Neuroimaging Links Between Heart Failure and Depression—A Narrative Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Experimental Design
2.1.1. Inclusion Criteria
2.1.2. Study Selection
3. Results
3.1. Altered Cerebral Hemodynamics
3.2. Structural Alterations
3.3. Functional Alterations
4. Discussion
5. Conclusions
Funding
Conflicts of Interest
References
- Gheorghiade, M.; Vaduganathan, M.; Fonarow, G.C.; Bonow, R.O. Rehospitalization for heart failure: Problems and perspectives. J. Am. Coll. Cardiol. 2013, 61, 391–403. [Google Scholar] [CrossRef] [PubMed]
- Jefferson, A.L. Cardiac output as a potential risk factor for abnormal brain aging. J. Alzheim Dis. 2010, 20, 813–821. [Google Scholar] [CrossRef] [PubMed]
- de la Torre, J.C. Cardiovascular risk factors promote brain hypoperfusion leading to cognitive decline and dementia. Cardiovasc. Psychiatry Neurol. 2012, 2012, 367516. [Google Scholar] [CrossRef] [PubMed]
- Gruhn, N.; Larsen, F.S.; Boesgaard, S.; Knudsen, G.M.; Mortensen, S.A.; Thomsen, G.; Aldershvile, J. Cerebral blood flow in patients with chronic heart failure before and after heart transplantation. Stroke 2001, 32, 2530–2533. [Google Scholar] [CrossRef]
- Loncar, G.; Bozic, B.; Lepic, T.; Dimkovic, S.; Prodanovic, N.; Radojicic, Z.; Cvorovic, V.; Markovic, N.; Brajovic, M.; Despotovic, N.; et al. Relationship of reduced cerebral blood flow and heart failure severity in elderly males. Aging Male 2011, 14, 59–65. [Google Scholar] [CrossRef]
- Alosco, M.L.; Brickman, A.M.; Spitznagel, M.B.; Garcia, S.L.; Narkhede, A.; Griffith, E.Y.; Raz, N.; Cohen, R.; Sweet, L.H.; Colbert, L.H.; et al. Cerebral perfusion is associated with white matter hyperintensities in older adults with heart failure. Congest. Heart Fail. 2013, 19, E29–E34. [Google Scholar] [CrossRef]
- Pressler, S.J.; Subramanian, U.; Kareken, D.; Perkins, S.M.; Gradus-Pizlo, I.; Sauvé, M.J.; Ding, Y.; Kim, J.; Sloan, R.; Jaynes, H.; et al. Cognitive deficits in heart failure. Nurs. Res. 2010, 59, 127–139. [Google Scholar] [CrossRef]
- Vogels, R.L.; van der Flier, W.M.; van Harten, B.; Gouw, A.A.; Scheltens, P.; Schroeder-Tanka, J.M.; Weinstein, H.C. Brain magnetic resonance imaging abnormalities in patients with heart failure. Eur. J. Heart Fail. 2007, 9, 1003–1009. [Google Scholar] [CrossRef]
- Wardlaw, J.M.; Smith, E.E.; Biessels, G.J.; Cordonnier, C.; Fazekas, F.; Frayne, R.; Lindley, R.I.; O’Brien, J.T.; Barkhof, F.; Benavente, O.R.; et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 2013, 12, 822–838. [Google Scholar] [CrossRef]
- Kumar, R.; Woo, M.A.; Macey, P.M.; Fonarow, G.C.; Hamilton, M.A.; Harper, R.M. Brain axonal and myelin evaluation in heart failure. J. Neurol. Sci. 2011, 307, 106–113. [Google Scholar] [CrossRef]
- Hoth, K.F. Heart failure and cognitive function. In Neuropsychology and Cardiovascular Disease; Cohen, R., Gunstad, J., Eds.; Oxford University Press: New York, NY, USA, 2009; pp. 204–217. [Google Scholar]
- Pressler, S.J.; Jinshil, K.; Riley, P.; Ronis, D.L.; Gradus-Pizlo, I. Memory dysfunction, psychomotor slowing, and decreased executive function predict mortality in patients with heart failure and low ejection fraction. J. Card. Fail. 2010, 16, 750–760. [Google Scholar] [CrossRef] [PubMed]
- Vogels, R.L.; Oosterman, J.M.; Van Harten, B.; Scheltens, P.; Van Der Flier, W.M.; Schroeder-Tanka, J.M.; Weinstein, H.C. Profile of cognitive impairment in chronic heart failure. J. Am. Geriatr. Soc. 2007, 55, 1764–1770. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Alexander, J.; Christopher, E.; Kuchibhatla, M.; Gaulden, L.H.; Cuffe, M.S.; Blazing, M.A.; Davenport, C.; Califf, R.M.; Krishnan, R.R.; et al. Relationship of depression to increased risk of mortality and rehospitalization in patients with cardiac heart failure. Arch. Intern. Med. 2001, 162, 362–364. [Google Scholar]
- Rutledge, T.; Reis, V.A.; Linke, S.E.; Greenberg, B.H.; Mills, P.J. Depression in heart failure: A meta-analytic review of prevalence, intervention effects, and associations with clinical outcomes. J. Am. Coll. Cardiol. 2006, 48, 1527–1537. [Google Scholar] [CrossRef]
- Koenig, H.G. Depression in hospitalized older patients with congestive heart failure. Gen. Hosp. Psychiatry 1998, 20, 29–43. [Google Scholar] [CrossRef]
- Skotzko, C.E.; Krichten, C.; Zietowski, G.; Alves, L.; Freudenberger, R.; Robinson, S.; Fisher, M.; Gottlieb, S.S. Depression is common and precludes accurate assessment of functional status in elderly patients with congestive heart failure. J. Card. Fail. 2000, 6, 300–305. [Google Scholar] [CrossRef]
