Neurosurgical Microvascular Anastomosis: Systematic Review of the Existing Simulators and Proposal of a New Training Classification System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Strategy
2.2. Technical Classification of Brain Bypass Simulators: Six Tasks
- Vessel dissection: training with the dissection and the removal of adventitia.
- Subarachnoidal dissection: training with the dissection of subarachnoidal spaces (cisterns).
- Anastomosis variety: performing the standard micro-anastomoses within the same simulator (end-to-end, end-to-side, side-to-side).
- Number of anastomoses/vessels/diameters of vessel: performing many microvascular anastomoses in the same simulator thanks to the availability of vessels of different diameters.
- Stenosis-leaks: developing problem-solving strategies in case of anastomosis stenosis or anastomotic leaks (it requires perfusion and/or pressurization tests).
- Thrombosis: developing problem-solving strategies in case of thrombosis of the micro-anastomosis.
2.3. Scoring System
- -
- 0 points: the surgeon cannot execute the task by the simulator;
- -
- 1 point: the task is described to be accomplished in an acceptable way;
- -
- 2 points: the task is reported to be optimally doable by the simulator.
3. Results
3.1. Synthetic Tubes
3.2. Ex Vivo Training Models
3.2.1. Animal Vessels (In Vitro)
- -
- -
- Porcine coronary arteries perfused through a pulsatile pump [31];
- -
- Sections of turkey neck with both carotid arteries perfused [32];
- -
- Turkey wings [33];
- -
- Fresh chicken legs [34];
- -
- Chicken feet [35];
- -
- Oxen tongues [36];
- -
- Pig spleen after splenectomy [37];
- -
- Perfused porcine thighs [38];
- -
- Bovine heart model [39];
- -
- Rat cadavers with an extracorporeal perfusion device [40].
3.2.2. Fresh Human Cadavers
3.2.3. Placenta
3.3. In Vivo Training Models (Live Animals)
- -
- -
- -
- End-to-side anastomosis involving the bilateral common carotid artery (“half-ring model”) [66], common carotid artery and external jugular vein [66], superficial caudal epigastric artery and contralateral femoral artery [66], iliolumbar vein and inferior vena cava [67], left and right common iliac arteries [58,68], middle sacral artery and common iliac artery [68].
3.4. Classification
4. Discussion
5. Conclusions
Funding
Conflicts of Interest
References
- Esposito, G.; Regli, L. Intraoperative tools for cerebral bypass surgery. Acta Neurochir. 2018, 160, 775–778. [Google Scholar] [CrossRef]
- Sebök, M.; Esposito, G.; van Niftrik, C.H.B.; Fierstra, J.; Schubert, T.; Wegener, S.; Held, J.; Kulcsár, Z.; Luft, A.R.; Regli, L. Flow augmentation STA-MCA bypass evaluation for patients with acute stroke and unilateral large vessel occlusion: A proposal for an urgent bypass flowchart. J. Neurosurg. 2022, 137, 1047–1055. [Google Scholar] [CrossRef]
- Sebök, M.; Höbner, L.M.; Fierstra, J.; Schubert, T.; Wegener, S.; Kulcsár, Z.; Luft, A.R.; Regli, L.; Esposito, G. Flow-augmentation STA-MCA bypass for acute and subacute ischemic stroke due to internal carotid artery occlusion and the role of advanced neuroimaging with hemodynamic and flow-measurement in the decision-making: Preliminary data. Quant. Imaging Med. Surg. 2024, 14, 777–788. [Google Scholar] [CrossRef]
