Analysis of Serum Markers of Perioperative Brain Injury and Inflammation Associated with Endovascular Treatment of Intracranial Aneurysms: A Preliminary Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Sampling of Serum and Biomarker Analysis
2.3. Statistical Analysis
3. Results
3.1. S100B
3.2. hNSE
3.3. TNF
3.4. hsCRP
3.5. FABP7
3.6. NFL
3.7. GP39
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bond, K.M.; Brinjikji, W.; Murad, M.H.; Kallmes, D.F.; Cloft, H.J.; Lanzino, G. Diffusion-Weighted Imaging-Detected Ischemic Lesions following Endovascular Treatment of Cerebral Aneurysms: A Systematic Review and Meta-Analysis. AJNR Am. J. Neuroradiol. 2017, 38, 304–309. [Google Scholar] [CrossRef] [PubMed]
- Sim, S.Y.; Shin, Y.S. Silent microembolism on diffusion-weighted MRI after coil embolization of cerebral aneurysms. Neurointervention 2012, 7, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Capoccia, L.; Speziale, F.; Gazzetti, M.; Mariani, P.; Rizzo, A.; Mansour, W.; Sbarigia, E.; Fiorani, P. Comparative study on carotid revascularization (endarterectomy vs stenting) using markers of cellular brain injury, neuropsychometric tests, and diffusion-weighted magnetic resonance imaging. J. Vasc. Surg. 2010, 51, 584–592. [Google Scholar] [CrossRef]
- Gupta, N.; Corriere, M.A.; Dodson, T.F.; Chaikof, E.L.; Beaulieu, R.J.; Reeves, J.G.; Salam, A.A.; Kasirajan, K. The incidence of microemboli to the brain is less with endarterectomy than with percutaneous revascularization with distal filters or flow reversal. J. Vasc. Surg. 2011, 53, 316–322. [Google Scholar] [CrossRef] [PubMed]
- Iłżecki, M.; Iłżecka, J.; Przywara, S.; Terlecki, P.; Grabarska, A.; Stepulak, A.; Zubilewicz, T. Effect of carotid endarterectomy on brain damage markers. Acta Neurol. Scand. 2017, 135, 352–359. [Google Scholar] [CrossRef] [PubMed]
- Biberthaler, P.; Mussack, T.; Wiedemann, E.; Gilg, T.; Soyka, M.; Koller, G.; Pfeifer, K.J.; Linsenmaier, U.; Mutschler, W.; Gippner-Steppert, C.; et al. Elevated serum levels of S-100B reflect the extent of brain injury in alcohol intoxicated patients after mild head trauma. Shock 2001, 16, 97–101. [Google Scholar] [CrossRef] [PubMed]
- Raabe, A.; Kopetsch, O.; Woszczyk, A.; Lang, J.; Gerlach, R.; Zimmermann, M.; Seifert, V. Serum S-100B protein as a molecular marker in severe traumatic brain injury. Restor. Neurol. Neurosci. 2003, 21, 159–169. [Google Scholar]
- Böttiger, B.W.; Möbes, S.; Glätzer, R.; Bauer, H.; Gries, A.; Bärtsch, P.; Motsch, J.; Martin, E. Astroglial protein S-100 is an early and sensitive marker of hypoxic brain damage and outcome after cardiac arrest in humans. Circulation 2001, 103, 2694–2698. [Google Scholar] [CrossRef]
- Rosén, H.; Sunnerhagen, K.S.; Herlitz, J.; Blomstrand, C.; Rosengren, L. Serum levels of the brain-derived proteins S-100 and NSE predict long-term outcome after cardiac arrest. Resuscitation 2001, 49, 183–191. [Google Scholar] [CrossRef]
- Lewis, L.M.; Schloemann, D.T.; Papa, L.; Fucetola, R.P.; Bazarian, J.; Lindburg, M.; Welch, R.D. Utility of Serum Biomarkers in the Diagnosis and Stratification of Mild Traumatic Brain Injury. Acad. Emerg. Med. 2017, 24, 710–720. [Google Scholar] [CrossRef]
- Rothermundt, M.; Peters, M.; Prehn, J.H.; Arolt, V. S100B in brain damage and neurodegeneration. Microsc. Res. Tech. 2003, 60, 614–632. [Google Scholar] [CrossRef] [PubMed]
