Strategic Integration: A Cross-Disciplinary Review of the fNIRS-EEG Dual-Modality Imaging System for Delivering Multimodal Neuroimaging to Applications
Abstract
:1. Introduction
2. fNIRS-EEG Dual-Modality Imaging System, Fusion-Detection Approach
Helmet Fusion for Fnirs-EEG Dual-Modality Imaging-System Acquisition
3. fNIRS-EEG Dual-Modality Imaging System in Clinical Practice
3.1. ADHD
3.2. IQ Estimation
3.3. Infantile Spasm
3.4. Epilepsy
3.5. Precise Monitoring of the Depth of Anesthesia
4. Literature Summary for fNIRS-EEG Dual-Modality Imaging-System Applications
4.1. Comparison of System Characteristics
- Number of channels: The number of optical channels in fNIRS systems varies depending on specific research needs. For instance, Kassab et al.’s [67] system has 128 optical channels, while He et al.’s [73] system has 36 channels. A higher number of optical channels supports broader brain region coverage, especially for complex tasks like bimanual training tasks [74]. In contrast, Liu et al.’s [75] system has only 16 optical channels, which is more suited for simpler tasks such as working memory tasks. Changes in detector spacing may affect signal depth detection. For instance, Yi et al.’s [76] system has a detector spacing of 35 mm, suitable for deeper brain region monitoring, while Chiarelli et al.’s [77] system uses a 15 mm spacing, better suited for shallow region monitoring. Furthermore, there are notable differences in the number of EEG channels across systems. For example, Sun et al.’s [78] system has 14 EEG channels, while Xu et al.’s [79] system has 64 channels, offering greater potential for higher decoding accuracy in brain–computer interface tasks like motor imagery. A higher number of channels provides better spatial resolution for EEG signals, particularly in studies involving complex brain functions.
- The sampling rates of fNIRS and EEG also vary between systems. For example, the system by Ortega et al. [80] has an fNIRS sampling rate of 12.5 Hz, while the EEG sampling rate reaches 4000 Hz, making it suitable for tasks requiring high temporal resolution. The system by Yi et al. [76] has an fNIRS sampling rate of 10 Hz and an EEG rate of 500 Hz, allowing for the simultaneous acquisition of hemodynamic and electrophysiological signals.
4.2. Application Scenario Analysis
- In practical applications, the portability and wearability of the system directly affect its potential for widespread use. The systems by Chu et al. [81] and Aghajani et al. [82] performed poorly in terms of portability, with equipment that is often bulky and not suitable for long-term wear or large-scale brain region monitoring. Although some systems still lack portability and wearability, newer systems have introduced wireless operations and lightweight designs [69], improving portability.
- Significant differences exist in data acquisition accuracy and processing capabilities across systems. Early systems [78,83] validated the concept of multimodal integration, but their data processing accuracy was limited due to low fNIRS sampling rates and restricted brain region coverage. Current systems have improved acquisition accuracy, such as the full-brain measurements in Yi et al. [76], but still face issues such as low sampling rates and limited data volume. Additionally, some studies [73,84] have enhanced classification performance through data augmentation and feature fusion techniques, demonstrating the potential for improving model quality.
4.3. Comprehensive Evaluation
5. Challenges and Future Trends in fNIRS-EEG Dual-Modality Imaging Systems
5.1. Hardware Issues
5.2. Software Issues
5.3. Future Trends
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hong, K.S.; Khan, M.J.; Hong, M.J. Feature Extraction and Classification Methods for Hybrid fNIRS-EEG Brain-Computer Interfaces. Front. Hum. Neurosci. 2018, 12, 25. [Google Scholar] [CrossRef]
