Fluid–Structure Interaction Simulations of the Initiation Process of Cerebral Aneurysms
Abstract
:1. Introduction
2. Methods
2.1. Patient Data
2.2. Patient Image Data
2.3. Hemodynamic and Structural Mechanical Modeling
2.4. Convergence Analysis
- Time step independence;
- Calculation mesh convergence;
- Newtonian vs. non-Newtonian fluid;
- One cardiac cycle vs. five cardiac cycles.
3. Results
3.1. Hemodynamic Scenarios in the Parent Artery and Cerebral Aneurysm
- In Scenario A, a large area with low WSS (<~0.1 Pa) and an increased OSI (>~0.1) was clearly visible.
- In Scenario B, high WSS values (i.e., large area with WSS > ~0.5 Pa) were observed, while OSI values remained low (<~0.05).
- In Scenario C, an intermediate behavior was observed, where certain parts of the region of aneurysm growth clearly showed low WSS, while other regions displayed high WSS values.
3.2. Structural Mechanical Scenarios in the Parent Artery and Cerebral Aneurysm
- Scenario D was characterized by regions with elevated equivalent wall stresses (MISES) (i.e., areas > ~70 kPa visible; see Figure 4, first row).
- Scenario E indicated regions with low equivalent wall stresses (i.e., areas mostly < ~50 kPa) in both the region of aneurysm onset and the aneurysm wall (see Figure 4, second row).
4. Discussion
4.1. Hemodynamics
4.2. Structural Mechanics
4.3. Model Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dhar, S.; Tremmel, M.; Mocco, J.; Kim, M.; Yamamoto, J.; Siddiqui, A.H.; Hopkins, L.N.; Meng, H. Morphology parameters for intracranial aneurysm rupture risk assessment. Neurosurgery 2008, 63, 185–197. [Google Scholar] [CrossRef] [PubMed]
- Hackenberg, K.; Hänggi, D.; Etminan, N. Unruptured intracranial aneurysms contemporary data and management. Stroke 2018, 49, 2268–2275. [Google Scholar] [CrossRef] [PubMed]
- Jirjees, S.; Htun, Z.M.; Aldawudi, I.; Katwal, P.C.; Khan, S. Role of Morphological and Hemodynamic Factors in Predicting Intracranial Aneurysm Rupture: A Review. Cureus 2020, 12, e9178. [Google Scholar] [CrossRef] [PubMed]
- Detmer, F.J.; Chung, B.J.; Mut, F.; Pritz, M.; Slawski, M.; Hamzei-Sichani, F.; Kallmes, D.; Putman, C.; Jimenez, C.; Cebral, J.R. Development of a statistical model for discrimination of rupture status in posterior communicating artery aneurysms. Acta Neurochir. 2018, 160, 1643–1652. [Google Scholar] [CrossRef]
- Jiang, P.; Liu, Q.; Wu, J.; Chen, X.; Li, M.; Li, Z.; Yang, S.; Guo, R.; Gao, B.; Cao, Y.; et al. A Novel Scoring System for Rupture Risk Stratification of Intracranial Aneurysms: A Hemodynamic and Morphological Study. Front Neurosci. 2018, 12, 596. [Google Scholar] [CrossRef]
- Soldozy, S.; Norat, P.; Elsarrag, M.; Chatrath, A.; Costello, J.S.; Sokolowski, J.D.; Tvrdik, P.; Kalani, M.Y.S.; Park, M.S. The biophysical role of hemodynamics in the pathogenesis of cerebral aneurysm formation and rupture. Neurosurg. Focus. 2019, 47, E11. [Google Scholar] [CrossRef]
