The Effect of Processing Techniques on the Classification Accuracy of Brain-Computer Interface Systems
Abstract
:1. Introduction
1.1. EEG Artifacts
1.2. Artifact Rejection for Imaginary Movement EEG Classification
1.3. Comparison of Artifact Rejected and Raw EEG Data Classification
1.4. Frequency Dependence of the EEG Signal Classification
1.5. Aim of the Study
2. Materials and Methods
2.1. The Physionet Database-EEG Motor Movement/Imagery Dataset
2.2. The FASTER Algorithm
2.3. Feature Extraction and Classification
2.3.1. 3D Representation of EEG Signals
2.3.2. 3D CNN (Conv2D)
2.3.3. 3D CNN (Conv3D)
2.3.4. Multi-Branch 3D CNN
2.3.5. EEGNet
2.3.6. Shallow Convolutional Neural Network
2.4. Transfer Learning and Fine-Tuning
2.5. Effect of Frequency Filtering
2.6. Cropped Training
3. Results
3.1. The Effect of Artifact Rejection
3.2. The Effect of Transfer Learning
3.3. Comparison of Neural Networks
3.4. The Effect of Input Representation
3.5. The Effect of Frequency Filtering
3.6. The Effect of Simple and Cropped Training
3.7. Subject Dependence in Simple Learning and Cropped Training
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wolpaw, J.R.; Birbaumer, N.; McFarland, D.J.; Pfurtscheller, G.; Vaughan, T.M. Brain–computer interfaces for communication and control. Clin. Neurophysiol. 2002, 113, 767–791. [Google Scholar] [CrossRef] [PubMed]
- Nicolas-Alonso, L.F.; Gomez-Gil, J. Brain Computer Interfaces, a Review. Sensors 2012, 12, 1211–1279. [Google Scholar] [CrossRef] [PubMed]
- Fatourechi, M.; Bashashati, A.; Ward, R.K.; Birch, G.E. EMG and EOG artifacts in brain computer interface systems: A survey. Clin. Neurophysiol. 2007, 118, 480–494. [Google Scholar] [CrossRef]
- Jiang, X.; Bian, G.-B.; Tian, Z. Removal of Artifacts from EEG Signals: A Review. Sensors 2019, 19, 987. [Google Scholar] [CrossRef] [PubMed]
- Mannan, M.M.N.; Kamran, M.A.; Jeong, M.Y. Identification and Removal of Physiological Artifacts from Electroencephalogram Signals: A Review. IEEE Access 2018, 6, 30630–30652. [Google Scholar] [CrossRef]
- Delorme, A.; Makeig, S.; Sejnowski, T. Automatic artifact rejection for EEG data using high-order statistics and independent component analysis. In Proceedings of the Third International ICA Conference, San Diego, CA, USA, 9–12 December 2001; Available online: https://sccn.ucsd.edu/~arno/mypapers/delormefinal01.pdf (accessed on 16 June 2023).
- Radüntz, T.; Scouten, J.; Hochmuth, O.; Meffert, B. EEG artifact elimination by extraction of ICA-component features using image processing algorithms. J. Neurosci. Methods 2015, 243, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Winkler, I.; Brandl, S.; Horn, F.; Waldburger, E.; Allefeld, C.; Tangermann, M. Robust artifactual independent component classification for BCI practitioners. J. Neural Eng. 2014, 11, 035013. [Google Scholar] [CrossRef] [PubMed]
- Bajaj, N.; Carrión, J.R.; Bellotti, F.; Berta, R.; De Gloria, A. Automatic and tunable algorithm for EEG artifact removal using wavelet decomposition with applications in predictive modeling during auditory tasks. Biomed. Signal Process. Control 2020, 55, 101624. [Google Scholar] [CrossRef]
- De Clercq, W.; Vergult, A.; Vanrumste, B.; Van Paesschen, W.; Van Huffel, S. Canonical Correlation Analysis Applied to Remove Muscle Artifacts from the Electroencephalogram. IEEE Trans. Biomed. Eng. 2006, 53, 2583–2587. [Google Scholar] [CrossRef] [PubMed]
- Grubov, V.V.; Runnova, A.E.; Efremova, T.Y.; Hramov, A.E. Artifact removal from EEG data with empirical mode decomposition. In Dynamics and Fluctuations in Biomedical Photonics XIV; SPIE: Bellingham, WA, USA, 2017; Volume 10063, pp. 185–191. [Google Scholar] [CrossRef]
