Visual Cortical Function Changes After Perceptual Learning with Dichoptic Attention Tasks in Adults with Amblyopia: A Case Study Evaluated Using fMRI
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Perceptual Leaning
2.3. Structural and Functional MRI
2.3.1. Stimuli
2.3.2. Data Acquisition
2.3.3. Data Analysis and Visual Area Definition
2.3.4. Statistical Analysis
3. Results
3.1. Visual Cortical Functions Pre- and Post-Perceptual Learning
3.2. Visual Cortical Function Changes Link with Clinical Factors
4. Discussion
4.1. Neural Correlates of Visual Function Recovery in Amblyopia Through Perceptual Learning
4.2. Evidence of Perceptual Learning Engaging Both Low- and High-Level Cortical Processes
5. Conclusions and Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Holmes, J.M.; Clarke, M.P. Amblyopia. Lancet 2006, 367, 1343–1351. [Google Scholar] [CrossRef] [PubMed]
- Epelbaum, M.; Milleret, C.; Buisseret, P.; Dufier, J.L. The sensitive period for strabismic amblyopia in humans. Ophthalmology 1993, 100, 323–327. [Google Scholar] [CrossRef] [PubMed]
- Mintz-Hittner, H.A.; Fernandez, K.M. Successful amblyopia therapy initiated after age 7 years: Compliance cures. Arch. Ophthalmol. 2000, 118, 1535–1541. [Google Scholar] [CrossRef] [PubMed]
- Li, R.W.; Ngo, C.; Nguyen, J.; Levi, D.M. Video-game play induces plasticity in the visual system of adults with amblyopia. PLoS Biol. 2011, 9, e1001135. [Google Scholar] [CrossRef] [PubMed]
- Li, R.W.; Klein, S.A.; Levi, D.M. Prolonged perceptual learning of positional acuity in adult amblyopia: Perceptual template retuning dynamics. J. Neurosci. 2008, 28, 14223–14229. [Google Scholar] [CrossRef]
- Polat, U.; Ma-Naim, T.; Belkin, M.; Sagi, D. Improving vision in adult amblyopia by perceptual learning. Proc. Natl. Acad. Sci. USA 2004, 101, 6692–6697. [Google Scholar] [CrossRef]
- Hess, R.F.; Mansouri, B.; Thompson, B. A new binocular approach to the treatment of amblyopia in adults well beyond the critical period of visual development. Restor. Neurol. Neurosci. 2010, 28, 793–802. [Google Scholar] [CrossRef]
- Vedamurthy, I.; Nahum, M.; Huang, S.J.; Zheng, F.; Bayliss, J.; Bavelier, D.; Levi, D.M. A dichoptic custom-made action video game as a treatment for adult amblyopia. Vis. Res. 2015, 114, 173–187. [Google Scholar] [CrossRef]
- Ooi, T.L.; Su, Y.R.; Natale, D.M.; He, Z.J. A push-pull treatment for strengthening the ‘lazy eye’ in amblyopia. Curr. Biol. 2013, 23, R309–R310. [Google Scholar] [CrossRef]
- Xi, J.; Jia, W.L.; Feng, L.X.; Lu, Z.L.; Huang, C.B. Perceptual learning improves stereoacuity in amblyopia. Investig. Opthalmol. Vis. Sci. 2014, 55, 2384–2391. [Google Scholar] [CrossRef]
- Huang, C.B.; Zhou, Y.; Lu, Z.L. Broad bandwidth of perceptual learning in the visual system of adults with anisometropic amblyopia. Proc. Natl. Acad. Sci. USA 2008, 105, 4068–4073. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Levi, D.M. Recovery of stereopsis through perceptual learning in human adults with abnormal binocular vision. Proc. Natl. Acad. Sci. USA 2011, 108, E733–E741. [Google Scholar] [CrossRef] [PubMed]
- Hou, C.; Nicholas, S.C. Perceptual learning with dichoptic attention tasks improves attentional modulation in V1 and IPS and reduces interocular suppression in human amblyopia. Sci. Rep. 2022, 12, 9660. [Google Scholar] [CrossRef] [PubMed]
- Levi, D.M. Perceptual learning in adults with amblyopia: A reevaluation of critical periods in human vision. Dev. Psychobiol. 2005, 46, 222–232. [Google Scholar] [CrossRef] [PubMed]