- Li, R.H.; Yang, D.L.; Fang, F.; Hong, K.S.; Reiss, A.L.; Zhang, Y.C. Concurrent fNIRS and EEG for Brain Function Investigation: A Systematic, Methodology-Focused Review. Sensors 2022, 22, 5865. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.M.; Shore, J.; Wang, M.; Yuan, F.P.; Buss, A.; Zhao, X.P. A systematic review on hybrid EEG/fNIRS in brain-computer interface. Biomed. Signal Process. Control 2021, 68, 8. [Google Scholar] [CrossRef]
- Kassab, A.; Le Lan, J.; Tremblay, J.; Vannasing, P.; Dehbozorgi, M.; Pouliot, P.; Gallagher, A.; Lesage, F.; Sawan, M.; Nguyen, D.K. Multichannel wearable fNIRS-EEG system for long-term clinical monitoring. Hum. Brain Mapp. 2018, 39, 7–23. [Google Scholar] [CrossRef]
- Shin, S.S.; Bales, J.W.; Edward Dixon, C.; Hwang, M. Structural imaging of mild traumatic brain injury may not be enough: Overview of functional and metabolic imaging of mild traumatic brain injury. Brain Imaging Behav. 2017, 11, 591–610. [Google Scholar] [CrossRef]
- Presigny, C.; Fallani, F.D. Colloquium: Multiscale modeling of brain network organization. Rev. Mod. Phys. 2022, 94, 27. [Google Scholar] [CrossRef]
- Xu, L.; Hu, C.; Huang, Q.; Jin, K.; Zhao, P.; Wang, D.; Hou, W.; Dong, L.; Hu, S.; Ma, H. Trends and recent development of the microelectrode arrays (MEAs). Biosens. Bioelectron. 2021, 175, 112854. [Google Scholar] [CrossRef] [PubMed]
- Sidrat Tasawoor, K.; Supratim, R. Electrocorticogram (ECoG) Is Highly Informative in Primate Visual Cortex. J. Neurosci. 2020, 40, 2430. [Google Scholar] [CrossRef]
- Jimson, W.D.S.; Harvey, H.; Mohan, D.; Charles, B.; Michael, T.; Tove, O.; Jian, Q.Y.; Matthew, K.R. Cerenkov Luminescence Imaging as a Modality to Evaluate Antibody-Based PET Radiotracers. J. Nucl. Med. 2017, 58, 175. [Google Scholar] [CrossRef]
- Villringer, A.; Chance, B. Non-invasive optical spectroscopy and imaging of human brain function. Trends Neurosci. 1997, 20, 435–442. [Google Scholar] [CrossRef] [PubMed]
- Minguillon, J.; Lopez-Gordo, M.A.; Pelayo, F. Trends in EEG-BCI for daily-life: Requirements for artifact removal. Biomed. Signal Process Control 2017, 31, 407–418. [Google Scholar] [CrossRef]
- Liu, D.; Liu, S.; Liu, X.; Zhang, C.; Li, A.; Jin, C.; Chen, Y.; Wang, H.; Zhang, X. Interactive Brain Activity: Review and Progress on EEG-Based Hyperscanning in Social Interactions. Front. Psychol. 2018, 9, 1862. [Google Scholar] [CrossRef] [PubMed]
- Croce, P.; Zappasodi, F.; Merla, A.; Chiarelli, A.M. Exploiting neurovascular coupling: A Bayesian sequential Monte Carlo approach applied to simulated EEG fNIRS data. J. Neural. Eng. 2017, 14, 046029. [Google Scholar] [CrossRef]
- Lühmann, A.v.; Wabnitz, H.; Sander, T.; Müller, K.R. M3BA: A Mobile, Modular, Multimodal Biosignal Acquisition Architecture for Miniaturized EEG-NIRS-Based Hybrid BCI and Monitoring. IEEE Trans. Biomed. Eng. 2017, 64, 1199–1210. [Google Scholar] [CrossRef] [PubMed]
- Raggi, A.; Monasta, L.; Beghi, E.; Caso, V.; Castelpietra, G.; Mondello, S.; Giussani, G.; Logroscino, G.; Magnani, F.G.; Piccininni, M.; et al. Incidence, prevalence and disability associated with neurological disorders in Italy between 1990 and 2019: An analysis based on the Global Burden of Disease Study 2019. J. Neurol. 2022, 269, 2080–2098. [Google Scholar] [CrossRef]
- Ahn, S.; Jun, S.C. Multi-Modal Integration of EEG-fNIRS for Brain-Computer Interfaces—Current Limitations and Future Directions (vol 11, 503, 2017). Front. Hum. Neurosci. 2021, 15, 1. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Xu, B.; Jiang, C.; Fu, Y.; Wang, Z.; Li, H.; Shi, G. A hybrid BCI based on EEG and fNIRS signals improves the performance of decoding motor imagery of both force and speed of hand clenching. Neural. Eng. 2015, 12, 036004. [Google Scholar] [CrossRef]