- Fujimura, S.; Tanaka, K.; Takao, H.; Okudaira, T.; Koseki, H.; Hasebe, A.; Suzuki, T.; Uchiyama, Y.; Ishibashi, T.; Otani, K.; et al. Computational fluid dynamic analysis of the initiation of cerebral aneurysms. J. Neurosurg. 2022, 137, 335–343. [Google Scholar] [CrossRef]
- Zimny, M.; Kawlewska, E.; Hebda, A.; Wolański, W.; Ładziński, P.; Kaspera, W. Wall shear stress gradient is independently associated with middle cerebral artery aneurysm development: A case-control CFD patient-specific study based on 77 patients. BMC Neurol. 2021, 21, 281. [Google Scholar] [CrossRef] [PubMed]
- Meng, H.; Tutino, V.M.; Xiang, J.; Siddiqui, A. High WSS or Low WSS? Complex Interactions of Hemodynamics with Intracranial Aneurysm Initiation, Growth, and Rupture: Toward a Unifying Hypothesis. AJNR Am. J. Neuroradiol. 2014, 35, 1254–1262. [Google Scholar] [CrossRef]
- Rajabzadeh-Oghaz, H.; Siddiqui, A.H.; Asadollahi, A.; Kolega, J.; Tutino, V.M. The association between hemodynamics and wall characteristics in human intracranial aneurysms: A review. Neurosurg. Rev. 2022, 45, 49–61. [Google Scholar] [CrossRef]
- Villablanca, J.P.; Duckwiler, G.R.; Jahan, R.; Tateshima, S.; Martin, N.A.; Frazee, J.; Gonzalez, N.R.; Sayre, J.; Vinuela, F.V. Natural history of asymptomatic unruptured cerebral aneurysms evaluated at CT angiography: Growth and rupture incidence and correlation with epidemiologic risk factors. Neuroradiology 2013, 269, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Kulcsár, Z.; Ugron, A.; Marosfői, M.; Berentei, Z.; Paál, G.; Szikora, I. Hemodynamics of cerebral aneurysm initiation: The role of wall shear stress and spatial wall shear stress gradient. AJNR Am. J. Neuroradiol. 2011, 32, 587–594. [Google Scholar] [CrossRef]
- Xiang, J.; Natarajan, S.K.; Tremmel, M.; Ma, D.; Mocco, J.; Hopkins, L.N.; Siddiqui, A.H.; Levy, E.I.; Meng, H. Hemodynamic-morphologic discriminants for intracranial aneurysm rupture. Stroke 2011, 42, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Jou, L.D.; Lee, D.H.; Morsi, H.; Mawad, M. Wall shear stress on ruptured and unruptured intracranial aneurysms at the internal carotid artery. AJNR Am. J. Neuroradiol. 2008, 29, 1761–1767. [Google Scholar] [CrossRef] [PubMed]
- Shojima, M.; Oshima, M.; Takagi, K.; Torii, R.; Hayakawa, M.; Katada, K.; Morita, A.; Kirino, T. Magnitude and role of wall shear stress on cerebral aneurysm: Computational fluid dynamic study of 20 middle cerebral artery aneurysms. Stroke 2004, 35, 2500–2505. [Google Scholar] [CrossRef]
- Boussel, L.; Rayz, V.; McCulloch, C.; Martin, A.; Acevedo-Bolton, G.; Lawton, M.; Higashida, R.; Smith, W.S.; Young, W.L.; Saloner, D. Aneurysm growth occurs at region of low wall shear stress: Patient-specific correlation of hemodynamics and growth in a longitudinal study. Stroke 2008, 39, 2997–3002. [Google Scholar] [CrossRef]
- Acevedo-Bolton, G.; Jou, L.-D.; Dispensa, B.P.; Lawton, M.T.; Higashida, R.T.; Martin, A.J.; Young, W.L.; Saloner, D. Estimating the hemodynamic impact of interventional treatments of aneurysms: Numerical simulation with experimental validation: Technical case report. Neurosurgery 2006, 59, E429–E430. [Google Scholar] [CrossRef] [PubMed]
