google Scholar] [CrossRef]
- Deste, G.; Corbo, D.; Nibbio, G.; Italia, M.; Dell’Ovo, D.; Calzavara-Pinton, I.; Lisoni, J.; Barlati, S.; Gasparotti, R.; Vita, A. Impact of Physical Exercise Alone or in Combination with Cognitive Remediation on Cognitive Functions in People with Schizophrenia: A Qualitative Critical Review. Brain Sci. 2023, 13, 320. [Google Scholar] [CrossRef]
- Vita, A.; Gaebel, W.; Mucci, A.; Sachs, G.; Erfurth, A.; Barlati, S.; Zanca, F.; Giordano, G.M.; Birkedal Glenthøj, L.; Nordentoft, M.; et al. European Psychiatric Association guidance on assessment of cognitive impairment in schizophrenia. Eur. Psychiatry 2022, 65, E58. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Damme, K.S.F.; Gupta, T.; Ristanovic, I.; Kimhy, D.; Bryan, A.D.; Mittal, V.A. Exercise Intervention in Individuals at Clinical High Risk for Psychosis: Benefits to Fitness, Symptoms, Hippocampal Volumes, and Functional Connectivity. Schizophr. Bull. 2022, 48, 1394–1405. [Google Scholar] [CrossRef] [PubMed]
- Dean, D.J.; Bryan, A.D.; Newberry, R.; Gupta, T.; Carol, E.; Mittal, V.A. A supervised exercise intervention for youth at risk for psychosis: An open-label pilot study. J. Clin. Psychiatry 2017, 78, e1167–e1173. [Google Scholar] [CrossRef] [PubMed]
- Maurus, I.; Roell, L.; Keeser, D.; Papazov, B.; Papazova, I.; Lembeck, M.; Roeh, A.; Wagner, E.; Hirjak, D.; Malchow, B.; et al. Fitness is positively associated with hippocampal formation subfield volumes in schizophrenia: A multiparametric magnetic resonance imaging study. Transl. Psychiatry 2022, 12, 388. [Google Scholar] [CrossRef]
- McEwen, S.; Jarrahi, B.; Subotnik, K.; Ventura, J.; Nuechterlein, K. 396. Neuroplasticity Benefits of Adding Aerobic Exercise to Cognitive Training in First-Episode Schizophrenia Patients. Biol. Psychiatry 2017, 81, S161–S162. [Google Scholar] [CrossRef]
- Roell, L.; Keeser, D.; Papazov, B.; Lembeck, M.; Papazova, I.; Muenz, S.; Schneider-axmann, T.; Sykorova, E.; Christina, E.; Vogel, B.O.; et al. Effects of Aerobic Exercise on Hippocampal Formation Volume and Connectivity in Patients with Schizophrenia—A Multicenter Randomized-Controlled Clinical Trial. 2023. [Google Scholar]
- van der Stouwe, E.C.D.; Pijnenborg, G.H.M.; Opmeer, E.M.; de Vries, B.; Marsman, J.B.C.; Aleman, A.; van Busschbach, J.T. Neural changes following a body-oriented resilience therapy with elements of kickboxing for individuals with a psychotic disorder: A randomized controlled trial. Eur. Arch. Psychiatry Clin. Neurosci. 2021, 271, 355–366. [Google Scholar] [CrossRef] [Green Version]
- Falkai, P.; Malchow, B.; Wobrock, T.; Gruber, O.; Schmitt, A.; Honer, W.G.; Pajonk, F.G.; Sun, F.; Cannon, T.D. The effect of aerobic exercise on cortical architecture in patients with chronic schizophrenia: A randomized controlled MRI study. Eur. Arch. Psychiatry Clin. Neurosci. 2013, 263, 469–473. [Google Scholar] [CrossRef]
- Lin, J.; Chan, S.K.; Lee, E.H.; Chang, W.C.; Tse, M.; Su, W.W.; Sham, P.; Hui, C.L.; Joe, G.; Chan, C.L.; et al. Aerobic exercise and yoga improve neurocognitive function in women with early psychosis. NPJ Schizophr. 2015, 1, 15047. [Google Scholar] [CrossRef] [Green Version]
- Malchow, B.; Keeser, D.; Keller, K.; Hasan, A.; Rauchmann, B.S.; Kimura, H.; Schneider-Axmann, T.; Dechent, P.; Gruber, O.; Ertl-Wagner, B.; et al. Effects of endurance training on brain structures in chronic schizophrenia patients and healthy controls. Schizophr. Res. 2016, 173, 182–191. [Google Scholar] [CrossRef]
