Sex- and Substance-Specific Associations of Circadian-Related Genes with Addiction in the UK Biobank Cohort Implicate Neuroplasticity Pathways
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Feature Selection
2.3. Statistical Analysis
2.4. Code Availability
3. Results
3.1. Study One: General Addiction
3.1.1. Regression Analyses
3.1.2. Association Rule Learning (ARL)
3.1.3. Mediation Analysis
3.2. Study Two: Addiction Subtypes
3.2.1. Alcohol Addiction
3.2.2. Illicit or Recreational Drug Addiction
3.2.3. Prescription or Over-the-Counter (OTC) Medication Addiction
4. Discussion
4.1. Multiple Circadian-Regulated Molecular Pathways Are Associated with Addiction
4.2. Epistatic Interactions of Synaptic Molecules Strongly Associated with Addiction
4.3. Sex Specificity in Genetic Pathways Influencing Both General and Specific Addiction
4.4. Dissection of Addiction Patterns Reveals Distinct Pathways for Substance Abuse
4.5. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wise, R.A. The Neurobiology of Craving: Implications for the Understanding and Treatment of Addiction. J. Abnorm. Psychol. 1988, 97, 118–132. [Google Scholar] [CrossRef]
- Becker, J.B.; McClellan, M.L.; Reed, B.G. Sex Differences, Gender and Addiction. J. Neurosci. Res. 2017, 95, 136–147. [Google Scholar] [CrossRef] [PubMed]
- Custodio, R.J.P.; Kim, M.; Sayson, L.V.; Ortiz, D.M.; Buctot, D.; Lee, H.J.; Cheong, J.H.; Kim, H.J. Regulation of Clock and Clock-Controlled Genes during Morphine Reward and Reinforcement: Involvement of the Period 2 Circadian Clock. J. Psychopharmacol. 2022, 36, 875–891. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Wang, S.; Zhou, Z.; Guo, L.; Yu, F.; Wu, B. Bmal1 Regulates Circadian Expression of Cytochrome P450 3a11 and Drug Metabolism in Mice. Commun. Biol. 2019, 2, 378. [Google Scholar] [CrossRef] [PubMed]
- van den Oord, E.J.C.G.; Xie, L.Y.; Zhao, M.; Aberg, K.A.; Clark, S.L. A Single-Nucleus Transcriptomics Study of Alcohol Use Disorder in the Nucleus Accumbens. Addict. Biol. 2023, 28, e13250. [Google Scholar] [CrossRef] [PubMed]
- Saad, L.; Zwiller, J.; Kalsbeek, A.; Anglard, P. Epigenetic Regulation of Circadian Clocks and Its Involvement in Drug Addiction. Genes 2021, 12, 1263. [Google Scholar] [CrossRef]
- Parekh, P.K.; Ozburn, A.R.; McClung, C.A. Circadian Clock Genes: Effects on Dopamine, Reward and Addiction. Alcohol 2015, 49, 341–349. [Google Scholar] [CrossRef]
- Hampp, G.; Ripperger, J.A.; Houben, T.; Schmutz, I.; Blex, C.; Perreau-Lenz, S.; Brunk, I.; Spanagel, R.; Ahnert-Hilger, G.; Meijer, J.H.; et al. Regulation of Monoamine Oxidase A by Circadian-Clock Components Implies Clock Influence on Mood. Curr. Biol. 2008, 18, 678–683. [Google Scholar] [CrossRef]
- Sleipness, E.P.; Jansen, H.T.; Schenk, J.O.; Sorg, B.A. Time-of-Day Differences in Dopamine Clearance in the Rat Medial Prefrontal Cortex and Nucleus Accumbens. Synapse 2008, 62, 877–885. [Google Scholar] [CrossRef] [PubMed]
- Spanagel, R.; Pendyala, G.; Abarca, C.; Zghoul, T.; Sanchis-Segura, C.; Magnone, M.C.; Lascorz, J.; Depner, M.; Holzberg, D.; Soyka, M.; et al. The Clock Gene Per2 Influences the Glutamatergic System and Modulates Alcohol Consumption. Nat. Med. 2005, 11, 35–42. [Google Scholar] [CrossRef]
- Tamura, E.K.; Oliveira-Silva, K.S.; Ferreira-Moraes, F.A.; Marinho, E.A.V.; Guerrero-Vargas, N.N. Circadian Rhythms and Substance Use Disorders: A Bidirectional Relationship. Pharmacol. Biochem. Behav. 2021, 201, 173105. [Google Scholar] [CrossRef]
- Challet, E.; Kalsbeek, A. Editorial: Circadian Rhythms and Metabolism. Front. Endocrinol. 2017, 8, 201. [Google Scholar] [CrossRef] [PubMed]
- Croce, P.; Quercia, A.; Costa, S.; Zappasodi, F. Circadian Rhythms in Fractal Features of EEG Signals. Front. Physiol. 2018, 9, 1567. [Google Scholar] [CrossRef] [PubMed]
- Gamble, K.L.; Berry, R.; Frank, S.J.; Young, M.E. Circadian Clock Control of Endocrine Factors. Nat. Rev. Endocrinol. 2014, 10, 466–475. [Google Scholar] [CrossRef] [PubMed]
- Golombek, D.A.; Rosenstein, R.E. Physiology of Circadian Entrainment. Physiol. Rev. 2010, 90, 1063–1102. [Google Scholar] [CrossRef] [PubMed]