- Esposito, G.; Amin-Hanjani, S.; Regli, L. Role of and Indications for Bypass Surgery after Carotid Occlusion Surgery Study (COSS)? Stroke 2016, 47, 282–290. [Google Scholar] [CrossRef]
- Streefkerk, H.J.N.; Van der Zwan, A.; Verdaasdonk, R.M.; Beck, H.J.M.; Tulleken, C.A.F. Cerebral revascularization. Adv. Tech. Stand. Neurosurg. 2003, 28, 145–225. [Google Scholar]
- Santyr, B.; Abbass, M.; Chalil, A.; Vivekanandan, A.; Krivosheya, D.; Denning, L.M.; Mattingly, T.K.; Haji, F.A.; Lownie, S.P. High-fidelity, simulation-based microsurgical training for neurosurgical residents. Neurosurg. Focus. 2022, 53, E3. [Google Scholar] [CrossRef]
- Masia, J.; Olivares, L.; Koshima, I.; Teo, T.C.; Suominen, S.; Van Landuyt, K.; Demirtas, Y.; Becker, C.; Pons, G.; Garusi, C.; et al. Barcelona Consensus on Supermicrosurgery. J. Reconstr. Microsurg. 2013, 30, 53–58. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Peled, I.J.; Kaplan, H.Y.; Wexler, M.R. Microsilicone anastomoses. Ann. Plast. Surg. 1983, 10, 331–332. [Google Scholar] [CrossRef]
- Atlan, M.; Lellouch, A.G.; Legagneux, J.; Chaouat, M.; Masquelet, A.C.; Letourneur, D. A New Synthetic Model for Microvascular Anastomosis Training? A Randomized Comparative Study between Silicone and Polyvinyl Alcohol Gelatin Tubes. J. Surg. Educ. 2018, 75, 182–187. [Google Scholar] [CrossRef]
- Cooper, L.; Sindali, K.; Srinivasan, K.; Jones, M.; Nugent, N. Developing a Three-Layered Synthetic Microsurgical Simulation Vessel. J. Reconstr. Microsurg. 2019, 35, 15–21. [Google Scholar] [CrossRef]
- Matsumura, N.; Hayashi, N.; Hamada, H.; Shibata, T.; Horie, Y.; Endo, S. A newly designed training tool for microvascular anastomosis techniques: Microvascular Practice Card. Surg. Neurol. 2009, 71, 616–620. [Google Scholar] [CrossRef] [PubMed]
- Galmiche, C.; Hidalgo Diaz, J.J.; Vernet, P.; Facca, S.; Menu, G.; Liverneaux, P. Learning of supermicrosurgical vascular anastomosis: MicroChirSim® procedural simulator versus Anastomosis Training Kit® procedural simulator. Hand Surg. Rehabil. 2018, 37, 20–23. [Google Scholar] [CrossRef] [PubMed]
- Meier, S.A.; Lang, A.; Beer, G.M. Polyurethane vessels for microvascular surgical training to reduce animal use. ALTEX 2004, 21, 135–138. [Google Scholar] [PubMed]
- Inoue, T.; Tsutsumi, K.; Saito, K.; Adachi, S.; Tanaka, S.; Kunii, N. Training of A3-A3 side-to-side anastomosis in a deep corridor using a box with 6.5-cm depth: Technical note. Surg. Neurol. 2006, 66, 638–641. [Google Scholar] [CrossRef]
- Takeuchi, M.; Hayashi, N.; Hamada, H.; Matsumura, N.; Nishijo, H.; Endo, S. A new training method to improve deep microsurgical skills using a mannequin head. Microsurgery 2008, 28, 168–170. [Google Scholar] [CrossRef]
- Ishikawa, T.; Yasui, N.; Ono, H. Novel brain model for training of deep microvascular anastomosis. Neurol. Med. Chir. 2010, 50, 627–629. [Google Scholar] [CrossRef]
- Belykh, E.; Abramov, I.; Bardonova, L.; Patel, R.; McBryan, S.; Bouza, L.E.; Majmundar, N.; Zhao, X.; Byvaltsev, V.A.; Johnson, S.A.; et al. Seven bypasses simulation set: Description and validity assessment of novel models for microneurosurgical training. J. Neurosurg. 2023, 138, 732–739. [Google Scholar] [CrossRef]
- Mori, K.; Yamamoto, T.; Nakao, Y.; Esaki, T. Surgical simulation of cerebral revascularization via skull base approaches in the posterior circulation using three-dimensional skull model with artificial brain and blood vessels. Neurol. Med. Chir. 2011, 51, 93–96. [Google Scholar] [CrossRef]