- Brightwell, R.E.; Sherwood, R.A.; Athanasiou, T.; Hamady, M.; Cheshire, N.J. The neurological morbidity of carotid revascularisation: Using markers of cellular brain injury to compare CEA and CAS. Eur. J. Vasc. Endovasc. Surg. 2007, 34, 552–560. [Google Scholar] [CrossRef] [PubMed]
- Pujol-Calderón, F.; Zetterberg, H.; Portelius, E.; Hendén, P.L.; Rentzos, A.; Karlsson, J.-E.; Höglund, K.; Blennow, K.; Rosengren, L.E. Prediction of Outcome After Endovascular Embolectomy in Anterior Circulation Stroke Using Biomarkers. Transl. Stroke Res. 2022, 13, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.; Yuan, Q.; Yang, J.; Wang, W.; Liu, H. The prognostic value of serum neuron-specific enolase in traumatic brain injury: Systematic review and meta-analysis. PLoS ONE 2014, 9, e106680. [Google Scholar] [CrossRef] [PubMed]
- Kedziora, J.; Burzynska, M.; Gozdzik, W.; Kübler, A.; Kobylinska, K.; Adamik, B. Biomarkers of Neurological Outcome After Aneurysmal Subarachnoid Hemorrhage as Early Predictors at Discharge from an Intensive Care Unit. Neurocritical Care 2021, 34, 856–866. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Lin, Y. Tumor necrosis factor and cancer, buddies or foes? Acta Pharmacol. Sin. 2008, 29, 1275–1288. [Google Scholar] [CrossRef]
- Montgomery, S.L.; Bowers, W.J. Tumor necrosis factor-alpha and the roles it plays in homeostatic and degenerative processes within the central nervous system. J. Neuroimmune Pharmacol. 2012, 7, 42–59. [Google Scholar] [CrossRef]
- Pan, W.; Zadina, J.E.; Harlan, R.E.; Weber, J.T.; Banks, W.A.; Kastin, A.J. Tumor necrosis factor-alpha: A neuromodulator in the CNS. Neurosci. Biobehav. Rev. 1997, 21, 603–613. [Google Scholar] [CrossRef]
- Pober, J.S.; Cotran, R.S. Cytokines and endothelial cell biology. Physiol. Rev. 1990, 70, 427–451. [Google Scholar] [CrossRef]
- Sato, N.; Goto, T.; Haranaka, K.; Satomi, N.; Nariuchi, H.; Hirano, Y.M.; Sawasaki, Y. Actions of tumor necrosis factor on cultured vascular endothelial cells: Morphologic modulation, growth inhibition, and cytotoxicity. J. Natl. Cancer Inst. 1986, 76, 1113–1121. [Google Scholar]
- Jayaraman, T.; Paget, A.; Shin, Y.S.; Li, X.; Mayer, J.; Chaudhry, H.; Niimi, Y.; Silane, M.; Berenstein, A. TNF-alpha-mediated inflammation in cerebral aneurysms: A potential link to growth and rupture. Vasc. Health Risk Manag. 2008, 4, 805–817. [Google Scholar] [CrossRef] [PubMed]
- Starke, R.M.; Chalouhi, N.; Jabbour, P.M.; I Tjoumakaris, S.; Gonzalez, L.F.; Rosenwasser, R.H.; Wada, K.; Shimada, K.; Hasan, D.M.; Greig, N.H.; et al. Critical role of TNF-α in cerebral aneurysm formation and progression to rupture. J. Neuroinflammation 2014, 11, 77. [Google Scholar] [CrossRef] [PubMed]
- Batra, R.; Suh, M.K.; Carson, J.S.; Dale, M.A.; Meisinger, T.M.; Fitzgerald, M.; Opperman, P.J.; Luo, J.; Pipinos, I.I.; Xiong, W.; et al. IL-1β (Interleukin-1β) and TNF-α (Tumor Necrosis Factor-α) Impact Abdominal Aortic Aneurysm Formation by Differential Effects on Macrophage Polarization. Arterioscler. Thromb. Vasc. Biol. 2018, 38, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Longhi, L.; Perego, C.; Ortolano, F.; Aresi, S.; Fumagalli, S.; Zanier, E.R.; Stocchetti, N.; De Simoni, M.-G. Tumor necrosis factor in traumatic brain injury: Effects of genetic deletion of p55 or p75 receptor. J. Cereb. Blood Flow Metab. 2013, 33, 1182–1189. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Zeng, X.; Tu, W.J.; Zhao, J. Tumor Necrosis Factor-α: The Next Marker of Stroke. Dis. Markers 2022, 2022, 2395269. [Google Scholar] [CrossRef] [PubMed]