- Talamanca, L.; Gobet, C.; Naef, F. Sex-Dimorphic and Age-Dependent Organization of 24-Hour Gene Expression Rhythms in Humans. Science 2023, 379, 478–483. [Google Scholar] [CrossRef]
- Kabasakal Cetin, A. Chronotype Is Associated with Addiction-like Eating Behavior, Mindful Eating and Ultra-Processed Food Intake among Undergraduate Students. Chronobiol. Int. 2023, 40, 1435–1443. [Google Scholar] [CrossRef]
- Prat, G.; Adan, A. Influence of Circadian Typology on Drug Consumption, Hazardous Alcohol Use, and Hangover Symptoms. Chronobiol. Int. 2011, 28, 248–257. [Google Scholar] [CrossRef] [PubMed]
- Taylor, B.J.; Bowman, M.A.; Brindle, A.; Hasler, B.P.; Roecklein, K.A.; Krafty, R.T.; Matthews, K.A.; Hall, M.H. Evening Chronotype, Alcohol Use Disorder Severity, and Emotion Regulation in College Students. Chronobiol. Int. 2020, 37, 1725–1735. [Google Scholar] [CrossRef] [PubMed]
- Hasler, B.P.; Casement, M.D.; Sitnick, S.L.; Shaw, D.S.; Forbes, E.E. Eveningness among Late Adolescent Males Predicts Neural Reactivity to Reward and Alcohol Dependence 2 Years Later. Behav. Brain Res. 2017, 327, 112–120. [Google Scholar] [CrossRef]
- Tavernier, R.; Munroe, M.; Willoughby, T. Perceived Morningness–Eveningness Predicts Academic Adjustment and Substance Use across University, but Social Jetlag Is Not to Blame. Chronobiol. Int. 2015, 32, 1233–1245. [Google Scholar] [CrossRef] [PubMed]
- Adane, A.; Getnet, M.; Belete, M.; Yeshaw, Y.; Dagnew, B. Shift-Work Sleep Disorder among Health Care Workers at Public Hospitals, the Case of Sidama National Regional State, Ethiopia: A Multicenter Cross-Sectional Study. PLoS ONE 2022, 17, e0270480. [Google Scholar] [CrossRef] [PubMed]
- Cousin, L.; Roucoux, G.; Petit, A.S.; Baumann-Coblentz, L.; Torrente, O.R.; Cannafarina, A.; Chassany, O.; Duracinsky, M.; Carrieri, P. Perceived Stigma, Substance Use and Self-Medication in Night-Shift Healthcare Workers: A Qualitative Study. BMC Health Serv. Res. 2022, 22, 698. [Google Scholar] [CrossRef] [PubMed]
- Kandel, D.B.; Huang, F.Y.; Davies, M. Comorbidity between Patterns of Substance Use Dependence and Psychiatric Syndromes. Drug Alcohol Depend. 2001, 64, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Brower, K.J.; Wojnar, M.; Sliwerska, E.; Armitage, R.; Burmeister, M. PER3 Polymorphism and Insomnia Severity in Alcohol Dependence. Sleep 2012, 35, 571–577. [Google Scholar] [CrossRef]
- DePoy, L.M.; McClung, C.A.; Logan, R.W. Neural Mechanisms of Circadian Regulation of Natural and Drug Reward. Neural Plast. 2017, 2017, e5720842. [Google Scholar] [CrossRef] [PubMed]
- Freyberg, Z.; Logan, R.W. The Intertwined Roles of Circadian Rhythmsand Neuronal Metabolism Fueling Drug Reward and Addiction. Curr. Opin. Physiol. 2018, 5, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Banach, E.; Pawlak, J.; Kapelski, P.; Szczepankiewicz, A.; Rajewska-Rager, A.; Skibinska, M.; Czerski, P.; Twarowska-Hauser, J.; Dmitrzak-Weglarz, M. Clock Genes Polymorphisms in Male Bipolar Patients with Comorbid Alcohol Abuse. J. Affect. Disord. 2018, 241, 142–146. [Google Scholar] [CrossRef] [PubMed]
- Forde, L.A.; Kalsi, G. Addiction and the Role of Circadian Genes. J. Stud. Alcohol Drugs 2017, 78, 645–653. [Google Scholar] [CrossRef]
- Roy, K.; Maji, D.; Deb, I. Increase of Cry 1 Expression Is a Common Phenomenon of the Disturbed Circadian Clock in Ischemic Stroke and Opioid Addiction. Biochem. Biophys. Res. Commun. 2021, 558, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Saffroy, R.; Lafaye, G.; Desterke, C.; Ortiz-Tudela, E.; Amirouche, A.; Innominato, P.; Pham, P.; Benyamina, A.; Lemoine, A. Several Clock Genes Polymorphisms Are Meaningful Risk Factors in the Development and Severity of Cannabis Addiction. Chronobiol. Int. 2019, 36, 122–134. [Google Scholar] [CrossRef] [PubMed]
- Sjöholm, L.K.; Kovanen, L.; Saarikoski, S.T.; Schalling, M.; Lavebratt, C.; Partonen, T. CLOCK Is Suggested to Associate with Comorbid Alcohol Use and Depressive Disorders. J. Circadian Rhythm. 2010, 8, 1. [Google Scholar] [CrossRef]