- Castro, M.A.; Putman, C.M.; Sheridan, M.J.; Cebral, J.R. Hemodynamic patterns of anterior communicating artery aneurysms: A possible association with rupture. AJNR Am. J. Neuroradiol. 2009, 30, 297–302. [Google Scholar] [CrossRef]
- Qian, Y.; Takao, H.; Umezu, M.; Murayama, Y. Risk analysis of unruptured aneurysms using computational fluid dynamics technology: Preliminary results. AJNR Am. J. Neuroradiol. 2011, 32, 1948–1955. [Google Scholar] [CrossRef]
- Sugiyama, S.-I.; Meng, H.; Funamoto, K.; Inoue, T.; Fujimura, M.; Nakayama, T.; Omodaka, S.; Shimizu, H.; Takahashi, A.; Tominaga, T. Hemodynamic analysis of growing intracranial aneurysms arising from a posterior inferior cerebellar artery. World Neurosurg. 2012, 78, 462–468. [Google Scholar] [CrossRef]
- Takao, H.; Murayama, Y.; Otsuka, S.; Qian, Y.; Mohamed, A.; Masuda, S.; Yamamoto, M.; Abe, T. Hemodynamic differences between unruptured and ruptured intracranial aneurysms during observation. Stroke 2012, 43, 1436–1439. [Google Scholar] [CrossRef] [PubMed]
- Acosta, J.M.; Cayron, A.F.; Dupuy, N.; Pelli, G.; Foglia, B.; Haemmerli, J.; Allémann, E.; Bijlenga, P.; Kwak, B.R.; Morel, S. Effect of Aneurysm and Patient Characteristics on Intracranial Aneurysm Wall Thickness. Front. Cardiovasc. Med. 2021, 8, 775307. [Google Scholar] [CrossRef] [PubMed]
- Cho, C.K.; Yang, H.; Kim, J.J.; Oh, J.H.; Kim, Y.B. Prediction of rupture risk in cerebral aneurysms by comparing clinical cases with fluid–structure interaction analyses. Sci. Rep. 2020, 10, 18237. [Google Scholar] [CrossRef] [PubMed]
- Gasser, T.C.; Auer, M.; Labruto, F.; Swedenborg, J.; Roy, J. Biomechanical rupture risk assessment of abdominal aortic aneurysms: Model complexity versus predictability of finite element simulations. Eur. J. Vasc. Endovasc. Surg. 2010, 40, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Reeps, C.; Gee, M.; Maier, A.; Gurdan, M.; Eckstein, H.H.; Wall, W.A. The impact of model assumptions on results of computational mechanics in abdominal aortic aneurysm. J. Vasc. Surg. 2010, 51, 679–688. [Google Scholar] [CrossRef]
- Rissland, P.; Alemu, Y.; Einav, S.; Ricotta, J.; Bluestein, D. Abdominal aortic aneurysm risk of rupture: Patient-specific FSI simulations using anisotropic model. J. Biomech. Eng. 2009, 131, 031001. [Google Scholar] [CrossRef]
- Huang, Z.; Zeng, M.; Tao, W.G.; Zeng, F.Y.; Chen, C.Q.; Zhang, L.B.; Chen, F.H. A Hemodynamic Mechanism Correlating with the Initiation of MCA Bifurcation Aneurysms. Am. J. Neuroradiol. 2020, 41, 1217–1224. [Google Scholar] [CrossRef]
- Bergman, T.L.; Lavine, A.S.; Incropera, F.P.; De Witt, D.P. Fundamentals of Heat and Mass Transfer; John Wiley & Sons: Hoboken, NJ, USA, 2018; ISBN 978-1-119-35388-1. [Google Scholar]
- Çengel, Y.A.; Cimbala, J.M. Fluid Mechanics: Fundamentals and Applications, 4th ed.; McGraw-Hill Higher Education: Boston, MA, USA, 2019; ISBN 978-9-813-15788-0. [Google Scholar]