- Cikla, U.; Sahin, B.; Hanalioglu, S.; Ahmed, A.S.; Niemann, D.; Baskaya, M.K. A novel, low-cost, reusable, high-fidelity neurosurgical training simulator for cerebrovascular bypass surgery. J. Neurosurg. 2018, 130, 1663–1671. [Google Scholar] [CrossRef]
- Petrone, S.; Cofano, F.; Nicolosi, F.; Spena, G.; Moschino, M.; Di Perna, G.; Lavorato, A.; Lanotte, M.M.; Garbossa, D. Virtual-Augmented Reality and Life-Like Neurosurgical Simulator for Training: First Evaluation of a Hands-On Experience for Residents. Front. Surg. 2022, 9, 862948. [Google Scholar] [CrossRef] [PubMed]
- Kang, B.Y.; Jeon, B.J.; Lee, K.T.; Mun, G.H. Comprehensive Analysis of Chicken Vessels as Microvascular Anastomosis Training Model. Arch. Plast. Surg. 2017, 44, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, K.G.; Dramm, P.; Schackert, G. Simple and viable in vitro perfusion model for training microvascular anastomoses. Microsurgery 2004, 24, 335–338. [Google Scholar] [CrossRef] [PubMed]
- Hino, A. Training in microvascular surgery using a chicken wing artery. Neurosurgery 2003, 52, 1495–1497; discussion 1497–1498. [Google Scholar] [CrossRef]
- Dave, A.; Singhal, M.; Tiwari, R.; Chauhan, S.; De, M. Effectiveness of a microsurgery training program using a chicken wing model. J. Plast. Surg. Hand Surg. 2022, 56, 191–197. [Google Scholar] [CrossRef]
- Kim, B.J.; Kim, S.T.; Jeong, Y.G.; Lee, W.H.; Lee, K.S.; Paeng, S.H. An efficient microvascular anastomosis training model based on chicken wings and simple instruments. J. Cerebrovasc. Endovasc. Neurosurg. 2013, 15, 20–25. [Google Scholar] [CrossRef]
- Cikla, U.; Rowley, P.; Simoes, E.L.J.; Ozaydin, B.; Goodman, S.L.; Avci, E.; Baskaya, M.K.; Patel, N.J. Grapefruit Training Model for Distal Anterior Cerebral Artery Side-to-Side Bypass. World Neurosurg. 2020, 138, 39–51. [Google Scholar] [CrossRef]
- Lausada, N.R.; Escudero, E.; Lamonega, R.; Dreizzen, E.; Raimondi, J.C. Use of cryopreserved rat arteries for microsurgical training. Microsurgery 2005, 25, 500–501. [Google Scholar] [CrossRef]
- Ishii, N.; Kiuchi, T.; Oji, T.; Kishi, K. Microsurgical Training using Reusable Human Vessels from Discarded Tissues in Lymph Node Dissection. Arch. Plast. Surg. 2016, 43, 595–598. [Google Scholar] [CrossRef]
- Joy, M.T.; Applebaum, M.A.; Anderson, W.M.; Serletti, J.M.; Capito, A.E. Impact of High-Fidelity Microvascular Surgery Simulation on Resident Training. J. Reconstr. Microsurg. 2024, 40, 211–216. [Google Scholar] [CrossRef]
- Schoffl, H.; Hager, D.; Hinterdorfer, C.; Dunst, K.M.; Froschauer, S.; Steiner, W.; Kwasny, O.; Huemer, G.M. Pulsatile perfused porcine coronary arteries for microvascular training. Ann. Plast. Surg. 2006, 57, 213–216. [Google Scholar] [CrossRef] [PubMed]
- Colpan, M.E.; Slavin, K.V.; Amin-Hanjani, S.; Calderon-Arnuphi, M.; Charbel, F.T. Microvascular anastomosis training model based on a Turkey neck with perfused arteries. Neurosurgery 2008, 62 (Suppl. S2), ONS407–ONS410; discussion ONS410–ONS411. [Google Scholar] [CrossRef] [PubMed]
- Bates, B.J.; Wimalawansa, S.M.; Monson, B.; Rymer, M.C.; Shapiro, R.; Johnson, R.M. A simple cost-effective method of microsurgical simulation training: The turkey wing model. J. Reconstr. Microsurg. 2013, 29, 615–618. [Google Scholar] [CrossRef] [PubMed]