- McClung, C.A.; Sidiropoulou, K.; Vitaterna, M.; Takahashi, J.S.; White, F.J.; Cooper, D.C.; Nestler, E.J. Regulation of Dopaminergic Transmission and Cocaine Reward by the Clock Gene. Proc. Natl. Acad. Sci. USA 2005, 102, 9377–9381. [Google Scholar] [CrossRef] [PubMed]
- Clarke, T.-K.; Adams, M.J.; Davies, G.; Howard, D.M.; Hall, L.S.; Padmanabhan, S.; Murray, A.D.; Smith, B.H.; Campbell, A.; Hayward, C.; et al. Genome-Wide Association Study of Alcohol Consumption and Genetic Overlap with Other Health-Related Traits in UK Biobank (N = 112 117). Mol. Psychiatry 2017, 22, 1376–1384. [Google Scholar] [CrossRef]
- Kolla, B.P.; Biernacka, J.M.; Mansukhani, M.P.; Colby, C.; Coombes, B.J. Prevalence of Insomnia Symptoms and Associated Risk Factors in UK Biobank Participants with Hazardous Alcohol Use and Major Depression. Drug Alcohol Depend. 2021, 229, 109128. [Google Scholar] [CrossRef] [PubMed]
- Minbay, M.; Khan, A.; Ghasemi, A.R.; Ingram, K.K.; Ay, A.A. Sex-Specific Associations between Circadian-Related Genes and Depression in UK Biobank Participants Highlight Links to Glucose Metabolism, Inflammation and Neuroplasticity Pathways. Psychiatry Res. 2024, 337, 115948. [Google Scholar] [CrossRef]
- Bycroft, C.; Freeman, C.; Petkova, D.; Band, G.; Elliott, L.T.; Sharp, K.; Motyer, A.; Vukcevic, D.; Delaneau, O.; O’Connell, J.; et al. The UK Biobank Resource with Deep Phenotyping and Genomic Data. Nature 2018, 562, 203–209. [Google Scholar] [CrossRef]
- Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Stein, T.I.; Nudel, R.; Lieder, I.; Mazor, Y.; et al. The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. Curr. Protoc. Bioinform. 2016, 54, 1.30.1–1.30.33. [Google Scholar] [CrossRef]
- Lafaye, G.; Desterke, C.; Marulaz, L.; Benyamina, A. Cannabidiol Affects Circadian Clock Core Complex and Its Regulation in Microglia Cells. Addict. Biol. 2019, 24, 921–934. [Google Scholar] [CrossRef] [PubMed]
- Qu, Z.; Zhang, H.; Huang, M.; Shi, G.; Liu, Z.; Xie, P.; Li, H.; Wang, W.; Xu, G.; Zhang, Y.; et al. Loss of ZBTB20 Impairs Circadian Output and Leads to Unimodal Behavioral Rhythms. eLife 2016, 5, e17171. [Google Scholar] [CrossRef]
- Cheng, Y.; Dao, C.; Zhou, H.; Li, B.; Kember, R.L.; Toikumo, S.; Zhao, H.; Gelernter, J.; Kranzler, H.R.; Justice, A.C.; et al. Multi-Trait Genome-Wide Association Analyses Leveraging Alcohol Use Disorder Findings Identify Novel Loci for Smoking Behaviors in the Million Veteran Program. Transl. Psychiatry 2023, 13, 148. [Google Scholar] [CrossRef] [PubMed]
- Zhu, A.; Salminen, L.E.; Thompson, P.M.; Jahanshad, N. The UK Biobank Data Parser: A Tool with Built in and Customizable Filters for Brain Studies. Organ. Hum. Brain Mapp. Rome Italy 2019, 6, 9–13. [Google Scholar]
- Cramér, H. Mathematical Methods of Statistics; Princeton mathematical series; Princeton University Press: Princeton, NJ, USA, 1991; ISBN 978-0-691-08004-8. [Google Scholar]
- Fox, J.; Monette, G. Generalized Collinearity Diagnostics. J. Am. Stat. Assoc. 1992, 87, 178–183. [Google Scholar] [CrossRef]
- Bastian, M.; Heymann, S.; Jacomy, M. Gephi: An Open Source Software for Exploring and Manipulating Networks. In Proceedings of the International AAAI Conference on Web and Social Media, San Jose, CA, USA, 17–20 May 2009; Volume 3, pp. 361–362. [Google Scholar] [CrossRef]
- Tingley, D.; Yamamoto, T.; Hirose, K.; Keele, L.; Imai, K. Mediation: R Package for Causal Mediation Analysis. J. Stat. Softw. 2014, 59, 1–38. [Google Scholar] [CrossRef]
- Hahsler, M.; Chelluboina, S.; Hornik, K.; Buchta, C. The Arules R-Package Ecosystem: Analyzing Interesting Patterns from Large Transaction Data Sets. J. Mach. Learn. Res. 2011, 12, 2021–2025. [Google Scholar]
- Csárdi, G.; Nepusz, T.; Traag, V.; Horvát, S.; Zanini, F.; Noom, D.; Müller, K. Igraph: Network Analysis and Visualization in R; R Package Version 2.1.2. Available online: https://CRAN.R-project.org/package=igraph (accessed on 10 November 2024).
- Smith, A.B. Adamlilith/Legendary 2023. Available online: https://github.com/adamlilith/enmSdm (accessed on 10 November 2024).