- Guo, H.; Liu, J.F.; Li, C.H.; Wang, J.W.; Li, H.; Gao, B.L. Greater hemodynamic stresses initiate aneurysms on major cerebral arterial bifurcations. Front. Neurol. 2023, 14, 1265484. [Google Scholar] [CrossRef]
- Guo, H.; Yang, S.T.; Wang, J.W.; Li, H.; Gao, B.L.; Li, C.H. High hemodynamic stresses induce aneurysms at internal carotid artery bends. Medicine 2023, 102, e34587. [Google Scholar] [CrossRef]
- Geers, A.J.; Morales, H.G.; Larrabide, I.; Butakoff, C.; Bijlenga, P.; Frangi, A.F. Wall shear stress at the initiation site of cerebral aneurysms. Biomech. Model. Mechanobiol. 2017, 16, 97–115. [Google Scholar] [CrossRef]
- Mantha, A.R.; Karmonik, C.; Benndorf, G.; Strother, C.; Metcalfe, R.W. Hemodynamics in a cerebral artery before and after the formation of an aneurysm. Am. J. Neuroradiol. 2006, 27, 1113–1118. [Google Scholar] [PubMed]
- Baek, H.; Jayaraman, M.V.; Karniadakis, G.E. Wall shear stress and pressure distribution on aneurysms and infundibulae in the posterior communicating artery bifurcation. Ann. Biomed. Eng. 2009, 37, 2469–2487. [Google Scholar] [CrossRef] [PubMed]
- Castro, M.A.; Putman, C.M.; Cebral, J.R. Computational analysis of anterior communicating artery aneurysm shear stress before and after aneurysm formation. J. Phys. Conf. Ser. 2011, 332, 012001. [Google Scholar] [CrossRef]
- Lauric, A.; Hippelheuser, J.; Safain, M.G.; Malek, A.M. Curvature effect on hemodynamic conditions at the inner bend of the carotid siphon and its relation to aneurysm formation. J. Biomech. 2014, 47, 3018–3027. [Google Scholar] [CrossRef]
- Shimogonya, Y.; Ishikawa, T.; Imai, Y.; Matsuki, N.; Yamaguchi, T. Can temporal fluctuation in spatial wall shear stress gradient initiate a cerebral aneurysm? A proposed novel hemodynamic index, the gradient oscillatory number (GON). J. Biomech. 2009, 42, 550–554. [Google Scholar] [CrossRef]
- Cebral, J.R.; Sheridan, M.; Putman, C.M. Hemodynamics and bleb formation in intracranial aneurysms. AJNR Am. J. Neuroradiol. 2010, 31, 304–310. [Google Scholar] [CrossRef]
- Nagy, J.; Maier, J.; Miron, V.; Fenz, W.; Major, Z.; Gruber, A.; Gmeiner, M. Methods, Validation and Clinical Implementation of a Simulation Method of Cerebral Aneurysms. J. Biomed. Eng. Biosci. 2023, 10, 10–19. [Google Scholar] [CrossRef]
- Weller, H.G.; Tabor, G.; Jasak, H.; Fureby, C. A tensorial approach to computational continuum mechanics using object orientated techniques. Comput. Phys. 1998, 12, 620–631. [Google Scholar] [CrossRef]
- Greenshields, C.J.; Weller, H.G. Notes on Computational Fluid Dynamics: General Principles; CFD Direct: Reading, UK, 2022; ISBN 978-1-3999-2078-0. [Google Scholar]
- Cardiff, P.; Karač, A.; Jaeger, P.D.; Jasak, H.; Nagy, J.; Ivanković, A.; Tuković, Ž. An open-source finite volume toolbox for solid mechanics and fluid-solid interaction simulations. arXiv 2018, arXiv:1808.10736v2. Available online: https://arxiv.org/abs/1808.10736 (accessed on 20 September 2024).