- Song, I.U.; Chung, S.W.; Kim, Y.D.; Maeng, L.S. Relationship between the hs-CRP as non-specific biomarker and Alzheimer’s disease according to aging process. Int. J. Med. Sci. 2015, 12, 613–617. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wu, L.; Lang, Y.; Wu, D.; Chen, J.; Zhao, W.; Li, C.; Ji, X. Association between high-sensitivity C-reactive protein levels and clinical outcomes in acute ischemic stroke patients treated with endovascular therapy. Ann. Transl. Med. 2020, 8, 1379. [Google Scholar] [CrossRef]
- Foerster, S.; Guzman de la Fuente, A.; Kagawa, Y.; Bartels, T.; Owada, Y.; Franklin, R.J.M. The fatty acid binding protein FABP7 is required for optimal oligodendrocyte differentiation during myelination but not during remyelination. Glia 2020, 68, 1410–1420. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Yamamoto, Y.; Sharifi, K.; Kida, H.; Kagawa, Y.; Yasumoto, Y.; Islam, A.; Miyazaki, H.; Shimamoto, C.; Maekawa, M.; et al. Astrocyte-expressed FABP7 regulates dendritic morphology and excitatory synaptic function of cortical neurons. Glia 2016, 64, 48–62. [Google Scholar] [CrossRef]
- Rui, Q.; Ni, H.; Lin, X.; Zhu, X.; Li, D.; Liu, H.; Chen, G. Astrocyte-derived fatty acid-binding protein 7 protects blood-brain barrier integrity through a caveolin-1/MMP signaling pathway following traumatic brain injury. Exp. Neurol. 2019, 322, 113044. [Google Scholar] [CrossRef]
- Guo, Q.; Kawahata, I.; Cheng, A.; Jia, W.; Wang, H.; Fukunaga, K. Fatty Acid-Binding Proteins: Their Roles in Ischemic Stroke and Potential as Drug Targets. Int. J. Mol. Sci. 2022, 23, 9648. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, P.B.; Joshi, M.; Marinakis, N.S.; Schmitz-Abe, K.; Ciarlini, P.D.; Sargent, J.C.; Markianos, K.; De Girolami, U.; Chad, D.A.; Beggs, A.H.; et al. Expanding the phenotype associated with the NEFL mutation: Neuromuscular disease in a family with overlapping myopathic and neurogenic findings. JAMA Neurol. 2014, 71, 1413–1420. [Google Scholar] [CrossRef] [PubMed]
- Julien, J.P.; Grosveld, F.; Yazdanbaksh, K.; Flavell, D.; Meijer, D.; Mushynski, W. The structure of a human neurofilament gene (NF-L): A unique exon-intron organization in the intermediate filament gene family. Biochim. Biophys. Acta 1987, 909, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Lariviere, R.C.; Julien, J.P. Functions of intermediate filaments in neuronal development and disease. J. Neurobiol. 2004, 58, 131–148. [Google Scholar] [CrossRef] [PubMed]
- Petzold, A. Neurofilament phosphoforms: Surrogate markers for axonal injury, degeneration and loss. J. Neurol. Sci. 2005, 233, 183–198. [Google Scholar] [CrossRef] [PubMed]
- Trentini, A.; Comabella, M.; Tintoré, M.; Koel-Simmelink, M.J.A.; Killestein, J.; Roos, B.; Rovira, A.; Korth, C.; Ottis, P.; Blankenstein, M.A.; et al. N-acetylaspartate and neurofilaments as biomarkers of axonal damage in patients with progressive forms of multiple sclerosis. J. Neurol. 2014, 261, 2338–2343. [Google Scholar] [CrossRef] [PubMed]
- Nylén, K.; Csajbok, L.; Öst, M.; Rashid, A.; Karlsson, J.-E.; Blennow, K.; Nellgård, B.; Rosengren, L. CSF -neurofilament correlates with outcome after aneurysmal subarachnoid hemorrhage. Neurosci. Lett. 2006, 404, 132–136. [Google Scholar] [CrossRef]