- Cheng, Z.; Peng, Y.; Wen, J.; Chen, W.; Pan, W.; Xu, X.; Lu, X.; Cai, Q.; Ge, F.; Fan, Y.; et al. Sex-Specific Metabolic Signatures in Methamphetamine Addicts. Addict. Biol. 2023, 28, e13255. [Google Scholar] [CrossRef]
- DePoy, L.M.; Becker-Krail, D.D.; Zong, W.; Petersen, K.; Shah, N.M.; Brandon, J.H.; Miguelino, A.M.; Tseng, G.C.; Logan, R.W.; McClung, C.A. Circadian-Dependent and Sex-Dependent Increases in Intravenous Cocaine Self-Administration in Npas2 Mutant Mice. J. Neurosci. 2021, 41, 1046–1058. [Google Scholar] [CrossRef]
- de Zavalia, N.; Ferraro, S.; Amir, S. Sexually Dimorphic Role of Circadian Clock Genes in Alcohol Drinking Behavior. Psychopharmacology 2023, 240, 431–440. [Google Scholar] [CrossRef]
- Foo, J.C.; Skorodumov, I.; Spanagel, R.; Meinhardt, M.W. Sex- and Age-Specific Effects on the Development of Addiction and Compulsive-like Drinking in Rats. Biol. Sex. Differ. 2023, 14, 44. [Google Scholar] [CrossRef]
- DePoy, L.M.; Petersen, K.A.; Zong, W.; Ketchesin, K.D.; Matthaei, R.C.; Yin, R.; Perez, M.S.; Vadnie, C.A.; Becker-Krail, D.; Scott, M.R.; et al. Cell-Type and Sex-Specific Rhythmic Gene Expression in the Nucleus Accumbens. Mol. Psychiatry 2024, 29, 3117–3127. [Google Scholar] [CrossRef]
- Falcon, E.; Ozburn, A.; Mukherjee, S.; Roybal, K.; McClung, C.A. Differential Regulation of the Period Genes in Striatal Regions Following Cocaine Exposure. PLoS ONE 2013, 8, e66438. [Google Scholar] [CrossRef] [PubMed]
- Levran, O.; Peles, E.; Randesi, M.; Correa da Rosa, J.; Ott, J.; Rotrosen, J.; Adelson, M.; Kreek, M.J. Dopaminergic Pathway Polymorphisms and Heroin Addiction: Further Support for Association of CSNK1E Variants. Pharmacogenomics 2014, 15, 2001–2009. [Google Scholar] [CrossRef]
- Levran, O.; Randesi, M.; Rotrosen, J.; Ott, J.; Adelson, M.; Kreek, M.J. A 3’ UTR SNP Rs885863, a Cis-eQTL for the Circadian Gene VIPR2 and lincRNA 689, Is Associated with Opioid Addiction. PLoS ONE 2019, 14, e0224399. [Google Scholar] [CrossRef] [PubMed]
- Pačesová, D.; Novotný, J.; Bendová, Z. The Effect of Chronic Morphine or Methadone Exposure and Withdrawal on Clock Gene Expression in the Rat Suprachiasmatic Nucleus and AA-NAT Activity in the Pineal Gland. Physiol. Res. 2016, 65, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Moye, L.S.; Southey, B.R.; Dripps, I.; Sweedler, J.V.; Pradhan, A.; Rodriguez-Zas, S.L. Opioid-Induced Hyperalgesia Is Associated with Dysregulation of Circadian Rhythm and Adaptive Immune Pathways in the Mouse Trigeminal Ganglia and Nucleus Accumbens. Mol. Neurobiol. 2019, 56, 7929–7949. [Google Scholar] [CrossRef]
- Wang, X.; Mozhui, K.; Li, Z.; Mulligan, M.K.; Ingels, J.F.; Zhou, X.; Hori, R.T.; Chen, H.; Cook, M.N.; Williams, R.W.; et al. A Promoter Polymorphism in the Per3 Gene Is Associated with Alcohol and Stress Response. Transl. Psychiatry 2012, 2, e73. [Google Scholar] [CrossRef]
- Zou, Y.; Liao, G.; Liu, Y.; Wang, Y.; Yang, Z.; Lin, Y.; Shen, Y.; Li, S.; Xiao, J.; Guo, H.; et al. Association of the 54-Nucleotide Repeat Polymorphism of hPer3 with Heroin Dependence in Han Chinese Population. Genes. Brain Behav. 2008, 7, 26–30. [Google Scholar] [CrossRef]
- Cao, J.; Liu, X.; Han, S.; Zhang, C.K.; Liu, Z.; Li, D. Association of the HTR2A Gene with Alcohol and Heroin Abuse. Hum. Genet. 2014, 133, 357–365. [Google Scholar] [CrossRef]
- Lai, J.H.; Zhu, Y.S.; Huo, Z.H.; Sun, R.F.; Yu, B.; Wang, Y.P.; Chai, Z.Q.; Li, S.B. Association Study of Polymorphisms in the Promoter Region of DRD4 with Schizophrenia, Depression, and Heroin Addiction. Brain Res. 2010, 1359, 227–232. [Google Scholar] [CrossRef]
- McBride, W.J.; Kimpel, M.W.; McClintick, J.N.; Ding, Z.-M.; Hyytia, P.; Colombo, G.; Liang, T.; Edenberg, H.J.; Lumeng, L.; Bell, R.L. Gene Expression within the Extended Amygdala of 5 Pairs of Rat Lines Selectively Bred for High or Low Ethanol Consumption. Alcohol 2013, 47, 517–529. [Google Scholar] [CrossRef]