- Levi, D.M.; Li, R.W. Perceptual learning as a potential treatment for amblyopia: A mini-review. Vis. Res. 2009, 49, 2535–2549. [Google Scholar] [CrossRef]
- Levi, D.M. Rethinking amblyopia 2020. Vis. Res. 2020, 176, 118–129. [Google Scholar] [CrossRef]
- Hess, R.F.; Thompson, B.; Baker, D.H. Binocular vision in amblyopia: Structure, suppression and plasticity. Ophthalmic Physiol. Opt. 2014, 34, 146–162. [Google Scholar] [CrossRef]
- Tsirlin, I.; Colpa, L.; Goltz, H.C.; Wong, A.M. Behavioral Training as New Treatment for Adult Amblyopia: A Meta-Analysis and Systematic Review. Investig. Opthalmology Vis. Sci. 2015, 56, 4061–4075. [Google Scholar] [CrossRef]
- Rodan, A.; Candela Marroquin, E.; Jara Garcia, L.C. An updated review about perceptual learning as a treatment for amblyopia. J. Optom. 2022, 15, 3–34. [Google Scholar] [CrossRef]
- Ahissar, M.; Hochstein, S. Attentional control of early perceptual learning. Proc. Natl. Acad. Sci. USA 1993, 90, 5718–5722. [Google Scholar] [CrossRef]
- Fahle, M. Perceptual learning: A case for early selection. J. Vis. 2004, 4, 879–890. [Google Scholar] [CrossRef] [PubMed]
- Zhai, J.; Chen, M.; Liu, L.; Zhao, X.; Zhang, H.; Luo, X.; Gao, J. Perceptual learning treatment in patients with anisometropic amblyopia: A neuroimaging study. Br. J. Ophthalmol. 2013, 97, 1420–1424. [Google Scholar] [CrossRef] [PubMed]
- Karni, A.; Sagi, D. Where practice makes perfect in texture discrimination: Evidence for primary visual cortex plasticity. Proc. Natl. Acad. Sci. USA 1991, 88, 4966–4970. [Google Scholar] [CrossRef] [PubMed]
- Schoups, A.A.; Vogels, R.; Orban, G.A. Human perceptual learning in identifying the oblique orientation: Retinotopy, orientation specificity and monocularity. J. Physiol. 1995, 483, 797–810. [Google Scholar] [CrossRef] [PubMed]
- Teich, A.F.; Qian, N. Learning and adaptation in a recurrent model of V1 orientation selectivity. J. Neurophysiol. 2003, 89, 2086–2100. [Google Scholar] [CrossRef]
- Furmanski, C.S.; Schluppeck, D.; Engel, S.A. Learning strengthens the response of primary visual cortex to simple patterns. Curr. Biol. 2004, 14, 573–578. [Google Scholar] [CrossRef]
- DeAngelis, G.C.; Ohzawa, I.; Freeman, R.D. Receptive-field dynamics in the central visual pathways. Trends Neurosci. 1995, 18, 451–458. [Google Scholar] [CrossRef]
- Kelly, K.R.; Jost, R.M.; Dao, L.; Beauchamp, C.L.; Leffler, J.N.; Birch, E.E. Binocular iPad Game vs Patching for Treatment of Amblyopia in Children: A Randomized Clinical Trial. JAMA Ophthalmol 2016, 134, 1402–1408. [Google Scholar] [CrossRef]
- Gambacorta, C.; Nahum, M.; Vedamurthy, I.; Bayliss, J.; Jordan, J.; Bavelier, D.; Levi, D.M. An action video game for the treatment of amblyopia in children: A feasibility study. Vis. Res. 2018, 148, 1–14. [Google Scholar] [CrossRef]
- Vedamurthy, I.; Nahum, M.; Bavelier, D.; Levi, D.M. Mechanisms of recovery of visual function in adult amblyopia through a tailored action video game. Sci. Rep. 2015, 5, 8482. [Google Scholar] [CrossRef]
- Green, C.S.; Bavelier, D. Action video game modifies visual selective attention. Nature 2003, 423, 534–537. [Google Scholar] [CrossRef] [PubMed]
- Dye, M.W.; Bavelier, D. Differential development of visual attention skills in school-age children. Vis. Res. 2010, 50, 452–459. [Google Scholar] [CrossRef] [PubMed]
- Palaus, M.; Marron, E.M.; Viejo-Sobera, R.; Redolar-Ripoll, D. Neural Basis of Video Gaming: A Systematic Review. Front. Hum. Neurosci. 2017, 11, 248. [Google Scholar] [CrossRef] [PubMed]