- Cifuentes, I.J.; Rodriguez, J.R.; Yañez, R.A.; Salisbury, M.C.; Cuadra, Á.J.; Varas, J.E.; Dagnino, B.L. A Novel Ex Vivo Training Model for Acquiring Supermicrosurgical Skills Using a Chicken Leg. J. Reconstr. Microsurg. 2016, 32, 699–705. [Google Scholar] [CrossRef] [PubMed]
- Satterwhite, T.; Son, J.; Echo, A.; Lee, G. The chicken foot dorsal vessel as a high-fidelity microsurgery practice model. Plast. Reconstr. Surg. 2013, 131, 311e–312e. [Google Scholar] [CrossRef]
- Camargo, C.P.; Silva, D.I.d.S.B.d.C.E.; Maluf, F.C.; Morais-Besteiro, J.; Gemperli, R. A non-living, effective model for microvascular training. Acta Cir. Bras. 2017, 32, 1087–1092. [Google Scholar] [CrossRef]
- Maluf, I.; Silva, A.B.D.D.; Groth, A.K.; Lopes, M.A.C.; Kurogi, A.S.; Freitas, R.D.S.; Tomasich, F.D.S. An alternative experimental model for training in microsurgery. Rev. Col. Bras. Cir. 2014, 41, 72–74. [Google Scholar] [CrossRef]
- Nam, S.M.; Shin, H.S.; Kim, Y.B.; Park, E.S.; Choi, C.Y. Microsurgical training with porcine thigh infusion model. J. Reconstr. Microsurg. 2013, 29, 303–306. [Google Scholar] [CrossRef]
- Olijnyk, L.D.; Carvalho, R.F.D.; Severino, A.G.; Patel, K.; Jotz, G.P.; Silva, C.E.D.; Stefani, M.A. Ex vivo model with bovine heart: A proposal for training microscopic dissection and vascularmicroanastomoses. Rev. Col. Bras. Cir. 2019, 45, e1992. [Google Scholar] [CrossRef]
- Zucal, I.; Feder, A.L.; Kyaw, T.; Khin, S.; Heidekrueger, P.I.; Prantl, L.; Haerteis, S.; Aung, T. An Innovative Simulation Model for Microvascular Training. Plast. Reconstr. Surg. 2022, 150, 189e–193e. [Google Scholar] [CrossRef]
- Abla, A.A.; Uschold, T.; Preul, M.C.; Zabramski, J.M. Comparative use of turkey and chicken wing brachial artery models for microvascular anastomosis training. J. Neurosurg. 2011, 115, 1231–1235. [Google Scholar] [CrossRef] [PubMed]
- Tamrakar, K. Learning Microvascular Anastomosis in Low Socioeconomic Vascular Models during Residency. Cureus 2017, 9, e1199. [Google Scholar] [CrossRef]
- Le Hanneur, M.; BouchÉ, P.A.; Vignes, J.L.; Poitevin, N.; Legagneux, J.; Fitoussi, F. Non-living vs. living animal models for microvascular surgery training: A randomized comparative study. Plast. Reconstr. Surg. 2024, 153, 853–860. [Google Scholar] [CrossRef]
- Sidhu, R.S.; Park, J.; Brydges, R.; MacRae, H.M.; Dubrowski, A. Laboratory-based vascular anastomosis training: A randomized controlled trial evaluating the effects of bench model fidelity and level of training on skill acquisition. J. Vasc. Surg. 2007, 45, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Russin, J.J.; Mack, W.J.; Carey, J.N.; Minneti, M.; Giannotta, S.L. Simulation of a high-flow extracranial-intracranial bypass using a radial artery graft in a novel fresh tissue model. Neurosurgery 2012, 71, ons315–ons319; discussion ons319–ons320. [Google Scholar] [CrossRef]
- Aboud, E.; Al-Mefty, O.; Yaşargil, M.G. New laboratory model for neurosurgical training that simulates live surgery. J. Neurosurg. 2002, 97, 1367–1372. [Google Scholar] [CrossRef] [PubMed]
- Carrizales-Rodriguez, J.; Borrayo-Dorado, S.; Méndez-Guerrero, I.; Sanchez, J.; Rios-Ramirez, F.; Cardenas-Garcia, Y.; Abdala-Vargas, N.; Höllig, A.; Méndez-Rosito, D. The Hibiscus Model: A Feasible Cadaveric Model Using Continuous Arterial Circulation for Intracranial Bypass Training and Its Validation. World Neurosurg. 2023, 174, e17–e25. [Google Scholar] [CrossRef]