- Takahashi, M.; Tahara, Y.; Tsubosaka, M.; Fukazawa, M.; Ozaki, M.; Iwakami, T.; Nakaoka, T.; Shibata, S. Chronotype and Social Jetlag Influence Human Circadian Clock Gene Expression. Sci. Rep. 2018, 8, 10152. [Google Scholar] [CrossRef] [PubMed]
- Ingram, K.K.; Ay, A.; Kwon, S.B.; Woods, K.; Escobar, S.; Gordon, M.; Smith, I.H.; Bearden, N.; Filipowicz, A.; Jain, K. Molecular Insights into Chronotype and Time-of-Day Effects on Decision-Making. Sci. Rep. 2016, 6, 29392. [Google Scholar] [CrossRef] [PubMed]
- Maukonen, M.; Havulinna, A.S.; Männistö, S.; Kanerva, N.; Salomaa, V.; Partonen, T. Genetic Associations of Chronotype in the Finnish General Population. J. Biol. Rhythm. 2020, 35, 501–511. [Google Scholar] [CrossRef] [PubMed]
- Etain, B.; Jamain, S.; Milhiet, V.; Lajnef, M.; Boudebesse, C.; Dumaine, A.; Mathieu, F.; Gombert, A.; Ledudal, K.; Gard, S.; et al. Association between Circadian Genes, Bipolar Disorders and Chronotypes. Chronobiol. Int. 2014, 31, 807–814. [Google Scholar] [CrossRef]
- Jansen, E.C.; Dolinoy, D.; Peterson, K.E.; O’Brien, L.M.; Chervin, R.D.; Cantoral, A.; Tellez-Rojo, M.M.; Solano-Gonzalez, M.; Goodrich, J. Adolescent Sleep Timing and Dietary Patterns in Relation to DNA Methylation of Core Circadian Genes: A Pilot Study of Mexican Youth. Epigenetics 2021, 16, 894–907. [Google Scholar] [CrossRef] [PubMed]
- Yeom, J.W.; Jeong, S.; Seo, J.Y.; Jeon, S.; Lee, H.-J. Association of the Serotonin 2A Receptor Rs6311 Polymorphism with Diurnal Preference in Koreans. Psychiatry Investig. 2020, 17, 1137–1142. [Google Scholar] [CrossRef]
- Jones, K.A.; Luo, Y.; Dukes-Rimsky, L.; Srivastava, D.P.; Koul-Tewari, R.; Russell, T.A.; Shapiro, L.P.; Srivastava, A.K.; Penzes, P. Neurodevelopmental Disorder-Associated ZBTB20 Gene Variants Affect Dendritic and Synaptic Structure. PLoS ONE 2018, 13, e0203760. [Google Scholar] [CrossRef]
- Xu, K.; Li, B.; McGinnis, K.A.; Vickers-Smith, R.; Dao, C.; Sun, N.; Kember, R.L.; Zhou, H.; Becker, W.C.; Gelernter, J.; et al. Genome-Wide Association Study of Smoking Trajectory and Meta-Analysis of Smoking Status in 842,000 Individuals. Nat. Commun. 2020, 11, 5302. [Google Scholar] [CrossRef] [PubMed]
- Ho, K.W.D.; Han, S.; Nielsen, J.V.; Jancic, D.; Hing, B.; Fiedorowicz, J.; Weissman, M.M.; Levinson, D.F.; Potash, J.B. Genome-Wide Association Study of Seasonal Affective Disorder. Transl. Psychiatry 2018, 8, 190. [Google Scholar] [CrossRef]
- Dang, T.; Russel, W.A.; Saad, T.; Dhawka, L.; Ay, A.; Ingram, K.K. Risk for Seasonal Affective Disorder (SAD) Linked to Circadian Clock Gene Variants. Biology 2023, 12, 1532. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.Q.; Belisario, K.; Gray, J.C.; Levitt, E.E.; MacKillop, J. A High-Resolution PheWAS Approach to Alcohol-Related Polygenic Risk Scores Reveals Mechanistic Influences of Alcohol Reinforcing Value and Drinking Motives. Alcohol Alcohol. 2024, 59, agad093. [Google Scholar] [CrossRef] [PubMed]
- Hancock, D.B.; Markunas, C.A.; Bierut, L.J.; Johnson, E.O. Human Genetics of Addiction: New Insights and Future Directions. Curr. Psychiatry Rep. 2018, 20, 8. [Google Scholar] [CrossRef]
- Sadler, B.; Haller, G.; Agrawal, A.; Culverhouse, R.; Bucholz, K.; Brooks, A.; Tischfield, J.; Johnson, E.O.; Edenberg, H.; Schuckit, M.; et al. Variants near CHRNB3-CHRNA6 Are Associated with DSM-5 Cocaine Use Disorder: Evidence for Pleiotropy. Sci. Rep. 2014, 4, 4497. [Google Scholar] [CrossRef]
- Wen, L.; Han, H.; Liu, Q.; Su, K.; Yang, Z.; Cui, W.; Yuan, W.; Ma, Y.; Fan, R.; Chen, J.; et al. Significant Association of the CHRNB3-CHRNA6 Gene Cluster with Nicotine Dependence in the Chinese Han Population. Sci. Rep. 2017, 7, 9745. [Google Scholar] [CrossRef]
- Wen, L.; Yang, Z.; Cui, W.; Li, M.D. Crucial Roles of the CHRNB3–CHRNA6 Gene Cluster on Chromosome 8 in Nicotine Dependence: Update and Subjects for Future Research. Transl. Psychiatry 2016, 6, e843. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, M.; Zheng, Z.; Lu, R.; Li, C.; Su, M.; Li, Y.; Xia, B. Inhibition of SIRT1 in the Nucleus Accumbens Attenuates Heroin Addiction-Related Behavior by Decreasing D1 Neuronal Autophagy. Neuroreport 2024, 35, 486–498. [Google Scholar] [CrossRef] [PubMed]