- Singh, P.; Yan, J.; Hull, R.; Read, S.; O’Sullivan, J.; Henderson, R.; Rose, S.; Greer, J.; McCombe, P. Levels of phosphorylated axonal neurofilament subunit H (pNfH) are increased in acute ischemic stroke. J. Neurol. Sci. 2011, 304, 117–121. [Google Scholar] [CrossRef]
- Gisslén, M.; Price, R.W.; Andreasson, U.; Norgren, N.; Nilsson, S.; Hagberg, L.; Fuchs, D.; Spudich, S.; Blennow, K.; Zetterberg, H. Plasma Concentration of the Neurofilament Light Protein (NFL) is a Biomarker of CNS Injury in HIV Infection: A Cross-Sectional Study. EBioMedicine 2015, 3, 135–140, Correction in EBioMedicine 2016, 7, 287–288. [Google Scholar] [CrossRef]
- Xu, X.; Ma, H.; Xu, J.; Huang, H.; Wu, X.; Xiong, Y.; Zhan, H.; Huang, F. Elevation in circulating YKL-40 concentration in patients with cerebrovascular disease. Bosn. J. Basic. Med. Sci. 2014, 14, 120–124. [Google Scholar] [CrossRef]
- Park, H.Y.; Jun, C.-D.; Jeon, S.-J.; Choi, S.-S.; Kim, H.-R.; Choi, D.-B.; Kwak, S.; Lee, H.-S.; Cheong, J.S.; So, H.-S.; et al. Serum YKL-40 levels correlate with infarct volume, stroke severity, and functional outcome in acute ischemic stroke patients. PLoS ONE 2012, 7, e51722. [Google Scholar] [CrossRef]
- Jiang, Y.X.; Zhang, G.H.; Wang, Z.M.; Yang, H. Serum YKL-40 levels as a prognostic factor in patients with intracerebral hemorrhage. Clin. Biochem. 2014, 47, 302–306. [Google Scholar] [CrossRef]
- Anrather, J.; Iadecola, C. Inflammation and Stroke: An Overview. Neurotherapeutics 2016, 13, 661–670. [Google Scholar] [CrossRef]
- Szigeti, K.; Horváth, I.; Veres, D.S.; Martinecz, B.; Lénárt, N.; Kovács, N.; Bakcsa, E.; Márta, A.; Semjéni, M.; Máthé, D.; et al. A novel SPECT-based approach reveals early mechanisms of central and peripheral inflammation after cerebral ischemia. J. Cereb. Blood Flow. Metab. 2015, 35, 1921–1929. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zimny, M.; Paździora, P.; Kocur, D.; Błaszczyk, B.; Gendosz de Carrillo, D.; Baron, J.; Jędrzejowska-Szypułka, H.; Rudnik, A. Analysis of Serum Markers of Perioperative Brain Injury and Inflammation Associated with Endovascular Treatment of Intracranial Aneurysms: A Preliminary Study. Brain Sci. 2023, 13, 1308. https://doi.org/10.3390/brainsci13091308
Zimny M, Paździora P, Kocur D, Błaszczyk B, Gendosz de Carrillo D, Baron J, Jędrzejowska-Szypułka H, Rudnik A. Analysis of Serum Markers of Perioperative Brain Injury and Inflammation Associated with Endovascular Treatment of Intracranial Aneurysms: A Preliminary Study. Brain Sciences. 2023; 13(9):1308. https://doi.org/10.3390/brainsci13091308
Chicago/Turabian StyleZimny, Mikołaj, Piotr Paździora, Damian Kocur, Bartłomiej Błaszczyk, Daria Gendosz de Carrillo, Jan Baron, Halina Jędrzejowska-Szypułka, and Adam Rudnik. 2023. "Analysis of Serum Markers of Perioperative Brain Injury and Inflammation Associated with Endovascular Treatment of Intracranial Aneurysms: A Preliminary Study" Brain Sciences 13, no. 9: 1308. https://doi.org/10.3390/brainsci13091308
APA StyleZimny, M., Paździora, P., Kocur, D., Błaszczyk, B., Gendosz de Carrillo, D., Baron, J., Jędrzejowska-Szypułka, H., & Rudnik, A. (2023). Analysis of Serum Markers of Perioperative Brain Injury and Inflammation Associated with Endovascular Treatment of Intracranial Aneurysms: A Preliminary Study. Brain Sciences, 13(9), 1308. https://doi.org/10.3390/brainsci13091308