- Knudsen, E.I. Fundamental components of attention. Annu. Rev. Neurosci. 2007, 30, 57–78. [Google Scholar] [CrossRef] [PubMed]
- Green, C.S.; Bavelier, D. Learning, attentional control, and action video games. Curr. Biol. 2012, 22, R197–R206. [Google Scholar] [CrossRef]
- Li, R.; Polat, U.; Makous, W.; Bavelier, D. Enhancing the contrast sensitivity function through action video game training. Nat. Neurosci. 2009, 12, 549–551. [Google Scholar] [CrossRef]
- Sharma, V.; Levi, D.M.; Klein, S.A. Undercounting features and missing features: Evidence for a high-level deficit in strabismic amblyopia. Nat. Neurosci. 2000, 3, 496–501. [Google Scholar] [CrossRef]
- Nieder, A.; Diester, I.; Tudusciuc, O. Temporal and spatial enumeration processes in the primate parietal cortex. Science 2006, 313, 1431–1435. [Google Scholar] [CrossRef]
- Nieder, A.; Dehaene, S. Representation of number in the brain. Annu. Rev. Neurosci. 2009, 32, 185–208. [Google Scholar] [CrossRef]
- Greenwood, P.M.; Parasuraman, R. Scale of attentional focus in visual search. Percept. Psychophys. 1999, 61, 837–859. [Google Scholar] [CrossRef]
- Egeth, H.; Leonard, C.J.; Palomares, M. The role of attention in subitizing: Is the magical number 1? Vis. Cognit. 2008, 16, 463–473. [Google Scholar] [CrossRef]
- Dougherty, R.F.; Koch, V.M.; Brewer, A.A.; Fischer, B.; Modersitzki, J.; Wandell, B.A. Visual field representations and locations of visual areas V1/2/3 in human visual cortex. J. Vis. 2003, 3, 586–598. [Google Scholar] [CrossRef] [PubMed]
- Engel, S.A.; Glover, G.H.; Wandell, B.A. Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cereb. Cortex 1997, 7, 181–192. [Google Scholar] [CrossRef] [PubMed]
- Nestares, O.; Heeger, D.J. Robust multiresolution alignment of MRI brain volumes. Magn. Reson. Med. 2000, 43, 705–715. [Google Scholar] [CrossRef]
- Jenkinson, M.P.; Smith, M.; Smith, S. BET2: MR-based estimation of brain, skull and scalp surfaces. Elev. Annu. Meet. Organ. Hum. Brain Mapp. 2005, 17, 167. [Google Scholar]
- Smith, S.M. Fast robust automated brain extraction. Hum. Brain Mapp. 2002, 17, 143–155. [Google Scholar] [CrossRef]
- Brewer, A.A.; Liu, J.; Wade, A.R.; Wandell, B.A. Visual field maps and stimulus selectivity in human ventral occipital cortex. Nat. Neurosci. 2005, 8, 1102–1109. [Google Scholar] [CrossRef]
- Wandell, B.A.; Chial, S.; Backus, B.T. Visualization and measurement of the cortical surface. J. Cogn. Neurosci. 2000, 12, 739–752. [Google Scholar] [CrossRef]
- Payton, M.E.; Greenstone, M.H.; Schenker, N. Overlapping confidence intervals or standard error intervals: What do they mean in terms of statistical significance? J. Insect Sci. 2003, 3, 34. [Google Scholar] [CrossRef]
- Nienborg, H.; Bridge, H.; Parker, A.J.; Cumming, B.G. Receptive field size in V1 neurons limits acuity for perceiving disparity modulation. J. Neurosci. 2004, 24, 2065–2076. [Google Scholar] [CrossRef]
- Fiorentini, A.; Berardi, N. Perceptual learning specific for orientation and spatial frequency. Nature 1980, 287, 43–44. [Google Scholar] [CrossRef] [PubMed]
- Ball, K.; Sekuler, R. A specific and enduring improvement in visual motion discrimination. Science 1982, 218, 697–698. [Google Scholar] [CrossRef] [PubMed]