- Nolan, H.; Whelan, R.; Reilly, R.B. FASTER: Fully Automated Statistical Thresholding for EEG artifact Rejection. J. Neurosci. Methods 2010, 192, 152–162. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.; Qi, F. Study on the effect of artefact rejection on BCI performance. In Proceedings of the 2018 IEEE 23rd International Conference on Digital Signal Processing (DSP), Shanghai, China, 19–21 November 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Kim, M.; Kim, S.-P. A comparsion of artifact rejection methods for a BCI using event related potentials. In Proceedings of the 2018 6th International Conference on Brain-Computer Interface (BCI), Gangwon, Republic of Korea, 15–17 January 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Mohammadi, M.; Mosavi, M.R. Comparison of two methods of removing EOG artifacts for use in a motor imagery-based brain computer interface. Evol. Syst. 2021, 12, 527–540. [Google Scholar] [CrossRef]
- Tangermann, M.; Müller, K.-R.; Aertsen, A.; Birbaumer, N.; Braun, C.; Brunner, C.; Leeb, R.; Mehring, C.; Miller, K.J.; Müller-Putz, G.R.; et al. Review of the BCI Competition IV. Front. Neurosci. 2012, 6, 55. Available online: https://www.frontiersin.org/articles/10.3389/fnins.2012.00055 (accessed on 19 December 2023). [CrossRef] [PubMed]
- Schreuder, M.; Rost, T.; Tangermann, M. Listen, You are Writing! Speeding up Online Spelling with a Dynamic Auditory BCI. Front. Neurosci. 2011, 5, 11793. [Google Scholar] [CrossRef]
- Blankertz, B.; Sannelli, C.; Halder, S.; Hammer, E.M.; Kübler, A.; Müller, K.-R.; Curio, G.; Dickhaus, T. Neurophysiological predictor of SMR-based BCI performance. NeuroImage 2010, 51, 1303–1309. [Google Scholar] [CrossRef]
- Iqbal, M.; Rahman, M.M.; Shubha, S. Effect of EOG Artifact Removal on EEG Motor-Imagery Classification. In Proceedings of the 25th International Conference on Computer and Information Technology (ICCIT), Cox’s Bazar, Bangladesh, 17–19 December 2022. [Google Scholar] [CrossRef]
- Assi, E.B.; Rihana, S.; Sawan, M. 33% Classification Accuracy Improvement in a Motor Imagery Brain Computer Interface. J. Biomed. Sci. Eng. 2017, 10, 6. [Google Scholar] [CrossRef]
- Thompson, D.E.; Mowla, M.R.; Dhuyvetter, K.J.; Tillman, J.W.; Huggins, J.E. Automated Artifact Rejection Algorithms Harm P3 Speller Brain-Computer Interface Performance. Brain Comput. Interfaces Abingdon Engl. 2019, 6, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Frølich, L.; Winkler, I.; Müller, K.-R.; Samek, W. Investigating effects of different artefact types on motor imagery BCI. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 1942–1945. [Google Scholar] [CrossRef]
- Mannan, M.M.N.; Kamran, M.A.; Kang, S.; Jeong, M.Y. Effect of EOG Signal Filtering on the Removal of Ocular Artifacts and EEG-Based Brain-Computer Interface: A Comprehensive Study. Complexity 2018, 2018, e4853741. [Google Scholar] [CrossRef]
- Daly, I.; Scherer, R.; Billinger, M.; Müller-Putz, G. FORCe: Fully Online and Automated Artifact Removal for Brain-Computer Interfacing. IEEE Trans. Neural Syst. Rehabil. Eng. 2015, 23, 725–736. [Google Scholar] [CrossRef] [PubMed]
- Merinov, P.; Belyaev, M.; Krivov, E. The comparison of automatic artifact removal methods with robust classification strategies in terms of EEG classification accuracy. In Proceedings of the 2015 International Conference on Biomedical Engineering and Computational Technologies (SIBIRCON), Novosibirsk, Russia, 28–30 October 2015; pp. 221–224. [Google Scholar] [CrossRef]
- van Stigt, M.N.; Camps, C.R.; Coutinho, J.M.; Marquering, H.A.; Doelkahar, B.S.; Potters, W.V. The effect of artifact rejection on the performance of a convolutional neural network based algorithm for binary EEG data classification. Biomed. Signal Process. Control 2023, 85, 105032. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, C.; Wu, X. To Assess the Influence of Artifacts on Motor Imagery Based BCI. In Proceedings of the 2019 IEEE 4th International Conference on Signal and Image Processing (ICSIP), Wuxi, China, 19–21 July 2019; pp. 925–929. [Google Scholar] [CrossRef]