- Maurus, I.; Röll, L.; Keeser, D.; Karali, T.; Papazov, B.; Hasan, A.; Schmitt, A.; Papazova, I.; Lembeck, M.; Hirjak, D.; et al. Associations between aerobic fitness, negative symptoms, cognitive deficits and brain structure in schizophrenia—A cross-sectional study. Schizophrenia 2022, 8, 63. [Google Scholar] [CrossRef]
- McEwen, S.C.; Jarrahi, B.; Ventura, J.; Subotnik, K.L.; Nguyen, J.; Woo, S.M.; Nuechterlein, K.H. A combined exercise and cognitive training intervention induces fronto-cingulate cortical plasticity in first-episode psychosis patients. Schizophr. Res. 2023, 251, 12–21. [Google Scholar] [CrossRef]
- Mittal, V.A.; Gupta, T.; Orr, J.M.; Pelletier-Baldelli, A.; Dean, D.J.; Lunsford-Avery, J.R.; Smith, A.K.; Robustelli, B.L.; Leopold, D.R.; Millman, Z.B. Physical activity level and medial temporal health in youth at ultra high-risk for psychosis. J. Abnorm. Psychol. 2013, 122, 1101–1110. [Google Scholar] [CrossRef] [Green Version]
- Pajonk, F.G.; Wobrock, T.; Gruber, O.; Scherk, H.; Berner, D.; Kaizl, I.; Kierer, A.; Müller, S.; Oest, M.; Meyer, T.; et al. Hippocampal plasticity in response to exercise in schizophrenia. Arch. Gen. Psychiatry 2010, 67, 133–143. [Google Scholar] [CrossRef] [Green Version]
- Rosenbaum, S.; Lagopoulos, J.; Curtis, J.; Taylor, L.; Watkins, A.; Barry, B.K.; Ward, P.B. Aerobic exercise intervention in young people with schizophrenia spectrum disorders; improved fitness with no change in hippocampal volume. Psychiatry Res.-Neuroimaging 2015, 232, 200–201. [Google Scholar] [CrossRef]
- Scheewe, T.W.; van Haren, N.E.M.; Sarkisyan, G.; Schnack, H.G.; Brouwer, R.M.; de Glint, M.; Hulshoff Pol, H.E.; Backx, F.J.G.; Kahn, R.S.; Cahn, W. Exercise therapy, cardiorespiratory fitness and their effect on brain volumes: A randomised controlled trial in patients with schizophrenia and healthy controls. Eur. Neuropsychopharmacol. 2013, 23, 675–685. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, S.; Keeser, D.; Rauchmann, B.S.; Schneider-Axmann, T.; Keller-Varady, K.; Maurus, I.; Dechent, P.; Wobrock, T.; Hasan, A.; Schmitt, A.; et al. Effect of aerobic exercise combined with cognitive remediation on cortical thickness and prediction of social adaptation in patients with schizophrenia. Schizophr. Res. 2020, 216, 397–407. [Google Scholar] [CrossRef]
- Woodward, M.L.; Gicas, K.M.; Warburton, D.E.; White, R.F.; Rauscher, A.; Leonova, O.; Su, W.; Smith, G.N.; Thornton, A.E.; Vertinsky, A.T.; et al. Hippocampal volume and vasculature before and after exercise in treatment-resistant schizophrenia. Schizophr. Res. 2018, 202, 158–165. [Google Scholar] [CrossRef]
- Woodward, M.L.; Lin, J.; Gicas, K.M.; Su, W.; Hui, C.L.M.; Honer, W.G.; Chen, E.Y.H.; Lang, D.J. Medial temporal lobe cortical changes in response to exercise interventions in people with early psychosis: A randomized controlled trial. Schizophr. Res. 2020, 223, 87–95. [Google Scholar] [CrossRef]
- Svatkova, A.; Mandl, R.C.W.; Scheewe, T.W.; Cahn, W.; Kahn, R.S.; Hulshoff Pol, H.E. Physical Exercise Keeps the Brain Connected: Biking Increases White Matter Integrity in Patients with Schizophrenia and Healthy Controls. Schizophr. Bull. 2015, 41, 869–878. [Google Scholar] [CrossRef] [Green Version]