- Xia, B.; Li, Y.; Li, R.; Yin, D.; Chen, X.; Li, J.; Liang, W. Effect of Sirtuin-1 on Synaptic Plasticity in Nucleus Accumbens in a Rat Model of Heroin Addiction. Med. Sci. Monit. 2018, 24, 3789–3803. [Google Scholar] [CrossRef]
- Becker, J.B.; Chartoff, E. Sex Differences in Neural Mechanisms Mediating Reward and Addiction. Neuropsychopharmacology 2019, 44, 166–183. [Google Scholar] [CrossRef]
- Quigley, J.A.; Logsdon, M.K.; Turner, C.A.; Gonzalez, I.L.; Leonardo, N.B.; Becker, J.B. Sex Differences in Vulnerability to Addiction. Neuropharmacology 2021, 187, 108491. [Google Scholar] [CrossRef]
- Cummings, J.A.; Jagannathan, L.; Jackson, L.R.; Becker, J.B. Sex Differences in the Effects of Estradiol in the Nucleus Accumbens and Striatum on the Response to Cocaine: Neurochemistry and Behavior. Drug Alcohol. Depend. 2014, 135, 22–28. [Google Scholar] [CrossRef]
- Heinrich, A.; Müller, K.U.; Banaschewski, T.; Barker, G.J.; Bokde, A.L.W.; Bromberg, U.; Büchel, C.; Conrod, P.; Fauth-Bühler, M.; Papadopoulos, D.; et al. Prediction of Alcohol Drinking in Adolescents: Personality-Traits, Behavior, Brain Responses, and Genetic Variations in the Context of Reward Sensitivity. Biol. Psychol. 2016, 118, 79–87. [Google Scholar] [CrossRef]
- Yang, B.-Z.; Han, S.; Kranzler, H.R.; Farrer, L.A.; Gelernter, J. A Genomewide Linkage Scan of Cocaine Dependence and Major Depressive Episode in Two Populations. Neuropsychopharmacology 2011, 36, 2422–2430. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Bilbao, A.; Laucht, M.; Henriksson, R.; Yakovleva, T.; Ridinger, M.; Desrivieres, S.; Clarke, T.-K.; Lourdusamy, A.; Smolka, M.N.; et al. Effects of the Circadian Rhythm Gene Period 1 (Per1) on Psychosocial Stress-Induced Alcohol Drinking. AJP 2011, 168, 1090–1098. [Google Scholar] [CrossRef]
- Peres, R.; do Amaral, F.G.; Madrigrano, T.C.; Scialfa, J.H.; Bordin, S.; Afeche, S.C.; Cipolla-Neto, J. Ethanol Consumption and Pineal Melatonin Daily Profile in Rats. Addict. Biol. 2011, 16, 580–590. [Google Scholar] [CrossRef]
- Tice, A.L.; Laudato, J.A.; Gordon, B.S.; Steiner, J.L. Chronic Alcohol Consumption Disrupts the Skeletal Muscle Circadian Clock in Female Mice. J. Biol. Rhythm. 2023, 38, 159–170. [Google Scholar] [CrossRef] [PubMed]
- Teng, P.-N.; Barakat, W.; Tran, S.M.; Tran, Z.M.; Bateman, N.W.; Conrads, K.A.; Wilson, K.N.; Oliver, J.; Gist, G.; Hood, B.L.; et al. Brain Proteomic Atlas of Alcohol Use Disorder in Adult Males. Transl. Psychiatry 2023, 13, 318. [Google Scholar] [CrossRef]
- Xue, X.; Zong, W.; Glausier, J.R.; Kim, S.-M.; Shelton, M.A.; Phan, B.N.; Srinivasan, C.; Pfenning, A.R.; Tseng, G.C.; Lewis, D.A.; et al. Molecular Rhythm Alterations in Prefrontal Cortex and Nucleus Accumbens Associated with Opioid Use Disorder. Transl. Psychiatry 2022, 12, 123. [Google Scholar] [CrossRef] [PubMed]
- Thanos, P.K.; Roushdy, K.; Sarwar, Z.; Rice, O.; Ashby, C.R., Jr.; Grandy, D.K. The Effect of Dopamine D4 Receptor Density on Novelty Seeking, Activity, Social Interaction, and Alcohol Binge Drinking in Adult Mice. Synapse 2015, 69, 356–364. [Google Scholar] [CrossRef] [PubMed]
- Addolorato, G.; Leggio, L.; Hillemacher, T.; Kraus, T.; Jerlhag, E.; Bleich, S. Hormones and Drinking Behaviour: New Findings on Ghrelin, Insulin, Leptin and Volume-Regulating Hormones. An ESBRA Symposium Report. Drug Alcohol Rev. 2009, 28, 160–165. [Google Scholar] [CrossRef]
- Bach, P.; Koopmann, A.; Kiefer, F. The Impact of Appetite-Regulating Neuropeptide Leptin on Alcohol Use, Alcohol Craving and Addictive Behavior: A Systematic Review of Preclinical and Clinical Data. Alcohol Alcohol. 2021, 56, 149–165. [Google Scholar] [CrossRef]
- Montague, C.T.; Prins, J.B.; Sanders, L.; Digby, J.E.; O’Rahilly, S. Depot- and Sex-Specific Differences in Human Leptin mRNA Expression: Implications for the Control of Regional Fat Distribution. Diabetes 1997, 46, 342–347. [Google Scholar] [CrossRef] [PubMed]