- Islam, M.K.; Ghorbanzadeh, P.; Rastegarnia, A. Probability mapping based artifact detection and removal from single-channel EEG signals for brain–computer interface applications. J. Neurosci. Methods 2021, 360, 109249. [Google Scholar] [CrossRef]
- Anjum, M.; Sakib, N.; Islam, M.K. Effect of artifact removal on EEG based motor imagery BCI applications. In Proceedings of the Fourth International Conference on Computer Vision and Information Technology (CVIT 2023), Beijing, China, 4–6 August 2023; p. 9. [Google Scholar] [CrossRef]
- Al-Saegh, A.; Dawwd, S.A.; Abdul-Jabbar, J.M. Deep learning for motor imagery EEG-based classification: A review. Biomed. Signal Process. Control 2021, 63, 102172. [Google Scholar] [CrossRef]
- Salazar-Varas, R.; Vazquez, R.A. Evaluating the effect of the cutoff frequencies during the pre-processing stage of motor imagery EEG signals classification. Biomed. Signal Process. Control 2019, 54, 101592. [Google Scholar] [CrossRef]
- Goldberger, A.L.; Amaral, L.A.N.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.-K.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals. Circulation 2000, 101, e215–e220. [Google Scholar] [CrossRef]
- Schalk, G.; McFarland, D.J.; Hinterberger, T.; Birbaumer, N.; Wolpaw, J.R. BCI2000: A general-purpose brain-computer interface (BCI) system. IEEE Trans. Biomed. Eng. 2004, 51, 1034–1043. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.-C.; Yang, H.; Hou, Z.-G.; Ni, Z.-L.; Chen, S.; Fang, Z. Bilinear neural network with 3-D attention for brain decoding of motor imagery movements from the human EEG. Cogn. Neurodyn. 2020, 15, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Roots, K.; Muhammad, Y.; Muhammad, N. Fusion Convolutional Neural Network for Cross-Subject EEG Motor Imagery Classification. Computers 2020, 9, 72. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, H.; Zhu, G.; You, F.; Kuang, S.; Sun, L. A multi-branch 3D convolutional neural network for EEG-based motor imagery classification. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 2164–2177. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Yang, D. A densely connected multi-branch 3D convolutional neural network for motor imagery EEG decoding. Brain Sci. 2021, 11, 197. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Song, Y.; Jia, X.; Ma, K.; Xie, L. Two-branch 3D convolutional neural network for motor imagery EEG decoding. J. Neural Eng. 2021, 18, 0460c7. [Google Scholar] [CrossRef] [PubMed]
- Salama, E.S.; El-Khoribi, R.A.; Shoman, M.E.; Shalaby, M.A.W. EEG-based emotion recognition using 3D convolutional neural networks. Int. J. Adv. Comput. Sci. Appl. 2018, 9, 329–337. [Google Scholar] [CrossRef]
- Lawhern, V.J.; Solon, A.J.; Waytowich, N.R.; Gordon, S.M.; Hung, C.P.; Lance, B.J. EEGNet: A Compact Convolutional Network for EEG-based Brain-Computer Interfaces. J. Neural Eng. 2018, 15, 056013. [Google Scholar] [CrossRef]
- Schirrmeister, R.T.; Springenberg, J.T.; Fiederer, L.D.J.; Glasstetter, M.; Eggensperger, K.; Tangermann, M.; Hutter, F.; Burgard, W.; Ball, T. Deep learning with convolutional neural networks for EEG decoding and visualization. Hum. Brain Mapp. 2017, 38, 5391–5420. [Google Scholar] [CrossRef] [PubMed]
- Dose, H.; Møller, J.S.; Iversen, H.K.; Puthusserypady, S. An end-to-end deep learning approach to MI-EEG signal classification for BCIs. Expert Syst. Appl. 2018, 114, 532–542. [Google Scholar] [CrossRef]
- Hermosilla, D.M.; Codorniu, R.T.; Baracaldo, R.L.; Zamora, R.S.; Rodriguez, D.D.; Albuerne, Y.L.; Alvarez, J.R.N. Shallow Convolutional Network Excel for Classifying Motor Imagery EEG in BCI Applications. IEEE Access 2021, 9, 98275–98286. [Google Scholar] [CrossRef]
- Wan, Z.; Yang, R.; Huang, M.; Zeng, N.; Liu, X. A review on transfer learning in EEG signal analysis. Neurocomputing 2021, 421, 1–14. [Google Scholar] [CrossRef]