- Makris, N.; Goldstein, J.M.; Kennedy, D.; Hodge, S.M.; Caviness, V.S.; Faraone, S.V.; Tsuang, M.T.; Seidman, L.J. Decreased volume of left and total anterior insular lobule in schizophrenia. Schizophr. Res. 2006, 83, 155–171. [Google Scholar] [CrossRef] [PubMed]
- Rolls, E.T.; Huang, C.C.; Lin, C.P.; Feng, J.; Joliot, M. Automated anatomical labelling atlas 3. Neuroimage 2020, 206, 116189. [Google Scholar] [CrossRef] [PubMed]
- Joliot, M.; Jobard, G.; Naveau, M.; Delcroix, N.; Petit, L.; Zago, L.; Crivello, F.; Mellet, E.; Mazoyer, B.; Tzourio-Mazoyer, N. AICHA: An atlas of intrinsic connectivity of homotopic areas. J. Neurosci. Methods 2015, 254, 46–59. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.J.; Geng, X.; Chen, E.Y.H. Yoga reduces the brain’s amplitude of low-frequency fluctuations in patients with early psychosis. Eur. Psychiatry 2018, 48, S211. [Google Scholar]
- Takahashi, H.; Sassa, T.; Shibuya, T.; Kato, M.; Koeda, M.; Murai, T.; Matsuura, M.; Asai, K.; Suhara, T.; Okubo, Y. Effects of sports participation on psychiatric symptoms and brain activations during sports observation in schizophrenia. Transl. Psychiatry 2012, 2, e96. [Google Scholar] [CrossRef] [Green Version]
- Vancampfort, D.; Rosenbaum, S.; Ward, P.B.; Stubbs, B. Exercise improves cardiorespiratory fitness in people with schizophrenia: A systematic review and meta-analysis. Schizophr. Res. 2015, 169, 453–457. [Google Scholar] [CrossRef]
- Martin, H.; Beard, S.; Clissold, N.; Andraos, K.; Currey, L. Combined aerobic and resistance exercise interventions for individuals with schizophrenia: A systematic review. Ment. Health Phys. Act. 2017, 12, 147–155. [Google Scholar] [CrossRef]
- Firth, J.; Stubbs, B.; Rosenbaum, S.; Vancampfort, D.; Malchow, B.; Schuch, F.; Elliott, R.; Nuechterlein, K.H.; Yung, A.R. Aerobic exercise improves cognitive functioning in people with schizophrenia: A systematic review and meta-analysis. Schizophr. Bull. 2017, 43, 546–556. [Google Scholar] [CrossRef] [Green Version]
- Firth, J.; Cotter, J.; Elliott, R.; French, P.; Yung, A.R. A systematic review and meta-Analysis of exercise interventions in schizophrenia patients. Psychol. Med. 2015, 45, 1343–1361. [Google Scholar] [CrossRef] [Green Version]
- Loprinzi, P.D. The effects of physical exercise on parahippocampal function. Physiol. Int. 2019, 106, 114–127. [Google Scholar] [CrossRef]
- Mechelli, A.; Riecher-Rössler, A.; Meisenzahl, E.M.; Tognin, S.; Wood, S.J.; Borgwardt, S.J.; Koutsouleris, N.; Yung, A.R.; Stone, J.M.; Phillips, L.J.; et al. Neuroanatomical abnormalities that predate the onset of psychosis: A multicenter study. Arch. Gen. Psychiatry 2011, 68, 489–495. [Google Scholar] [CrossRef] [Green Version]
Author | Participant Characteristics | Study Characteristics | Exercise Protocol Characteristics | Neuroimaging Characteristics | Outcomes | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N | Age (Mean) | Gender (F) | Diagnosis | Clinical Scores | Cognitive Scores | Design | Control Condition | Exercise | Frequency | Duration | Scanner | Sequence | Outcome Measures | ||
Damme et al., 2022 [23] | 25 | 21 | 11 | CHR | SIPS | WRAT, RISE | RCT | Waitlist | AE | 2/week | 3 months | 3T | T1-MPRAGE | HP and subfields GMV | (1) Stable HP volumes; (2) Decreased HP subfield volume with no exercise. |
Dean et al., 2017 [24] | 12 | 19.4 | 6 | UHR | SIPS, GFS | MCCB | RCT | None | AE | 3–2/week | 12 weeks | 3T | T1-MPRAGE | HP GMV | (1) No changes in HP volume. |