- Fazli, S.; Mehnert, J.; Steinbrink, J.; Curio, G.; Villringer, A.; Müller, K.-R.; Blankertz, B. Enhanced performance by a hybrid NIRS–EEG brain computer interface. NeuroImage 2012, 59, 519–529. [Google Scholar] [CrossRef]
- Ge, S.; Yang, Q.; Wang, R.; Lin, P.; Gao, J.; Leng, Y.; Yang, Y.; Wang, H. A Brain-Computer Interface Based on a Few-Channel EEG-fNIRS Bimodal System. IEEE Access 2017, 5, 208–218. [Google Scholar] [CrossRef]
- Chen, S.; Li, K.; Qiao, X.Q.; Ru, W.M.; Xu, L. Tactile perception of fractal surfaces: An EEG-fNIRS study. Tribol. Int. 2023, 180, 9. [Google Scholar] [CrossRef]
- Al-Quraishi, M.S.; Elamvazuthi, I.; Tang, T.B.; Al-Qurishi, M.; Adil, S.H.; Ebrahim, M. Bimodal Data Fusion of Simultaneous Measurements of EEG and fNIRS during Lower Limb Movements. Brain Sci. 2021, 11, 713. [Google Scholar] [CrossRef]
- Vasung, L.; Abaci Turk, E.; Ferradal, S.L.; Sutin, J.; Stout, J.N.; Ahtam, B.; Lin, P.-Y.; Grant, P.E. Exploring early human brain development with structural and physiological neuroimaging. NeuroImage 2019, 187, 226–254. [Google Scholar] [CrossRef] [PubMed]
- Pless, C.J.; Nikzad, S.; Papiano, I.; Gnanadass, S.; Kadumudi, F.B.; Dolatshahi-Pirouz, A.; Thomsen, C.E.; Lind, J.U. Soft Electronic Block Copolymer Elastomer Composites for Multi-Material Printing of Stretchable Physiological Sensors on Textiles. Adv. Electron. Mater. 2023, 9, 10. [Google Scholar] [CrossRef]
- Valente, M.; Rossitti, I.; Sambucci, M. Different Production Processes for Thermoplastic Composite Materials: Sustainability versus Mechanical Properties and Processes Parameter. Polymers 2023, 15, 242. [Google Scholar] [CrossRef]
- Gao, C.; Sun, J.; Yang, X.; Gong, H. Gender differences in brain networks during verbal Sternberg tasks: A simultaneous near-infrared spectroscopy and electro-encephalography study. J. Biophotonics 2018, 11, e201700120. [Google Scholar] [CrossRef]
- Sandstrom, A.; Perroud, N.; Alda, M.; Uher, R.; Pavlova, B. Prevalence of attention-deficit/hyperactivity disorder in people with mood disorders: A systematic review and meta-analysis. Acta Psychiatr. Scand. 2021, 143, 380–391. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Liu, K.; Li, Z.; Xu, Y.; Liu, Y.; Shi, W.; Chen, L. Prevalence of attention deficit/hyperactivity disorder among children and adolescents in China: A systematic review and meta-analysis. BMC Psychiatry 2017, 17, 32. [Google Scholar] [CrossRef]
- Ghanizadeh, A. Agreement between Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, and the proposed DSM-V attention deficit hyperactivity disorder diagnostic criteria: An exploratory study. Compr. Psychiatry 2013, 54, 7–10. [Google Scholar] [CrossRef]
- Güven, A.; Altınkaynak, M.; Dolu, N.; İzzetoğlu, M.; Pektaş, F.; Özmen, S.; Demirci, E.; Batbat, T. Combining functional near-infrared spectroscopy and EEG measurements for the diagnosis of attention-deficit hyperactivity disorder. Neural. Comput. Appl. 2020, 32, 8367–8380. [Google Scholar] [CrossRef]
- Kaga, Y.; Ueda, R.; Tanaka, M.; Kita, Y.; Suzuki, K.; Okumura, Y.; Egashira, Y.; Shirakawa, Y.; Mitsuhashi, S.; Kitamura, Y.; et al. Executive dysfunction in medication-naive children with ADHD: A multi-modal fNIRS and EEG study. Brain Dev. 2020, 42, 555–563. [Google Scholar] [CrossRef] [PubMed]
- Schecklmann, M.; Schaldecker, M.; Aucktor, S.; Brast, J.; Kirchgäßner, K.; Mühlberger, A.; Warnke, A.; Gerlach, M.; Fallgatter, A.J.; Romanos, M. Effects of methylphenidate on olfaction and frontal and temporal brain oxygenation in children with ADHD. J. Psychiatr. Res. 2011, 45, 1463–1470. [Google Scholar] [CrossRef] [PubMed]