- Steinberg, J.A.; Rennert, R.C.; Levy, M.; Khalessi, A.A. A Practical Cadaveric Model for Intracranial Bypass Training. World Neurosurg. 2019, 121, e576–e583. [Google Scholar] [CrossRef]
- Olabe, J.; Olabe, J.; Sancho, V. Human cadaver brain infusion model for neurosurgical training. Surg. Neurol. 2009, 72, 700–702. [Google Scholar] [CrossRef]
- Olabe, J.; Olabe, J.; Roda, J.M.; Sancho, V. Human cadaver brain infusion skull model for neurosurgical training. Surg. Neurol. Int. 2011, 2, 54. [Google Scholar] [CrossRef]
- Oliveira, M.M.; Wendling, L.; Malheiros, J.A.; Nicolato, A.; Prosdocimi, A.; Guerra, L.; Costa, P.H.; Ferrarez, C.E.; Ferreira, M.T.; Sauvageau, E.; et al. Human Placenta Simulator for Intracranial-Intracranial Bypass: Vascular Anatomy and 5 Bypass Techniques. World Neurosurg. 2018, 119, e694–e702. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, M.M.R.; Ferrarez, C.E.; Ramos, T.M.; Malheiros, J.A.; Nicolato, A.; Machado, C.J.; Ferreira, M.T.; De Oliveira, F.B.; De Sousa, C.F.P.M.; Costa, P.H.V.; et al. Learning brain aneurysm microsurgical skills in a human placenta model: Predictive validity. J. Neurosurg. 2018, 128, 846–852. [Google Scholar] [CrossRef]
- Belykh, E.G.; Lei, T.; Oliveira, M.M.; Almefty, R.O.; Yagmurlu, K.; Elhadi, A.M.; Sun, G.; Bichard, W.D.; Spetzler, R.F.; Preul, M.C.; et al. Carotid Endarterectomy Surgical Simulation Model Using a Bovine Placenta Vessel. Neurosurgery 2015, 77, 825–829; discussion 829–830. [Google Scholar] [CrossRef] [PubMed]
- Belykh, E.; Lei, T.; Safavi-Abbasi, S.; Yagmurlu, K.; Almefty, R.O.; Sun, H.; Almefty, K.K.; Belykh, O.; Byvaltsev, V.A.; Spetzler, R.F.; et al. Low-flow and high-flow neurosurgical bypass and anastomosis training models using human and bovine placental vessels: A histological analysis and validation study. J. Neurosurg. 2016, 125, 915–928. [Google Scholar] [CrossRef] [PubMed]
- Gallardo, F.C.; Bustamante, J.L.; Martin, C.; Orellana, C.M.; Caviglia, M.R.; Oriola, G.G.; Diaz, A.I.; Rubino, P.A.; Quesada, V.Q. Novel Simulation Model with Pulsatile Flow System for Microvascular Training, Research, and Improving Patient Surgical Outcomes. World Neurosurg. 2020, 143, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Ghanem, A.M.; Al Omran, Y.; Shatta, B.; Kim, E.; Myers, S. Anastomosis Lapse Index (ALI): A Validated End Product Assessment Tool for Simulation Microsurgery Training. J. Reconstr. Microsurg. 2016, 32, 233–241. [Google Scholar] [CrossRef]
- Magaldi, M.O.; Nicolato, A.; Godinho, J.V.; Santos, M.; Prosdocimi, A.; Malheiros, J.A.; Lei, T.; Belykh, E.; Almefty, R.O.; Almefty, K.K.; et al. Human Placenta Aneurysm Model for Training Neurosurgeons in Vascular Microsurgery. Oper. Neurosurg. 2014, 10, 592–601. [Google Scholar] [CrossRef]
- Tayebi Meybodi, A.; Lawton, M.T.; Yousef, S.; Mokhtari, P.; Gandhi, S.; Benet, A. Microsurgical Bypass Training Rat Model: Part 2-Anastomosis Configurations. World Neurosurg. 2017, 107, 935–943. [Google Scholar] [CrossRef]
- Byvaltsev, V.A.; Akshulakov, S.K.; Polkin, R.A.; Ochkal, S.V.; Stepanov, I.A.; Makhambetov, Y.T.; Kerimbayev, T.T.; Staren, M.; Belykh, E.; Preul, M.C. Microvascular Anastomosis Training in Neurosurgery: A Review. Minim. Invasive Surg. 2018, 2018, 6130286. [Google Scholar] [CrossRef]