Maurus et al., 2022a [25] | 48 | 37.4 | 19 | SCZ | N.A. | VLMT | CS | N.A. | AE assessment | N.A. | N.A. | 3T | T1-MPRAGE | GMV of HP and subfields | (1) Positive associations of aerobic fitness levels and HP subfields volumes. |
McEwen et al., 2017 [26] | 37 | N.A. | N.A. | FEP | N.A. | MCCB | LS | CT | CT and AE | N.A. | N.A. | N.A. | N.D. | CTh | (1) Increased CTh were in prefrontal regions. |
Roell et al., 2023 [27] | 92 | 36.8 | 31 | SCZ | PANSS, GAF, FROGS | VLMT, Digit Span Test, TMT | RCT | NA-T | AE | N.A. | 3 months | 3T | T1-MPRAGE | GMV of HP and subfields | (1) In the AE group volumes within the HP formation increased. |
van der Stouwe et al., 2021 [28] | 31 | 34.3 | 12 | PSY | PANSS, BNSS | N.A. | LRCT | Befriending | BEATVIC | 1/week (75 min) | 20 sessions | 3T | T1-w image | VBM | (1) No differences at VBM. |
Falkai et al., 2013 [29] | 16 | 35.2 | 16 | SCZ | PANSS | VLMT, Corsi block Tapping test | RCT | Table football | AE (cycling) | 3/week | 3 months | 1.5 T | T1-MPRAGE; T2-w gradient echo | GMD, CSE | (1) Cortical changes in healthy controls; (2) No effect in cortical regions for SCZ. |
Lin et al., 2015 [30] | 124 | 24.5 | 124 | SCZ, SCZA, PSY | PANSS, CDSS, QoL, FRS, CRS | VA, VR, Digit Span Test, LC Q score, Stroop task | RCT | Waitlist | Yoga or AE | 3/week | 12 weeks | 3T | T1-MPRAGE | HP GMV | (1) AE increases HP volume. |
Malchow et al., 2016 [31] | 20 | 35.8 | 12 | SCZ | PANSS | N.A. | LS | Table football | Endurance training | 3/week | 3 months | 3T | T1-MPRAGE | VBM, manual and automatic segmentation of HP and subfields. | (1) No volume increase in HP and its subfields; (2) Endurance training increased volume of the left superior, middle and inferior anterior temporal gyri; (3) Table soccer increased volumes in the motor and anterior cingulate cortices; (4) Differences were no longer present after inactivity. |
Maurus et al., 2022b [32] | 69 | 36.94 | 23 | SCZ | PANSS, CDSS | TMT, Digit Span Test, VLMT, B-CATS, DSST, ERT | CS | N.A. | AE assessment | N.A. | N.A. | 3T | T1-MPRAGE | Anatomical parcellation for GMV and WMV | (1) AE is associated to increased right HP GMV and para-HP WMV. |
McEwen et al., 2023 [33] | 37 | 22.7 | 10 | FEP | N.A. | MCCB | LRCT | CT (Brain HQ) | CT + AE | 3/week | 24 weeks | 3T | T1-MPRAGE; T2-weighted turbo spin-echo | CTh | (1) CT and AE increase CTh within the left anterior cingulate cortex over treatment period; (2) Directional tendencies were similar in the left dorsolateral prefrontal cortex. |
Mittal et al., 2013 [34] | 29 | 18.5 | 11 | UHR | SIPS, SCID | N.A. | CS | N.A. | wristwatch recording (ActiLife scoring) | N.A. | 5 days | 3T | T1-MPRAGE; T2-weighted turbo spin-echo | GMV of HP and para-HP gyri | (1) UHR greater percentage of time in sedentary behavior; (2) Trend UHR group showed less total physical activity; (3) UHR smaller medial temporal volumes; (4) Inactivity is associated with medial temporal lobe health. |
Pajonk et al., 2010 [35] | 16 | 35.2 | 0 | SCZ | PANSS, CGI | VLMT, Corsi block Tapping Test | RCT | Table football | AE (cycling) | 3/week | 3 months | 1.5T | T1-MPRAGE; T2-weighted gradient echo; spin-echo MRS | GMV HP; neuro-metabolites of left HP | (1) AE increase HP volume in patients with no change in the non-exercise group of patients; (2) HP volume in the exercise group were correlated with improvements in aerobic fitness; (3) SCZ exercise group changes in HP volume were associated with a 35% increase in NAA/Cr in HP; |