- Lukito, S.; Norman, L.; Carlisi, C.; Radua, J.; Hart, H.; Simonoff, E.; Rubia, K. Comparative meta-analyses of brain structural and functional abnormalities during cognitive control in attention-deficit/hyperactivity disorder and autism spectrum disorder. Psychol. Med. 2020, 50, 894–919. [Google Scholar] [CrossRef] [PubMed]
- Gallo, E.F.; Posner, J. Moving towards causality in attention-deficit hyperactivity disorder: Overview of neural and genetic mechanisms. Lancet Psychiatry 2016, 3, 555–567. [Google Scholar] [CrossRef]
- Norman, L.J.; Carlisi, C.; Lukito, S.; Hart, H.; Mataix-Cols, D.; Radua, J.; Rubia, K. Structural and Functional Brain Abnormalities in Attention-Deficit/Hyperactivity Disorder and Obsessive-Compulsive Disorder: A Comparative Meta-analysis. JAMA Psychiatry 2016, 73, 815–825. [Google Scholar] [CrossRef]
- Hart, H.; Radua, J.; Nakao, T.; Mataix-Cols, D.; Rubia, K. Meta-analysis of Functional Magnetic Resonance Imaging Studies of Inhibition and Attention in Attention-deficit/Hyperactivity Disorder: Exploring Task-Specific, Stimulant Medication, and Age Effects. JAMA Psychiatry 2013, 70, 185–198. [Google Scholar] [CrossRef] [PubMed]
- Monden, Y.; Dan, I.; Nagashima, M.; Dan, H.; Uga, M.; Ikeda, T.; Tsuzuki, D.; Kyutoku, Y.; Gunji, Y.; Hirano, D.; et al. Individual classification of ADHD children by right prefrontal hemodynamic responses during a go/no-go task as assessed by fNIRS. NeuroImage Clin. 2015, 9, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Maya-Piedrahita, M.C.; Herrera-Gomez, P.M.; Berrío-Mesa, L.; Cárdenas-Peña, D.A.; Orozco-Gutierrez, A.A. Supported Diagnosis of Attention Deficit and Hyperactivity Disorder from EEG Based on Interpretable Kernels for Hidden Markov Models. Int. J. Neural. Syst. 2022, 32, 2250008. [Google Scholar] [CrossRef] [PubMed]
- Schecklmann, M.; Ehlis, A.-C.; Plichta, M.M.; Romanos, J.; Heine, M.; Boreatti-Hümmer, A.; Jacob, C.; Fallgatter, A.J. Diminished prefrontal oxygenation with normal and above-average verbal fluency performance in adult ADHD. J. Psychiatr. Res. 2008, 43, 98–106. [Google Scholar] [CrossRef]
- Gu, Y.; Miao, S.; Han, J.; Zeng, K.; Ouyang, G.; Yang, J.; Li, X. Complexity analysis of fNIRS signals in ADHD children during working memory task. Sci. Rep. 2017, 7, 829. [Google Scholar] [CrossRef]
- Slater, J.; Joober, R.; Koborsy, B.L.; Mitchell, S.; Sahlas, E.; Palmer, C. Can electroencephalography (EEG) identify ADHD subtypes? A systematic review. Neurosci. Biobehav. Rev. 2022, 139, 15. [Google Scholar] [CrossRef] [PubMed]
- Barry, R.J.; Clarke, A.R.; Johnstone, S.J. A review of electrophysiology in attention-deficit/hyperactivity disorder: I. Qualitative and quantitative electroencephalography. Clin. Neurophysiol. 2003, 114, 171–183. [Google Scholar] [CrossRef]
- Cadenas, M.; Hartman, C.; Faraone, S.; Antshel, K.; Borges, Á.; Hoogeveen, L.; Rommelse, N. Cognitive correlates of attention-deficit hyperactivity disorder in children and adolescents with high intellectual ability. J. Neurodev. Disord. 2020, 12, 6. [Google Scholar] [CrossRef] [PubMed]
- Lechner, C.; Danner, D.; Rammstedt, B. How is personality related to intelligence and achievement? A replication and extension of Borghans et al. and Salkever. Pers. Individ. Dif. 2017, 111, 86–91. [Google Scholar] [CrossRef]
- Stanescu-Cosson, R.; Pinel, P.; van de Moortele, P.-F.; Le Bihan, D.; Cohen, L.; Dehaene, S. Understanding dissociations in dyscalculia: A brain imaging study of the impact of number size on the cerebral networks for exact and approximate calculation. Brain 2000, 123, 2240–2255. [Google Scholar] [CrossRef] [PubMed]
- Jaušovec, N. Differences in Cognitive Processes Between Gifted, Intelligent, Creative, and Average Individuals While Solving Complex Problems: An EEG Study. Intelligence 2000, 28, 213–237. [Google Scholar] [CrossRef]