- Blanco, P.; Müller, L.; Spence, J.D. Blood pressure gradients in cerebral arteries: A clue to pathogenesis of cerebral small vessel disease. Stroke Vasc. Neurol. 2017, 2, 108–117. [Google Scholar] [CrossRef]
- Lorenzetti, F.; Suominen, S.; Tukianen, E. Evaluation of Blood Flow in Free Microvascular Flaps. J. Reconstr. Microsurg. 2001, 17, 163–167. [Google Scholar] [CrossRef] [PubMed]
- Tóth, B.K. The Mechanical Interaction between the Red Blood Cells and the Blood Vessels. Ph.D. Thesis, University of Budapest, Budapest, Hungary, 2011. [Google Scholar]
- Di Martino, E.S.; Guadagni, G.; Fumero, A.; Ballerini, G.; Spirito, R.; Biglioli, P.; Redaelli, A. Fluid-structure interaction within realistic three-dimensional models of the aneurysmatic aorta as a guidance to assess the risk of rupture of the aneurysm. Med. Eng. Phys. 2001, 23, 647–655. [Google Scholar] [CrossRef] [PubMed]
- Lynch, S.; Nama, N.; Figueroa, C.A. Effects of non-Newtonian viscosity on arterial and venous flow and transport. Sci. Rep. 2022, 12, 20568. [Google Scholar] [CrossRef] [PubMed]
Parameter | WSS [Pa] | OSI [-] | ES [-] | MISES [kPa] | Runtime [s] | |
---|---|---|---|---|---|---|
Time independence | Δt = 0.1 s | 0.083 | 0.148 | 0.033 | 73.54 | 347 |
Δt = 0.01 s | 0.085 | 0.150 | 0.034 | 75.41 | 715 | |
Δt = 0.001 s | 0.086 | 0.151 | 0.035 | 75.43 | 1872 | |
Fluid mesh convergence | Δx = 0.3 mm | 0.080 | 0.139 | 0.031 | 69.84 | 262 |
Δx = 0.25 mm | 0.083 | 0.145 | 0.033 | 72.14 | 426 | |
Δx = 0.2 mm | 0.086 | 0.150 | 0.034 | 75.41 | 715 | |
Δx = 0.15 mm | 0.088 | 0.152 | 0.035 | 76.11 | 1592 | |
Solid mesh convergence | 2 cells | 0.086 | 0.150 | 0.032 | 73.94 | 578 |
3 cells | 0.086 | 0.150 | 0.034 | 75.41 | 715 | |
4 cells | 0.086 | 0.151 | 0.034 | 75.42 | 1643 | |
Viscosity model | Newtonian | 0.085 | 0.150 | 0.034 | 75.41 | 715 |
Non-Newtonian | 0.086 | 0.151 | 0.034 | 75.41 | 727 | |
Number of cardiac cycles | 1 | 0.085 | 0.150 | 0.034 | 75.41 | 715 |
5 | 0.085 | 0.150 | 0.034 | 75.41 | 3512 |
Young’s Modulus | Mean Values | p-Values | |||||
---|---|---|---|---|---|---|---|
A | B | C | A vs. B | A vs. C | B vs. C | ||
2490 kPa | WSS [Pa] | 0.261 | 1.772 | 1.176 | 1.90 × 10−4 | 8.86 × 10−4 | 3.82 × 10−2 |
OSI [-] | 0.075 | 0.018 | 0.03 | 7.52 × 10−4 | 2.88 × 10−3 | 4.22 × 10−2 | |
5700 kPa | WSS [Pa] | 0.259 | 1.768 | 1.164 | 1.86 × 10−4 | 8.74 × 10−4 | 3.73 × 10−2 |
OSI [-] | 0.077 | 0.020 | 0.032 | 7.59 × 10−4 | 2.92 × 10−3 | 4.29 × 10−2 | |
500 kPa | WSS [Pa] | 0.231 | 1.568 | 1.040 | 1.88 × 10−4 | 8.81 × 10−4 | 3.83 × 10−2 |
OSI [-] | 0.084 | 0.020 | 0.034 | 7.56 × 10−4 | 2.89 × 10−3 | 4.25 × 10−2 |
Young’s Modulus | Mean Values | p-Values | |||||
---|---|---|---|---|---|---|---|
A | B | C | A vs. B | A vs. C | B vs. C | ||