- Sathian, K.; Simon, T.J.; Peterson, S.; Patel, G.A.; Hoffman, J.M.; Grafton, S.T. Neural evidence linking visual object enumeration and attention. J. Cogn. Neurosci. 1999, 11, 36–51. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.Y.; Cong, L.J.; Klein, S.A.; Levi, D.M.; Yu, C. Perceptual learning improves adult amblyopic vision through rule-based cognitive compensation. Investig. Opthalmology Vis. Sci. 2014, 55, 2020–2030. [Google Scholar] [CrossRef]
- Bressler, S.L.; Tang, W.; Sylvester, C.M.; Shulman, G.L.; Corbetta, M. Top-down control of human visual cortex by frontal and parietal cortex in anticipatory visual spatial attention. J. Neurosci. 2008, 28, 10056–10061. [Google Scholar] [CrossRef]
- Pestilli, F.; Carrasco, M.; Heeger, D.J.; Gardner, J.L. Attentional enhancement via selection and pooling of early sensory responses in human visual cortex. Neuron 2011, 72, 832–846. [Google Scholar] [CrossRef]
- Crist, R.E.; Li, W.; Gilbert, C.D. Learning to see: Experience and attention in primary visual cortex. Nat. Neurosci. 2001, 4, 519–525. [Google Scholar] [CrossRef]
ID | ‡ Visual Acuity (logMAR) | ‡ Stereoacuity | Refractive Errors | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Diagnosis | Age | Gender | Fellow Eye | Amblyopic Eye | Fellow Eye | Amblyopic Eye | Deviation | History | ||
A1 | A | 52 | F | 0.04 | 0.50 | 100″ | −1.75 + 1.00 × 10 | −5.00 + 0.75 × 160 | ortho | patching |
A2 | A | 51 | F | 0.00 | 0.50 | 200″ | −0.25 | +3.00 + 0.50 × 90 | ortho | patching |
A3 | A | 50 | F | −0.20 | 0.38 | 200″ | −1.00 + 0.50 × 30 | +4.5 + 0.50 × 150 | ortho | patching |
S1 | S&A | 59 | M | −0.04 | 0.70 | n/a | +0.75 | −1.00 + 0.75 × 25 | XT 14, L/R 4 | surgery |
S2 | S&A | 40 | F | 0.00 | 0.52 | n/a | +3.25 + 2.00 × 170 | Plano | XT 8 | surgery |
S3 | S&A | 66 | F | −0.02 | 0.46 | n/a | +1.25 + 1.00 × 105 | +3.50 + 2.25 × 85 | XT 8 | surgery |
S4 | S&A | 28 | M | −0.09 | 0.62 | 400″ | Plano | +100 + 0.50 × 90 | ET 6 | no patching |
ID | Diagnosis | Age | Visual Acuity (logMAR) in AE | Stereoacuity | ||||
---|---|---|---|---|---|---|---|---|
Pre | Post | Improv. | Pre | Post | Improv. | |||
A1 | A | 52 | 0.50 | 0.20 | 0.60 | 100″ | 20″ | 0.80 |
A2 | A | 51 | 0.50 | 0.38 | 0.24 | 200″ | 70″ | 0.65 |
A3 | A | 50 | 0.38 | 0.24 | 0.37 | 200″ | 80″ | 0.95 |
S1 | S&A | 59 | 0.70 | 0.54 | 0.23 | n/a | n/a | n/a |
S2 | S&A | 40 | 0.52 | 0.16 | 0.69 | n/a | 200″ | 0.95 |
S3 | S&A | 66 | 0.46 | 0.40 | 0.13 | n/a | n/a | n/a |
S4 | S&A | 28 | 0.62 | 0.52 | 0.16 | 400″ | 200″ | 0.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, C.; Zhou, Z.; Uner, I.J.; Nicholas, S.C. Visual Cortical Function Changes After Perceptual Learning with Dichoptic Attention Tasks in Adults with Amblyopia: A Case Study Evaluated Using fMRI. Brain Sci. 2024, 14, 1148. https://doi.org/10.3390/brainsci14111148
Hou C, Zhou Z, Uner IJ, Nicholas SC. Visual Cortical Function Changes After Perceptual Learning with Dichoptic Attention Tasks in Adults with Amblyopia: A Case Study Evaluated Using fMRI. Brain Sciences. 2024; 14(11):1148. https://doi.org/10.3390/brainsci14111148
Chicago/Turabian StyleHou, Chuan, Zhangziyi Zhou, Ismet Joan Uner, and Spero C. Nicholas. 2024. "Visual Cortical Function Changes After Perceptual Learning with Dichoptic Attention Tasks in Adults with Amblyopia: A Case Study Evaluated Using fMRI" Brain Sciences 14, no. 11: 1148. https://doi.org/10.3390/brainsci14111148
APA StyleHou, C., Zhou, Z., Uner, I. J., & Nicholas, S. C. (2024). Visual Cortical Function Changes After Perceptual Learning with Dichoptic Attention Tasks in Adults with Amblyopia: A Case Study Evaluated Using fMRI. Brain Sciences, 14(11), 1148. https://doi.org/10.3390/brainsci14111148