- Friedman, N.; Fekete, T.; Gal, K.; Shriki, O. EEG-Based Prediction of Cognitive Load in Intelligence Tests. Front. Hum. Neurosci. 2019, 13, 9. [Google Scholar] [CrossRef] [PubMed]
- Basten, U.; Stelzel, C.; Fiebach, C.J. Intelligence is differentially related to neural effort in the task-positive and the task-negative brain network. Intelligence 2013, 41, 517–528. [Google Scholar] [CrossRef]
- Hüsser, A.M.; Vannasing, P.; Tremblay, J.; Osterman, B.; Lortie, A.; Diadori, P.; Major, P.; Rossignol, E.; Roger, K.; Fourdain, S.; et al. Brain language networks and cognitive outcomes in children with frontotemporal lobe epilepsy. Front. Hum. Neurosci. 2023, 17, 17. [Google Scholar] [CrossRef] [PubMed]
- Firooz, S.; Setarehdan, S.K. IQ estimation by means of EEG-fNIRS recordings during a logical-mathematical intelligence test. Comput. Biol. Med. 2019, 110, 218–226. [Google Scholar] [CrossRef]
- Riikonen, R. Biochemical mechanisms in pathogenesis of infantile epileptic spasm syndrome. Seizure 2023, 105, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Falsaperla, R.; Sciuto, S.; Privitera, G.F.; Tardino, L.G.; Costanza, G.; Di Nora, A.; Caraballo, R.H.; Ruggieri, M. Epileptic spasms in infants: Can video-EEG reveal the disease’s etiology? A retrospective study and literature review. Front. Neurol. 2023, 14, 1204844. [Google Scholar] [CrossRef]
- Lado, F.A.; Moshé, S.L. Role of subcortical structures in the pathogenesis of infantile spasms: What are possible subcortical mediators? In International Review of Neurobiology; Academic Press: Cambridge, MA, USA, 2002; Volume 49, pp. 115–140. [Google Scholar]
- Haginoya, K.; Kon, K.; Takayanagi, M.; Yoshihara, Y.; Kato, R.; Tanaka, S.; Yokoyama, H.; Munakata, M.; Nagai, M.; Maruoka, S.; et al. Heterogeneity of Ictal SPECT Findings in Nine Cases of West Syndrome. Epilepsia 1998, 39, 26–29. [Google Scholar] [CrossRef] [PubMed]
- Wallois, F.; Patil, A.; Héberlé, C.; Grebe, R. EEG-NIRS in epilepsy in children and neonates. Neurophysiol. Clin. 2010, 40, 281–292. [Google Scholar] [CrossRef]
- Buxton, R.B.; Uludağ, K.; Dubowitz, D.J.; Liu, T.T. Modeling the hemodynamic response to brain activation. NeuroImage 2004, 23, S220–S233. [Google Scholar] [CrossRef] [PubMed]
- Langfitt, T.W.; Kassell, N.F. Cerebral vasodilatation produced by brain-stem stimulation: Neurogenic control vs. autoregulation. Am. J. Physiol. Leg. Content 1968, 215, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Bourel-Ponchel, E.; Mahmoudzadeh, M.; Delignières, A.; Berquin, P.; Wallois, F. Non-invasive, multimodal analysis of cortical activity, blood volume and neurovascular coupling in infantile spasms using EEG-fNIRS monitoring. NeuroImage Clin. 2017, 15, 359–366. [Google Scholar] [CrossRef]
- Frost Jr, J.D.; Lee, C.L.; Hrachovy, R.A.; Swann, J.W. High frequency EEG activity associated with ictal events in an animal model of infantile spasms. Epilepsia 2011, 52, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Hayat, M.J.; Zhang, R.; Hirsch, L.J.; Bazil, C.; Mendiratta, A.; Kato, K.; Javed, A.; Legge, A.W.; Buchsbaum, R.; et al. In response: Drug-resistant epilepsy in adults: Outcome trajectories after failure of two medications. Epilepsia 2016, 57, 1526–1527. [Google Scholar] [CrossRef]
- Fisher, R.S.; Boas, W.v.E.; Blume, W.; Elger, C.; Genton, P.; Lee, P.; Engel Jr, J. Epileptic Seizures and Epilepsy: Definitions Proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 2005, 46, 470–472. [Google Scholar] [CrossRef] [PubMed]
- Chatzistefanidis, D.; Huang, D.; Dümpelmann, M.; Jacobs, J.; Schulze-Bonhage, A.; LeVan, P. Topography-Related EEG-fMRI in Surgically Confirmed Epileptic Foci: A Comparison to Spike-Related EEG-fMRI in Clinical Practice. Brain Topogr. 2021, 34, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Stamoulis, C.; Connolly, J.; Axeen, E.; Kaulas, H.; Bolton, J.; Dorfman, K.; Halford, J.J.; Duffy, F.H.; Treves, S.T.; Pearl, P.L. Noninvasive Seizure Localization With Single-Photon Emission Computed Tomography Is Impacted by Preictal/Early Ictal Network Dynamics. IEEE Trans. Biomed. Eng. 2019, 66, 1863–1871. [Google Scholar] [CrossRef]