- Matsumura, N.; Hamada, H.; Yamatani, K.; Hayashi, N.; Hirashima, Y.; Endo, S. Side-to-side arterial anastomosis model in the rat internal and external carotid arteries. J. Reconstr. Microsurg. 2001, 17, 263–266. [Google Scholar] [CrossRef]
- Lee, S.H.; Fisher, B. Portacaval shunt in the rat. Surgery 1961, 50, 668–672. [Google Scholar]
- Matsumura, N.; Endo, S.; Hamada, H.; Kurimoto, M.; Hirashima, Y.; Takaku, A. An experimental model for side-to-side microvascular anastomosis. J. Reconstr. Microsurg. 1999, 15, 581–583. [Google Scholar] [CrossRef] [PubMed]
- Mokhtari, P.; Meybodi, A.T.; Lawton, M.T.; Payman, A.; Benet, A. Transfer of Learning from Practicing Microvascular Anastomosis on Silastic Tubes to Rat Abdominal Aorta. World Neurosurg. 2017, 108, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.L. Microvascular anastomosis of submillimeter vessels-a training model in rats. J. Hand Microsurg. 2013, 5, 14–17. [Google Scholar] [CrossRef] [PubMed]
- Nasir, S.; Aydin, M.A.; Karahan, N.; Demiryürek, D.; Sargon, M. New microvenous anastomosis model for microsurgical training: External jugular vein. J. Reconstr. Microsurg. 2006, 22, 625–630. [Google Scholar] [CrossRef]
- Mikami, T.; Suzuki, H.; Ukai, R.; Komatsu, K.; Kimura, Y.; Akiyama, Y.; Wanibuchi, M.; Mikuni, N. Surgical Anatomy of Rats for the Training of Microvascular Anastomosis. World Neurosurg. 2018, 120, e1310–e1318. [Google Scholar] [CrossRef]
- Onoda, S.; Kimata, Y.; Matsumoto, K. Iliolumbar Vein as a Training Model for Microsurgical End-to-Side Anastomosis. J. Craniofac Surg. 2016, 27, 767–768. [Google Scholar] [CrossRef]
- Yin, X.; Ye, G.; Lu, J.; Wang, L.; Qi, P.; Wang, H.; Wang, J.; Hu, S.; Yang, X.; Chen, K.; et al. A Novel Rat Model for Comprehensive Microvascular Training of End-to-End, End-to-Side, and Side-to-Side Anastomoses. J. Reconstr. Microsurg. 2019, 35, 499–504. [Google Scholar] [CrossRef]
- Pruthi, N.; Sarma, P.; Pandey, P. Training in Micro-Vascular Anastomosis Using Rat Femoral Vessels: Comparison of Immediate and Delayed Patency Rates. Turk. Neurosurg. 2018, 28, 56–61. [Google Scholar] [CrossRef]
- Yamamoto, T.; Yamamoto, N.; Yamashita, M.; Furuya, M.; Hayashi, A.; Koshima, I. Establishment of supermicrosurgical lymphaticovenular anastomosis model in rat. Microsurgery 2017, 37, 57–60. [Google Scholar] [CrossRef]
- Sakrak, T.; Köse, A.A.; Karabağli, Y.; Koçman, A.E.; Ozbayoğlu, A.C.; Cetįn, C. Rat tail revascularization model for advanced microsurgery training and research. J. Reconstr. Microsurg. 2011, 27, 391–396. [Google Scholar] [CrossRef] [PubMed]
- Esposito, G.; Rossi, F.; Matteini, P.; Scerrati, A.; Puca, A.; Albanese, A.; Rossi, G.; Ratto, F.; Maira, G.; Pini, R. In vivo laser assisted microvascular repair and end-to-end anastomosis by means of indocyanine green-infused chitosan patches: A pilot study. Lasers Surg. Med. 2013, 45, 318–325. [Google Scholar] [CrossRef] [PubMed]
- Shurey, S.; Akelina, Y.; Legagneux, J.; Malzone, G.; Jiga, L.; Ghanem, A.M. The rat model in microsurgery education: Classical exercises and new horizons. Arch. Plast. Surg. 2014, 41, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.S.; Rapaport, B.H.J. Role of live animals in the training of microvascular surgery: A systematic review. Br. J. Oral. Maxillofac. Surg. 2019, 57, 616–619. [Google Scholar] [CrossRef] [PubMed]