- Tan, C.; Sun, F.; Zhang, W. Deep Transfer Learning for EEG-Based Brain Computer Interface. In Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, Canada, 15–20 April 2018; pp. 916–920. [Google Scholar] [CrossRef]
- Köllőd, C.M.; Adolf, A.; Iván, K.; Márton, G.; Ulbert, I. Deep Comparisons of Neural Networks from the EEGNet Family. Electronics 2023, 12, 2743. [Google Scholar] [CrossRef]
- Mattioli, F.; Porcaro, C.; Baldassarre, G. A 1D CNN for high accuracy classification and transfer learning in motor imagery EEG-based brain-computer interface. J. Neural Eng. 2022, 18, 066053. [Google Scholar] [CrossRef]
- Hassanpour, A.; Moradikia, M.; Adeli, H.; Khayami, S.R.; Shamsinejadbabaki, P. A novel end-to-end deep learning scheme for classifying multi-class motor imagery electroencephalography signals. Expert Syst. 2019, 36, e12494. [Google Scholar] [CrossRef]
- McFarland, D.J.; Miner, L.A.; Vaughan, T.M.; Wolpaw, J.R. Mu and beta rhythm topographies during motor imagery and actual movements. Brain Topogr. 2000, 12, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Pfurtscheller, G.; Brunner, C.; Schlögl, A.; Da Silva, F.H.L. Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks. NeuroImage 2006, 31, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Liu, Y.; Lee, H.; Li, W. Neural interfaces: Bridging the brain to the world beyond healthcare. Exploration 2024, 4, 20230146. [Google Scholar] [CrossRef] [PubMed]
Classifier | Original Acc. | AR Acc. | p-Value |
---|---|---|---|
EEGNet | 0.460 | 0.455 | 0.907 |
Shallow ConvNet | 0.394 | 0.439 | 3.46 × 10−17 |
Conv2D Net | 0.367 | 0.411 | 4.90 × 10−21 |
Conv3D Net | 0.378 | 0.405 | 4.09 × 10−09 |
Multi-branch Conv3D Net | 0.401 | 0.444 | 2.05 × 10−19 |
Classifier | Simple Acc. | TL Acc. | Difference | p-Value |
---|---|---|---|---|
EEGNet | 0.461 | 0.587 | 0.126 | 1.50 × 10−18 |
Shallow ConvNet | 0.394 | 0.637 | 0.243 | 5.83 × 10−19 |
Conv2D Net | 0.366 | 0.528 | 0.162 | 7.78 × 10−19 |
Conv3D Net | 0.378 | 0.56 | 0.182 | 7.14 × 10−19 |
Multi-branch Conv3D Net | 0.401 | 0.561 | 0.16 | 1.30 × 10−18 |
Classifier | Simple Acc. | TL Acc. | Difference | p-Value |
---|---|---|---|---|
EEGNet | 0.455 | 0.538 | 0.083 | 1.67 × 10−17 |
Shallow ConvNet | 0.441 | 0.559 | 0.118 | 1.38 × 10−18 |
Conv2D Net | 0.41 | 0.491 | 0.081 | 7.20 × 10−17 |
Conv3D Net | 0.405 | 0.521 | 0.116 | 7.14 × 10−19 |
Multi-branch Conv3D Net | 0.444 | 0.557 | 0.113 | 5.52 × 10−18 |
Frequency Range | EEGNet | Shallow ConvNet | Conv2D Net | Conv3D Net | MB Conv3D Net |
---|---|---|---|---|---|
0.1–5 Hz—Raw | 0.482 | 0.406 | 0.437 | 0.410 | 0.457 |
5–75 Hz—Raw | 0.315 | 0.362 | 0.262 | 0.258 | 0.271 |
0.1–5 Hz—AR | 0.452 | 0.405 | 0.421 | 0.436 | 0.462 |
5–75 Hz—AR | 0.324 | 0.381 | 0.261 | 0.261 | 0.289 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adolf, A.; Köllőd, C.M.; Márton, G.; Fadel, W.; Ulbert, I. The Effect of Processing Techniques on the Classification Accuracy of Brain-Computer Interface Systems. Brain Sci. 2024, 14, 1272. https://doi.org/10.3390/brainsci14121272
Adolf A, Köllőd CM, Márton G, Fadel W, Ulbert I. The Effect of Processing Techniques on the Classification Accuracy of Brain-Computer Interface Systems. Brain Sciences. 2024; 14(12):1272. https://doi.org/10.3390/brainsci14121272
Chicago/Turabian StyleAdolf, András, Csaba Márton Köllőd, Gergely Márton, Ward Fadel, and István Ulbert. 2024. "The Effect of Processing Techniques on the Classification Accuracy of Brain-Computer Interface Systems" Brain Sciences 14, no. 12: 1272. https://doi.org/10.3390/brainsci14121272
APA StyleAdolf, A., Köllőd, C. M., Márton, G., Fadel, W., & Ulbert, I. (2024). The Effect of Processing Techniques on the Classification Accuracy of Brain-Computer Interface Systems. Brain Sciences, 14(12), 1272. https://doi.org/10.3390/brainsci14121272