- Machado, A.; Lina, J.M.; Tremblay, J.; Lassonde, M.; Nguyen, D.K.; Lesage, F.; Grova, C. Detection of hemodynamic responses to epileptic activity using simultaneous Electro-EncephaloGraphy (EEG)/Near Infra Red Spectroscopy (NIRS) acquisitions. NeuroImage 2011, 56, 114–125. [Google Scholar] [CrossRef]
- Watanabe, E.; Nagahori, Y.; Mayanagi, Y. Focus Diagnosis of Epilepsy Using Near-Infrared Spectroscopy. Epilepsia 2002, 43, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Parikshat, S. T09. Seizure detection in temporal lobe epileptic patients using multi-modal fNIRS/EEG recordings. Clin. Neurophysiol. 2018, 129, e4. [Google Scholar] [CrossRef]
- Rizki, E.; Uga, M.; Dan, I.; Dan, H.; Tsuzuki, D.; Yokota, H.; Oguro, K.; Watanabe, E. Determination of epileptic focus side in mesial temporal lobe epilepsy using long-term noninvasive fNIRS/EEG monitoring for presurgical evaluation. Neurophotonics 2015, 2, 025003. [Google Scholar] [CrossRef] [PubMed]
- Kassab, A.; Hinnoutondji Toffa, D.; Robert, M.; Lesage, F.; Peng, K.; Khoa Nguyen, D. Hemodynamic changes associated with common EEG patterns in critically ill patients: Pilot results from continuous EEG-fNIRS study. Clin. Neuroradiol. 2021, 32, 102880. [Google Scholar] [CrossRef] [PubMed]
- McCulloch, T.J.; Sanders, R.D. Depth of anaesthesia monitoring: Time to reject the index? Br. J. Anaesth. 2023, 131, 196–199. [Google Scholar] [CrossRef] [PubMed]
- Ha, U.; Lee, J.; Kim, M.; Roh, T.; Choi, S.; Yoo, H.J. An EEG-NIRS Multimodal SoC for Accurate Anesthesia Depth Monitoring. IEEE J. Solid-State Circuits 2018, 53, 1830–1843. [Google Scholar] [CrossRef]
- Musizza, B.; Ribaric, S. Monitoring the Depth of Anaesthesia. Sensors 2010, 10, 10896–10935. [Google Scholar] [CrossRef] [PubMed]
- Gounon, L.J. Monitoring Depth of Anesthesia, a Long-Standing Enterprise. J. Anesth. Hist. 2018, 4, 245. [Google Scholar] [CrossRef]
- Vijayakrishnan Nair, V.; Kish, B.R.; Yang, H.-C.; Yu, Z.; Guo, H.; Tong, Y.; Liang, Z. Monitoring anesthesia using simultaneous functional Near Infrared Spectroscopy and Electroencephalography. Clin. Neurophysiol. 2021, 132, 1636–1646. [Google Scholar] [CrossRef]
- He, Q.; Feng, L.F.; Jiang, G.Q.; Xie, P. Multimodal Multitask Neural Network for Motor Imagery Classification With EEG and fNIRS Signals. IEEE Sens. J. 2022, 22, 20695–20706. [Google Scholar] [CrossRef]
- Jiang, Y.C.; Ma, R.; Qi, S.C.; Ge, S.; Sun, Z.Q.; Li, Y.S.; Song, J.B.; Zhang, M.M. Characterization of Bimanual Cyclical Tasks From Single-Trial EEG-fNIRS Measurements. IEEE Trans. Neural Syst. Rehabil. Eng. 2022, 30, 146–156. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ayaz, H.; Shewokis, P.A. Mental workload classification with concurrent electroencephalography and functional near-infrared spectroscopy. Brain-Comput. Interfaces 2017, 4, 175–185. [Google Scholar] [CrossRef]
- Yi, L.; Xie, G.J.; Li, Z.H.; Li, X.L.; Zhang, Y.Z.; Wu, K.; Shao, G.J.; Lv, B.L.; Jing, H.; Zhang, C.G.; et al. Automatic depression diagnosis through hybrid EEG and near-infrared spectroscopy features using support vector machine. Front. Neurosci. 2023, 17, 12. [Google Scholar] [CrossRef]