Rosenbau et al., 2015 [36] | 5 | N.A. | 0 | SCZ, SCZA | SAPS, SANS, WHOQOL-BREF | VLMT, WMS | Pilot | None | Stationary bike | 2/week | 12 weeks | 1.5T | T1-MPRAGE | GMV of HP | (1) No significant HP volume increase. |
Scheewe et al., 2013 [37] | 32 | 29.8 | 6 | SCZ | PANSS | WAIS IQ | RCT | OC | AE | 1/week | 6 months | 3T | T1-weighted FFE | GMV, CTh | (1) AE does not affect global brain and HP volume or CTh in patients and controls; (2) CRF improvement was related to increased cerebral matter volume and lateral and third ventricle volume decrease in patients and to thickening in the left hemisphere in large areas of the frontal, temporal and cingulate cortex irrespective of diagnosis; (3) One to two hours’ exercise therapy did not elicit significant brain volume changes in patients or controls. |
Takahashi et al., 2020 [38] | 21 | 36.2 | 12 | SCZ | GAF, SAS, PANSS, CGI, CDSS | VLMT, TMT, WCST | LS | Table soccer | AE (cycling) | 1/week | 12 weeks | 3T | T1-MPRAGE | CTh of entorhinal, para-HP and lateral/medial PFC | (1) AE showed increase in CTh in right entorhinal cortex; (2) No significant longitudinal change in CTh in control groups. |
Woodward et al., 2018 [39] | 17 | 30.1 | 11 | SCZ, SCZA | PANSS | WAR | LRCT | Weight-bearing exercise program | AE | 3/week | 12 weeks | 3T | T1-MPRAGE; SWI | GMV HP and its subfields; SWI mapping of HP vasculature volume | (1) HP increased in the left CA-1 field; (2) HP vascular volume unchanged. |
Woodward et al., 2020 [40] | 51 | 24.5 | 51 | FEP | PANSS | N.A. | RCT | Waitlist | AE/ Hatha yoga | 3/week | 12 weeks | 3T | T1-MPRAGE | GMV and CTh of whole-brain and HP | (1) Increases in GMV and CTh in the medial temporal cortical regions for AE. |
Svatkova et al., 2015 [41] | 33 | 30 | 6 | SCZ | PANSS | IQ | LS | Life-as-usual | AE + NAE | 1/week | 6 months | 3T | DWI | DTI and TBSS of major tracts | (1) Physical exercise increases the integrity of white matter fiber tracts; (2) Life-as-usual decreases fiber integrity. |
Author | Participant Characteristics | Study Characteristics | Exercise Protocol Characteristics | Neuroimaging Characteristics | Outcomes | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N | Age (Mean) | Gender (F) | Diagnosis | Clinical Scores | Cognitive Scores | Design | Control Condition | Exercise | Frequency | Duration | Scanner | Sequence | Outcome Measures | ||
Damme et al., 2022 [23] | 25 | 21 | 11 | CHR | SIPS | WRAT, RISE | RCT | Waitlist | AE | 2/week | 3 months | 3T | T1-MPRAGE; rs-fMRI | ROI-ROI FC (HP-occipital lobe) | (1) Increased HP connectivity. |
Dean et al., 2017 [24] | 12 | 19.4 | 6 | UHR | SIPS, GFS | MCCB | RCT | None | AE | 3–2/week | 12 weeks | 3T | T1-MPRAGE; rs-fMRI | ROI-ROI FC (left HP—right HP—bilateral occipital cortices) | (1) Increased FC between left HP and occipital cortex. |
Lin et al., 2018 [45] | 124 | N.A. | 124 | FEP | PANSS | Working memory | RCT | Waitlist | Yoga/AE | N.A. | 12 weeks | N.A. | N.D. | ALFF | (1) ALFF decreases in precuneus in yoga group and correlates with better negative symptoms. |
Maurus et al., 2022a [25] | 48 | 37.4 | 19 | SCZ | N.A. | VLMT | CS | N.A. | AE assessment | N.A. | N.A. | 3T | T1-MPRAGE; rs-fMRI | FC matrices of HP and subfields | (1) No associations of HP subfields FC or mediation effects on verbal memory. |