- Levran, O.; Londono, D.; O’Hara, K.; Nielsen, D.A.; Peles, E.; Rotrosen, J.; Casadonte, P.; Linzy, S.; Randesi, M.; Ott, J.; et al. Genetic Susceptibility to Heroin Addiction; a Candidate-Gene Association Study. Genes Brain Behav. 2008, 7, 720–729. [Google Scholar] [CrossRef] [PubMed]
- Bryant, C.D.; Parker, C.C.; Zhou, L.; Olker, C.; Chandrasekaran, R.Y.; Wager, T.T.; Bolivar, V.J.; Loudon, A.S.; Vitaterna, M.H.; Turek, F.W.; et al. Csnk1e Is a Genetic Regulator of Sensitivity to Psychostimulants and Opioids. Neuropsychopharmacology 2012, 37, 1026–1035. [Google Scholar] [CrossRef]
- Lyall, L.M.; Wyse, C.A.; Graham, N.; Ferguson, A.; Lyall, D.M.; Cullen, B.; Celis Morales, C.A.; Biello, S.M.; Mackay, D.; Ward, J.; et al. Association of Disrupted Circadian Rhythmicity with Mood Disorders, Subjective Wellbeing, and Cognitive Function: A Cross-Sectional Study of 91–105 Participants from the UK Biobank. Lancet Psychiatry 2018, 5, 507–514. [Google Scholar] [CrossRef]
- Brooks, T.G.; Lahens, N.F.; Grant, G.R.; Sheline, Y.I.; FitzGerald, G.A.; Skarke, C. Diurnal Rhythms of Wrist Temperature Are Associated with Future Disease Risk in the UK Biobank. Nat. Commun. 2023, 14, 5172. [Google Scholar] [CrossRef] [PubMed]
- Wainberg, M.; Jones, S.E.; Beaupre, L.M.; Hill, S.L.; Felsky, D.; Rivas, M.A.; Lim, A.S.P.; Ollila, H.M.; Tripathy, S.J. Association of Accelerometer-Derived Sleep Measures with Lifetime Psychiatric Diagnoses: A Cross-Sectional Study of 89,205 Participants from the UK Biobank. PLoS Med. 2021, 18, e1003782. [Google Scholar] [CrossRef] [PubMed]
- Cox, K.H.; Takahashi, J.S. Circadian Clock Genes and the Transcriptional Architecture of the Clock Mechanism. J. Mol. Endocrinol. 2019, 63, R93. [Google Scholar] [CrossRef]
- Fry, A.; Littlejohns, T.J.; Sudlow, C.; Doherty, N.; Adamska, L.; Sprosen, T.; Collins, R.; Allen, N.E. Comparison of Sociodemographic and Health-Related Characteristics of UK Biobank Participants with Those of the General Population. Am. J. Epidemiol. 2017, 186, 1026–1034. [Google Scholar] [CrossRef]
- González, J.R.; Armengol, L.; Solé, X.; Guinó, E.; Mercader, J.M.; Estivill, X.; Moreno, V. SNPassoc: An R package to perform whole genome association studies. Bioinformatics 2007, 23, 654–655. [Google Scholar] [CrossRef]
- Korenčič, A.; Košir, R.; Bordyugov, G.; Lehmann, R.; Rozman, D.; Herzel, H. Timing of circadian genes in mammalian tissues. Sci. Rep. 2014, 4, 5782. [Google Scholar] [CrossRef] [PubMed]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Available online: https://www.R-project.org/ (accessed on 9 November 2024).
- Tibshirani, R. Regression Shrinkage and Selection via the Lasso. J. R. Stat. Soc. Ser. B (Methodol.) 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 2020, 17, 3. [Google Scholar] [CrossRef]
Variable | rs # | OR [95% CI] | p Value (adj) | |
---|---|---|---|---|
Overall | ||||
Risk | ZBTB20_ZBTB20 | rs116191474_rs189085886 | 3.89 [1.12–10.43] | 0.014 (0.026) |
HTR2A_RORA | rs80298007_rs551091515 | 1.97 [1.13–3.27] | 0.012 (0.024) | |
Chronotype | 1.76 [1.63–1.90] | <0.001 (<0.001) | ||
Protective | ZBTB20_PPARGC1B | rs574306550_rs17110463 | 0.48 [0.28–0.78] | <0.01 (0.017) |
RORA_RORB | rs28410611_rs11144030 | 0.49 [0.24–0.90] | 0.033 (0.047) | |
Female | ||||
Risk | PER3_CHRNB3 | rs143075778_rs56339363 | 8.44 [2.53–24.25] | <0.001 (<0.01) |
GSK3B_RORA | rs575769812_rs28652652 | 2.71 [1.18–5.81] | 0.014 (0.046) | |
IL6_CREB1 | rs73683966_rs76863021 | 2.32 [1.31–4.16] | <0.01 (0.021) | |
Chronotype | 1.62 [1.45–1.81] | <0.001 (<0.001) | ||
Protective | NPAS2 | rs150840995 | 0.40 [0.23–0.64] | <0.001 (<0.01) |
RORB | rs188874518 | 0.41 [0.21–0.73] | <0.01 (0.023) | |
ZBTB20_ZBTB20 | rs880744_rs114241174 | 0.43 [0.23–0.77] | <0.01 (0.028) | |
PER3 | rs143075778 | 0.51 [0.33–0.76] | <0.01 (0.012) | |
Male | ||||
Risk | CAVIN3_CSNK1E | rs112063177_rs138711638 | 3.00 [1.33–6.25] | <0.01 (0.024) |
LEP_CSNK1E | rs77947631_rs113075284 | 2.48 [1.29–4.52] | <0.01 (0.023) | |
RORA | rs147861260 | 2.24 [1.54–3.17] | <0.001 (<0.01) | |
Chronotype | 1.80 [1.62–2.00] | <0.001 (<0.001) | ||