- Chiarelli, A.M.; Perpetuini, D.; Croce, P.; Filippini, C.; Cardone, D.; Rotunno, L.; Anzoletti, N.; Zito, M.; Zappasodi, F.; Merla, A. Evidence of Neurovascular Un-Coupling in Mild Alzheimer’s Disease through Multimodal EEG-fNIRS and Multivariate Analysis of Resting-State Data. Biomedicines 2021, 9, 337. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.J.; Ayaz, H.; Akansu, A.N. Neural Correlates of Affective Context in Facial Expression Analysis: A Simultaneous EEG-fNIRS Study. In Proceedings of the 3rd IEEE Global Conference on Signal and Information Processing (GlobalSIP), Orlando, FL, USA, 13–16 December 2015; pp. 820–824. [Google Scholar]
- Xu, T.; Zhou, Z.K.; Yang, Y.L.; Li, Y.; Li, J.H.; Bezerianos, A.; Wang, H.T. Motor Imagery Decoding Enhancement Based on Hybrid EEG-fNIRS Signals. IEEE Access 2023, 11, 65277–65288. [Google Scholar] [CrossRef]
- Ortega, P.; Faisal, A.A. Deep learning multimodal fNIRS and EEG signals for bimanual grip force decoding. J. Neural Eng. 2021, 18, 21. [Google Scholar] [CrossRef]
- Chu, H.Z.; Cao, Y.; Jiang, J.; Yang, J.H.; Huang, M.Y.; Li, Q.J.; Jiang, C.H.; Jiao, X.J. Optimized electroencephalogram and functional near-infrared spectroscopy-based mental workload detection method for practical applications. Biomed. Eng. Online 2022, 21, 17. [Google Scholar] [CrossRef] [PubMed]
- Aghajani, H.; Garbey, M.; Omurtag, A. Measuring Mental Workload with EEG plus fNIRS. Front. Hum. Neurosci. 2017, 11, 20. [Google Scholar] [CrossRef]
- Al-Shargie, F.; Kiguchi, M.; Badruddin, N.; Dass, S.C.; Hani, A.F.M.; Tang, T.B. Mental stress assessment using simultaneous measurement of EEG and fNIRS. Biomed. Opt. Express 2016, 7, 3882–3898. [Google Scholar] [CrossRef] [PubMed]
- Hamann, A.; Carstengerdes, N. Assessing the development of mental fatigue during simulated flights with concurrent EEG-fNIRS measurement. Sci. Rep. 2023, 13, 12. [Google Scholar] [CrossRef]
- Su, W.C.; Dashtestani, H.; Miguel, H.O.; Condy, E.; Buckley, A.; Park, S.; Perreault, J.B.; Nguyen, T.; Zeytinoglu, S.; Millerhagen, J.; et al. Simultaneous multimodal fNIRS-EEG recordings reveal new insights in neural activity during motor execution, observation, and imagery. Sci. Rep. 2023, 13, 10. [Google Scholar] [CrossRef]
- Cicalese, P.A.; Li, R.H.; Ahmadi, M.B.; Wang, C.S.; Francis, J.T.; Selvaraj, S.; Schulz, P.E.; Zhang, Y.C. An EEG-fNIRS hybridization technique in the four-class classification of alzheimer’s disease. J. Neurosci. Methods 2020, 336, 8. [Google Scholar] [CrossRef]
- Sirpal, P.; Kassab, A.; Pouliot, P.; Nguyen, D.K.; Lesage, F. fNIRS improves seizure detection in multimodal EEG-fNIRS recordings. J. Biomed. Opt. 2019, 24, 9. [Google Scholar] [CrossRef] [PubMed]
- Pouliot, P.; Tremblay, J.; Robert, M.; Vannasing, P.; Lepore, F.; Lassonde, M.; Sawan, M.; Nguyen, D.K.; Lesage, F. Nonlinear hemodynamic responses in human epilepsy: A multimodal analysis with fNIRS-EEG and fMRI-EEG. J. Neurosci. Methods 2012, 204, 326–340. [Google Scholar] [CrossRef] [PubMed]
- Peng, K.; Nguyen, D.K.; Tayah, T.; Vannasing, P.; Tremblay, J.; Sawan, M.; Lassonde, M.; Lesage, F.; Pouliot, P. fNIRS-EEG study of focal interictal epileptiform discharges. Epilepsy Res. 2014, 108, 491–505. [Google Scholar] [CrossRef] [PubMed]
- Rosas-Romero, R.; Guevara, E.; Peng, K.; Nguyen, D.K.; Lesage, F.; Pouliot, P.; Lima-Saad, W.E. Prediction of epileptic seizures with convolutional neural networks and functional near-infrared spectroscopy signals. Comput. Biol. Med. 2019, 111, 10. [Google Scholar] [CrossRef]
- Guevara, E.; Flores-Castro, J.A.; Peng, K.; Nguyen, D.K.; Lesage, F.; Pouliot, P.; Rosas-Romero, R. Prediction of epileptic seizures using fNIRS and machine learning. J. Intell. Fuzzy Syst. 2020, 38, 2055–2068. [Google Scholar] [CrossRef]
- Peng, K.; Nguyen, D.K.; Vannasing, P.; Tremblay, J.; Lesage, F.; Pouliot, P. Using patient-specific hemodynamic response function in epileptic spike analysis of human epilepsy: A study based on EEG-fNIRS. Neuroimage 2016, 126, 239–255. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.D.; Wei, X.; Zhang, S.; Shang, X.H.; Cai, J. Visual evoked nerve cerebral oxygen characteristics analysis based on NIRS-EEG. Optik 2018, 160, 168–175. [Google Scholar] [CrossRef]