McEwen et al., 2017 [26] | 37 | N.A. | N.A. | FEP | N.A. | MCCB | LS | CT | CT and AE | N.A. | N.A. | N.A. | N.D. | FC | (1) CT and exercise improved FC between right CEN and ventral attention network and also between left CEN and right CEN. |
Roell et al., 2023 [27] | 92 | 36.8 | 31 | SCZ | PANSS, GAF. FROGS | VLMT, Digit Span Test, TMT | RCT | NA-T | AE | N.A. | 3 months | 3T | T1-MPRAGE; rs-fMRI | FC from the HP subfields, the striatum, the amygdala and thalamus, the DLPFC and CC | (1) No effects of exercise on HP formation connectivity were observed. |
Takahashi et al., 2012 [46] | 23 | 41.7 | 11 | SCZ | PANSS | N.A. | LS | HC | AE | 2/day (60–120 min) | 3 months | 1.5 T | T1-w image; Task-fMRI | Task-based fMRI GLM | (1) Activation of the body-selective EBA in the posterior temporal-occipital cortex during observation of sports-related actions was increased in the program group |
van der Stouwe et al., 2021 [28] | 31 | 34.3 | 12 | PSY | PANSS, BNSS | N.A. | LRCT | Befriending | BEATVIC | 1/week (75 min) | 20 sessions | 3T | T1-weighted image; Task-fMRI | Task-based fMRI GLM and ICA FC | (1) GLM no differences between groups over time; (2) ICA increased activation of the salience network to angry and fearful faces in BEATVIC; (3) Increased activation of the salience network may suggest an increased alertness for potentiallydangerous faces. |
Author | Participant Characteristics | Study Characteristics | Exercise Protocol Characteristics | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
N | Age (Mean) | Gender (F) | Diagnosis | Clinical Scores | Cognitive Scores | Design | Control Condition | Exercise | Frequency | Duration | ||
Damme et al., 2022 [23] | 25 | 21 | 11 | CHR | SIPS | WRAT, RISE | RCT | Waitlist | AE | 2/week | 3 months | (1) Improved fitness; (2) Increased cognitive performance; (3) Decrease in positive symptoms. |
Dean et al., 2017 [24] | 12 | 19.4 | 6 | UHR | SIPS, GFS | MCCB | RCT | None | AE | 3–2/week | 12 weeks | (1) Improved positive and negative symptoms; (2) Improved social functioning; (3) Improved cognition. |
Maurus et al., 2022a [25] | 48 | 37.4 | 19 | SCZ | N.A. | VLMT | CS | N.A. | AE assessment | N.A. | N.A. | (1) No associations of HP subfields FC or mediation effects on verbal memory. |
McEwen et al., 2017 [26] | 37 | N.A. | N.A. | FEP | N.A. | MCCB | LS | CT | CT and AE | N.A. | N.A. | (1) Improved FC between left and right CEN was associated with cognitive gains in reasoning and problem solving at 6-month follow-up. |
Falkai et al., 2013 [29] | 16 | 35.2 | 16 | SCZ | PANSS | VLMT, Corsi block Tapping test | RCT | Table football | AE (cycling) | 3/week | 3 months | (1) Improved short-term memory; (2) Improved PANSS. |
Lin et al., 2015 [30] | 124 | 24.5 | 124 | SCZ, SCZA, PSY | PANSS, CDSS, QoL, FRS, CRS | VA, VR, Digit Span Test, LC Q score, Stroop task | RCT | Waitlist | Yoga or AE | 3/week | 12 weeks | (1) Yoga and AE improved working memory; (2) Yoga improved verbal acquisition and attention; (3) Yoga and AE improved overall and depressive symptoms; |
Malchow et al., 2016 [31] | 20 | 35.8 | 12 | SCZ | PANSS | N.A. | LS | Table football | Endurance training | 3/week | 3 months | (1) Psychopathological symptoms did not change. |
Maurus et al., 2022b [32] | 69 | 36.94 | 23 | SCZ | PANSS, CDSS | TMT, Digit Span Test, VLMT, B-CATS, DSST, ERT | CS | N.A. | AE assessment | N.A. | N.A. | (1) No association between cognition or symptoms and AE. |