- Pafitanis, G.; Cooper, L.; Vijayan, R.; Ghanem, A.; Myers, S. Putting the heart into microvascular training: The micropump, a practical “heart-like” device to enhance vascular anastomosis non-living simulation. J. Plast. Reconstr. Aesthetic Surg. JPRAS 2017, 70, 1787–1788. [Google Scholar] [CrossRef]
- Onoda, S.; Kimata, Y.; Sugiyama, N.; Tokuyama, E.; Matsumoto, K.; Ota, T.; Thuzar, M. Analysis of 10-Year Training Results of Medical Students Using the Microvascular Research Center Training Program. J. Reconstr. Microsurg. 2016, 32, 336–341. [Google Scholar] [CrossRef]
- Esposito, G.; Fierstra, J.; Regli, L. Distal outflow occlusion with bypass revascularization: Last resort measure in managing complex MCA and PICA aneurysms. Acta Neurochir. 2016, 158, 1523–1531. [Google Scholar] [CrossRef]
Tasks | Score | Sum | Grade | |
---|---|---|---|---|
1 | Vessel dissection | 2 task optimally doable | 10–12 | A (excellent simulator) |
2 | Subarachnoidal dissection | 7–9 | B (good simulator) | |
3 | Variety of the anastomosis | 1 task doable but not in a proper way | 4–6 | C (reasonable simulator) |
4 | Number anastomosis/vessel/diameter | |||
5 | Stenosis leaks | 0 task not doable | 1–3 | D (poor simulator) |
6 | Thrombosis | 0 | E (not a simulator) |
Task | Synthetic Tubes | Animal Vessels (Ex Vivo) | Human Cadavers | Placenta | Live Animals (In Vivo) |
---|---|---|---|---|---|
Vessel dissection | 0 | 1 | 1 | 2 | 2 |
Subarachnoid dissection | 0 | 0 | 2 | 2 | 1 |
Variety of the anastomosis | 2 | 2 | 2 | 2 | 2 |
Number anastomosis/vessel/diameter | 2 | 2 | 1 | 2 | 1 |
Stenosis leaks | 2 | 2 | 2 | 2 | 2 |
Thrombosis | 0 | 0 | 0 | 0 | 2 |
TOTAL OF POINTS (class of the simulator) | 6 (C) | 7 (B) | 8 (B) | 10 (A) | 10 (A) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guida, L.; Sebök, M.; Oliveira, M.M.; van Niftrik, C.H.B.; Charbel, F.T.; Cenzato, M.; Regli, L.; Esposito, G. Neurosurgical Microvascular Anastomosis: Systematic Review of the Existing Simulators and Proposal of a New Training Classification System. Brain Sci. 2024, 14, 1031. https://doi.org/10.3390/brainsci14101031
Guida L, Sebök M, Oliveira MM, van Niftrik CHB, Charbel FT, Cenzato M, Regli L, Esposito G. Neurosurgical Microvascular Anastomosis: Systematic Review of the Existing Simulators and Proposal of a New Training Classification System. Brain Sciences. 2024; 14(10):1031. https://doi.org/10.3390/brainsci14101031
Chicago/Turabian StyleGuida, Lelio, Martina Sebök, Marcelo Magaldi Oliveira, Christiaan Hendrik Bas van Niftrik, Fady T. Charbel, Marco Cenzato, Luca Regli, and Giuseppe Esposito. 2024. "Neurosurgical Microvascular Anastomosis: Systematic Review of the Existing Simulators and Proposal of a New Training Classification System" Brain Sciences 14, no. 10: 1031. https://doi.org/10.3390/brainsci14101031
APA StyleGuida, L., Sebök, M., Oliveira, M. M., van Niftrik, C. H. B., Charbel, F. T., Cenzato, M., Regli, L., & Esposito, G. (2024). Neurosurgical Microvascular Anastomosis: Systematic Review of the Existing Simulators and Proposal of a New Training Classification System. Brain Sciences, 14(10), 1031. https://doi.org/10.3390/brainsci14101031