- Flanagan, K.; Saikia, M.J. Consumer-Grade Electroencephalogram and Functional Near-Infrared Spectroscopy Neurofeedback Technologies for Mental Health and Wellbeing. Sensors 2023, 23, 8482. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.A.; Xia, Y.J.; Zhou, X.K.; Rosas, E.V.; Thomas, A.; Loureiro, R.; Cooper, R.J.; Carlson, T.; Zhao, H.B. fNIRS-EEG BCIs for Motor Rehabilitation: A Review. Bioengineering 2023, 10, 1393. [Google Scholar] [CrossRef] [PubMed]
- Borgheai, S.B.; Deligani, R.J.; McLinden, J.; Abtahi, M.; Ostadabbas, S.; Mankodiya, K.; Shahriari, Y.; IEEE. Multimodal Evaluation of Mental Workload Using a Hybrid EEG-fNIRS Brain-Computer Interface System. In Proceedings of the 9th IEEE/EMBS International Conference on Neural Engineering (NER), San Francisco, CA, USA, 20–23 March 2019; pp. 973–976. [Google Scholar] [CrossRef]
- Abtahi, M.; Borgheai, S.B.; Jafari, R.; Constant, N.; Diouf, R.; Shahriari, Y.; Mankodiya, K. Merging fNIRS-EEG Brain Monitoring and Body Motion Capture to Distinguish Parkinsons Disease. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 1246–1253. [Google Scholar] [CrossRef]
- Alyan, E.; Saad, N.M.; Kamel, N.; Al-bawri, S.S.; Azman zakariya, M.; Abdul rahman, M. Identifying the Impact of Noise-Levels on Mental Stress: An EEG-fNIRS Study. J. Phys. Conf. Ser. 2021, 1962, 012006. [Google Scholar] [CrossRef]
- Cao, J.; Garro, E.M.; Zhao, Y.F. EEG/fNIRS Based Workload Classification Using Functional Brain Connectivity and Machine Learning. Sensors 2022, 22, 7623. [Google Scholar] [CrossRef]
- Liang, J.; Song, Y.X.; Belkacem, A.N.; Li, F.M.; Liu, S.Z.; Chen, X.N.; Wang, X.R.; Wang, Y.Y.; Wan, C.X. Prediction of balance function for stroke based on EEG and fNIRS features during ankle dorsiflexion. Front. Neurosci. 2022, 16, 9. [Google Scholar] [CrossRef]
- Qiu, L.A.; Zhong, Y.S.; Xie, Q.Y.; He, Z.P.; Wang, X.Y.; Chen, Y.Y.; Zhan, C.A.; Pan, J.H. Multi-Modal Integration of EEG-fNIRS for Characterization of Brain Activity Evoked by Preferred Music. Front. Neurorobotics 2022, 16, 14. [Google Scholar] [CrossRef] [PubMed]
- Shoaib, Z.; Akbar, A.; Kim, E.S.; Kamran, M.A.; Kim, J.H.; Jeong, M.Y. Utilizing EEG and fNIRS for the detection of sleep-deprivation-induced fatigue and its inhibition using colored light stimulation. Sci. Rep. 2023, 13, 18. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, X.; Ming, D. Early-stage fusion of EEG and fNIRS improves classification of motor imagery. Front. Neurosci. 2023, 16, 13. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Yu, K.; Bi, Y.; Ji, X.; Zhang, D. Strategic Integration: A Cross-Disciplinary Review of the fNIRS-EEG Dual-Modality Imaging System for Delivering Multimodal Neuroimaging to Applications. Brain Sci. 2024, 14, 1022. https://doi.org/10.3390/brainsci14101022
Chen J, Yu K, Bi Y, Ji X, Zhang D. Strategic Integration: A Cross-Disciplinary Review of the fNIRS-EEG Dual-Modality Imaging System for Delivering Multimodal Neuroimaging to Applications. Brain Sciences. 2024; 14(10):1022. https://doi.org/10.3390/brainsci14101022
Chicago/Turabian StyleChen, Jiafa, Kaiwei Yu, Yifei Bi, Xing Ji, and Dawei Zhang. 2024. "Strategic Integration: A Cross-Disciplinary Review of the fNIRS-EEG Dual-Modality Imaging System for Delivering Multimodal Neuroimaging to Applications" Brain Sciences 14, no. 10: 1022. https://doi.org/10.3390/brainsci14101022
APA StyleChen, J., Yu, K., Bi, Y., Ji, X., & Zhang, D. (2024). Strategic Integration: A Cross-Disciplinary Review of the fNIRS-EEG Dual-Modality Imaging System for Delivering Multimodal Neuroimaging to Applications. Brain Sciences, 14(10), 1022. https://doi.org/10.3390/brainsci14101022