DRD4_GSK3B | rs79177795_rs13082848 | 1.72 [1.19–2.44] | <0.01 (0.018) |
Variable | rs # | OR [95% CI] | p Value (adj) | |
---|---|---|---|---|
Alcohol | ||||
Risk | RORA_GSK3B | rs75181035_ch3:119713907 | 2.85 [1.40–5.88] | <0.01 (0.029) |
AANAT | rs113263038 | 2.83 [1.74–4.68] | <0.001 (<0.01) | |
CHRNB3 | rs138834080 | 1.94 [1.24–3.04] | <0.01 (0.029) | |
Protective | AANAT_RORA | rs113263038_rs75181035 | 0.16 [0.03–0.59] | 0.011 (0.042) |
RORA_GSK3B | rs60257905_ch3:119713907 | 0.32 [0.15–0.66] | <0.01 (0.022) | |
RORA | rs8024334 | 0.46 [0.26–0.79] | <0.01 (0.033) | |
Illicit or Recreational Drugs | ||||
Risk | VIPR2_ZBTB20 | rs183433583_rs77359140 | 839.72 * [19.81–40471] | <0.001 (<0.01) |
DELEC1_BMAL1 | rs41278693_rs34188368 | 34.18 [3.16–841.14] | <0.01 (0.029) | |
CSNK1D_BMAL1 | rs76390553_rs34188368 | 16.24 [2.06–149.24] | <0.01 (0.032) | |
Protective | ZBTB20 | rs77359140 | 0.11 [0.02–0.42] | <0.01 (0.026) |
RORA | ch15:61377024 | 0.39 [0.24–0.61] | <0.001 (<0.001) | |
DELEC1 | rs2992140 | 0.39 [0.19–0.75] | <0.01 (0.029) | |
Prescription or Over-the-Counter Medication | ||||
Risk | SIRT1_RORA | rs113693349_rs8042801 | 37.76 [3.82–623.79] | <0.01 (0.022) |
PER2_NR1D2 | rs62194938_rs149810501 | 19.27 [2.39–184.23] | <0.01 (0.027) | |
CSNK1D_NPAS2 | rs117549365_rs12712082 | 4.05 [1.61–10.45] | <0.01 (0.021) | |
Protective | PER2 | rs62194938 | 0.34 [0.16–0.65] | <0.01 (0.021) |
PER1 | rs3027191 | 0.37 [0.16–0.75] | 0.011 (0.040) |
Variable | rs # | OR [95% CI] | p Value (adj) | |
---|---|---|---|---|
Alcohol | ||||
Risk | CHRNB3_ZBTB20 | rs55828312_rs113104147 | 3.19 [1.54–6.72] | <0.01 (0.018) |
CHRNB3 | rs41272375 | 2.35 [1.62–3.46] | <0.001 (<0.001) | |
DRD4 | rs916455 | 1.84 [1.25–2.73] | <0.01 (0.018) | |
Protective | CHRNB3_RORA | rs41272375_rs8029848 | 0.25 [0.08–0.66] | <0.01 (0.031) |
DRD4_RORA | rs916455_rs12438315 | 0.40 [0.21–0.77] | <0.01 (0.031) | |
ZBTB20 | rs113104147 | 0.42 [0.26–0.66] | <0.001 (<0.01) | |
Illicit or Recreational Drugs | ||||
Risk | RORA_ZBTB20 | rs341365_rs76374584 | 10.09 [2.03–72.56] | 0.010 (0.028) |
ZBTB20_ZBTB20 | rs73224513_rs17628822 | 8.85 [1.63–46.63] | <0.01 (0.028) | |
RORA_ZBTB20 | rs75084363_rs17628822 | 3.76 [1.42–10.11] | <0.01 (0.027) | |
Protective | PER1 | rs71371830 | 0.39 [0.20–0.71] | <0.01 (0.024) |
RORA | rs75084363 | 0.43 [0.21–0.79] | 0.011 (0.030) | |
Prescription or Over-the-Counter Medication | ||||
Risk | RORA_RORA | rs79360097_rs8027032 | 8.27 [1.60–61.95] | 0.017 (0.048) |
NFIL3_RORA | rs62565796_rs190776828 | 7.31 [1.73–29.90] | <0.01 (0.035) | |
DRD4_ZBTB20 | rs916455_rs11920889 | 6.09 [1.29–25.56] | 0.016 (0.048) | |
Protective | RORA | rs79360097 | 0.17 [0.03–0.55] | 0.014 (0.048) |
RORB | ch9:77273612 | 0.28 [0.08–0.69] | 0.015 (0.048) | |
DRD4 | rs916455 | 0.40 [0.18–0.80] | 0.017 (0.048) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, A.; Minbay, M.; Attia, Z.; Ay, A.A.; Ingram, K.K. Sex- and Substance-Specific Associations of Circadian-Related Genes with Addiction in the UK Biobank Cohort Implicate Neuroplasticity Pathways. Brain Sci. 2024, 14, 1282. https://doi.org/10.3390/brainsci14121282
Khan A, Minbay M, Attia Z, Ay AA, Ingram KK. Sex- and Substance-Specific Associations of Circadian-Related Genes with Addiction in the UK Biobank Cohort Implicate Neuroplasticity Pathways. Brain Sciences. 2024; 14(12):1282. https://doi.org/10.3390/brainsci14121282
Chicago/Turabian StyleKhan, Ayub, Mete Minbay, Ziad Attia, Ahmet Ali Ay, and Krista K. Ingram. 2024. "Sex- and Substance-Specific Associations of Circadian-Related Genes with Addiction in the UK Biobank Cohort Implicate Neuroplasticity Pathways" Brain Sciences 14, no. 12: 1282. https://doi.org/10.3390/brainsci14121282
APA StyleKhan, A., Minbay, M., Attia, Z., Ay, A. A., & Ingram, K. K. (2024). Sex- and Substance-Specific Associations of Circadian-Related Genes with Addiction in the UK Biobank Cohort Implicate Neuroplasticity Pathways. Brain Sciences, 14(12), 1282. https://doi.org/10.3390/brainsci14121282