McEwen et al., 2023 [33] | 37 | 22.7 | 10 | FEP | N.A. | MCCB | LRCT | CT (Brain HQ) | CT + AE | 3/week | 24 weeks | (1) Increased CTh in the left ACC was improved work/school functioning. |
Mittal et al., 2013 [34] | 29 | 18.5 | 11 | UHR | SIPS, SCID | N.A. | CS | N.A. | wristwatch recording (ActiLife scoring) | N.A. | 5 days | (1) Total level of physical activity in UHR correlated with smaller para-HP gyri bilaterally and with occupational functioning. |
Pajonk et al., 2010 [35] | 16 | 35.2 | 0 | SCZ | PANSS, CGI | VLMT, Corsi block Tapping Test | RCT | Table football | AE (cycling) | 3/week | 3 months | (1) Short-term memory improvement in SCZ was correlated with change in HP volume. |
Takahashi et al., 2020 [38] | 21 | 36.2 | 12 | SCZ | GAF, SAS, PANSS, CGI, CDSS | VLMT, TMT, WCST | LS | Table soccer | AE (cycling) | 1/week | 12 weeks | (1) Significant correlation between CTh of right lateral PFC at baseline and improvement of social adaptation |
Woodward et al., 2018 [39] | 17 | 30.1 | 11 | SCZ, SCZA | PANSS | WAR | LRCT | weight-bearing exercise program | AE | 3/week | 12 weeks | (1) Changes in HP volume and vascular volume were not significantly correlated with changes in symptom severity, nor did they affect scores. |
Woodward et al., 2020 [40] | 51 | 24.5 | 51 | FEP | PANSS | N.A. | RCT | Waitlist | AE/ Hatha yoga | 3/week | 12 weeks | (1) AE increases in the entorhinal and fusiform/temporal gyri associated with reduced symptom severity; (2) Increased fusiform CTh associated with increased HP volume for all psychosis participants. |
Svatkova et al., 2015 [41] | 33 | 30 | 6 | SCZ | PANSS | IQ | LS | Life-as-usual | AE + NAE | 1/week | 6 months | (1) Exercise improves brain structural connectivity and positive symptoms. |
Lin et al., 2018 [45] | 124 | N.A. | 124 | FEP | PANSS | Working memory | RCT | Waitlist | Yoga/AE | N.A. | 12 weeks | (1) Yoga and aerobic exercise improved working memory and psychotic symptoms; (2) ALFF decreases in precuneus in yoga group and correlates with better negative symptoms. |
Takahashi et al., 2012 [46] | 23 | 41.7 | 11 | SCZ | PANSS | N.A. | LS | HC | AE | 2/day (60–120 min) | 3 months | (1) Increase in EBA activation was associated with PANSS improvement. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saviola, F.; Deste, G.; Barlati, S.; Vita, A.; Gasparotti, R.; Corbo, D. The Effect of Physical Exercise on People with Psychosis: A Qualitative Critical Review of Neuroimaging Findings. Brain Sci. 2023, 13, 923. https://doi.org/10.3390/brainsci13060923
Saviola F, Deste G, Barlati S, Vita A, Gasparotti R, Corbo D. The Effect of Physical Exercise on People with Psychosis: A Qualitative Critical Review of Neuroimaging Findings. Brain Sciences. 2023; 13(6):923. https://doi.org/10.3390/brainsci13060923
Chicago/Turabian StyleSaviola, Francesca, Giacomo Deste, Stefano Barlati, Antonio Vita, Roberto Gasparotti, and Daniele Corbo. 2023. "The Effect of Physical Exercise on People with Psychosis: A Qualitative Critical Review of Neuroimaging Findings" Brain Sciences 13, no. 6: 923. https://doi.org/10.3390/brainsci13060923
APA StyleSaviola, F., Deste, G., Barlati, S., Vita, A., Gasparotti, R., & Corbo, D. (2023). The Effect of Physical Exercise on People with Psychosis: A Qualitative Critical Review of Neuroimaging Findings. Brain Sciences, 13(6), 923. https://doi.org/10.3390/brainsci13060923