2490 kPa | WSS [Pa] | 0.025 | 0.39 | 0.193 | 3.00 × 10−3 | 8.54 × 10−4 | 1.83 × 10−2 |
OSI [-] | 0.154 | 0.037 | 0.056 | 1.23 × 10−2 | 3.72 × 10−3 | 3.22 × 10−2 | |
5700 kPa | WSS [Pa] | 0.034 | 0.441 | 0.243 | 1.98 × 10−3 | 6.37 × 10−4 | 1.13 × 10−2 |
OSI [-] | 0.113 | 0.033 | 0.044 | 9.54 × 10−3 | 2.27 × 10−3 | 1.92 × 10−2 | |
500 kPa | WSS [Pa] | 0.016 | 0.286 | 0.137 | 2.87 × 10−3 | 7.23 × 10−4 | 1.95 × 10−2 |
OSI [-] | 0.241 | 0.050 | 0.078 | 1.33 × 10−2 | 3.89 × 10−3 | 3.12 ×10−2 |
A | B | C | |
---|---|---|---|
without aneurysm | 22.7% | 34.1% | 43.2% |
with aneurysm | 38.6% | 11.4% | 50.0% |
Young’s Modulus | Mean Values | p-Value | ||
---|---|---|---|---|
D | E | D vs. E | ||
2490 kPa | MISES [kPa] | 76.5 | 45.8 | 1.27 × 10−3 |
ES [-] | 0.033 | 0.019 | 4.14 × 10−3 | |
5700 kPa | MISES [kPa] | 77.3 | 46.3 | 1.65 × 10−3 |
ES [-] | 0.014 | 0.008 | 4.89 × 10−3 | |
500 kPa | MISES [kPa] | 77.0 | 46.2 | 1.33 × 10−3 |
ES [-] | 0.167 | 0.095 | 4.43 × 10−3 |
Young’s Modulus | Mean Values | p-Value | ||
---|---|---|---|---|
D | E | D vs. E | ||
2490 kPa | MISES [kPa] | 83.6 | 49.0 | 1.55 × 10−4 |
ES [-] | 0.103 | 0.046 | 1.38 × 10−3 | |
5700 kPa | MISES [kPa] | 84.2 | 49.3 | 2.67 × 10−4 |
ES [-] | 0.043 | 0.019 | 3.39 × 10−3 | |
500 kPa | MISES [kPa] | 83.9 | 49.1 | 1.94 × 10−4 |
ES [-] | 0.515 | 0.23 | 1.77 × 10−3 |
D | E | |
---|---|---|
without aneurysm | 43.2% | 56.8% |
with aneurysm | 88.6% | 11.4% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagy, J.; Fenz, W.; Miron, V.M.; Thumfart, S.; Maier, J.; Major, Z.; Stefanits, H.; Oberndorfer, J.; Stroh, N.; Mazanec, V.; et al. Fluid–Structure Interaction Simulations of the Initiation Process of Cerebral Aneurysms. Brain Sci. 2024, 14, 977. https://doi.org/10.3390/brainsci14100977
Nagy J, Fenz W, Miron VM, Thumfart S, Maier J, Major Z, Stefanits H, Oberndorfer J, Stroh N, Mazanec V, et al. Fluid–Structure Interaction Simulations of the Initiation Process of Cerebral Aneurysms. Brain Sciences. 2024; 14(10):977. https://doi.org/10.3390/brainsci14100977
Chicago/Turabian StyleNagy, Jozsef, Wolfgang Fenz, Veronika M. Miron, Stefan Thumfart, Julia Maier, Zoltan Major, Harald Stefanits, Johannes Oberndorfer, Nico Stroh, Vanessa Mazanec, and et al. 2024. "Fluid–Structure Interaction Simulations of the Initiation Process of Cerebral Aneurysms" Brain Sciences 14, no. 10: 977. https://doi.org/10.3390/brainsci14100977
APA StyleNagy, J., Fenz, W., Miron, V. M., Thumfart, S., Maier, J., Major, Z., Stefanits, H., Oberndorfer, J., Stroh, N., Mazanec, V., Rauch, P. -R., Gruber, A., & Gmeiner, M. (2024). Fluid–Structure Interaction Simulations of the Initiation Process of Cerebral Aneurysms. Brain Sciences, 14(10), 977. https://doi.org/10.3390/brainsci14100977