- Kato, N.; Kinugawa, K.; Shiga, T.; Hatano, M.; Takeda, N.; Imai, Y.; Watanabe, M.; Yao, A.; Hirata, Y.; Kazuma, K.; et al. Depressive symptoms are common and associated with adverse clinical outcomes in heart failure with reduced and preserved ejection fraction. J. Cardiol. 2012, 60, 23–30. [Google Scholar] [CrossRef]
- Almeida, J.; Alves, T.; Wajngarten, M.; Rays, J.; Castro, C.; Cordeiro, Q.; Telles, R.; Fraguas, R.; Busatto, G. Late-life depression, heart failure and frontal white matter hyperintensity: A structural magnetic resonance imaging study. Braz. J. Med. Biol. Res. 2005, 38, 431–436. [Google Scholar] [CrossRef]
- Mayberg, H.S. Frontal lobe dysfunction in secondary depression. Psychiatr. Ann. 1994, 24, 643–647. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Woo, M.A.; Ogren, J.A.; Abouzeid, C.M.; Macey, P.M.; Sairafian, K.G.; Saharan, P.S.; Thompson, P.M.; Fonarow, G.C.; Hamilton, M.A.; Harper, R.M.; et al. Regional hippocampal damage in heart failure. Eur. J. Heart Fail. 2015, 17, 494–500. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bremner, J.D.; Campanella, C.; Khan, Z.; Fani, N.; Kasher, N.; Evans, S.; Reiff, C.; Mishra, S.; Ladd, S.; Nye, J.A.; et al. Brain mechanisms of stress and depression in coronary artery disease. J. Psychiatr. Res. 2019, 109, 76–88. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ichijo, Y.; Kono, S.; Yoshihisa, A.; Misaka, T.; Kaneshiro, T.; Oikawa, M.; Miura, I.; Yabe, H.; Takeishi, Y. Impaired Frontal Brain Activity in Patients with Heart Failure Assessed by Near-Infrared Spectroscopy. J. Am. Heart Assoc. 2020, 9, e014564. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Almeida, O.P.; Garrido, G.J.; Etherton-Beer, C.; Lautenschlager, N.T.; Arnolda, L.; Alfonso, H.; Flicker, L. Brain and mood changes over 2 years in healthy controls and adults with heart failure and ischaemic heart disease. Eur. J. Heart Fail. 2013, 15, 850–858. [Google Scholar] [CrossRef] [PubMed]
- Alosco, M.L.; Spitznagel, M.B.; Cohen, R.; Raz, N.; Sweet, L.H.; Josephson, R.; Hughes, J.; Rosneck, J.; Gunstad, J. Reduced cerebral perfusion predicts greater depressive symptoms and cognitive dysfunction at a 1-year follow-up in patients with heart failure. Int. J. Geriatr. Psychiatry 2014, 29, 428–436. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Woo, M.A.; Yadav, S.K.; Macey, P.M.; Fonarow, G.C.; Harper, R.M.; Kumar, R. Brain metabolites in autonomic regulatory insular sites in heart failure. J. Neurol. Sci. 2014, 346, 271–275. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Woo, M.A.; Kumar, R.; Macey, P.M.; Fonarow, G.C.; Harper, R.M. Brain injury in autonomic, emotional, and cognitive regulatory areas in patients with heart failure. J. Card. Fail. 2009, 15, 214–223. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pan, A.; Kumar, R.; Macey, P.M.; Fonarow, G.C.; Harper, R.M.; Woo, M.A. Visual assessment of brain magnetic resonance imaging detects injury to cognitive regulatory sites in patients with heart failure. J. Card. Fail. 2013, 19, 94–100. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sabayan, B.; van Buchem, M.A.; Sigurdsson, S.; Zhang, Q.; Harris, T.B.; Gudnason, V.; Arai, A.E.; Launer, L.J. Cardiac hemodynamics are linked with structural and functional features of brain aging: The age, gene/environment susceptibility (AGES)-Reykjavik Study. J. Am. Heart Assoc. 2015, 4, e001294. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Alosco, M.L.; Brickman, A.M.; Spitznagel, M.B.; Griffith, E.Y.; Narkhede, A.; Raz, N.; Cohen, R.; Sweet, L.H.; Colbert, L.H.; Josephson, R.; et al. Poorer physical fitness is associated with reduced structural brain integrity in heart failure. J. Neurol. Sci. 2013, 328, 51–57. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hickie, I.; Naismith, S.; Ward, P.B.; Turner, K.; Scott, E.; Mitchell, P.; Wilhelm, K.; Parker, G. Reduced hippocampal volumes and memory loss in patients with early- and late-onset depression. Br. J. Psychiatry 2005, 186, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Nolan, M.; Roman, E.; Nasa, A.; Levins, K.J.; O’hanlon, E.; O’keane, V.; Roddy, D.W. Hippocampal and Amygdalar Volume Changes in Major Depressive Disorder: A Targeted Review and Focus on Stress. Chronic Stress 2020, 4, 2470547020944553. [Google Scholar] [CrossRef] [PubMed]
- Sbolli, M.; Fiuzat, M.; Cani, D.; O’Connor, C.M. Depression and heart failure: The lonely comorbidity. Eur. J. Heart Fail. 2020, 22, 2007–2017. [Google Scholar] [CrossRef] [PubMed]
- Alexopoulos, G.S. The vascular depression hypothesis: 10 years later. Biol. Psychiatry 2006, 60, 1304–1305. [Google Scholar] [CrossRef]
- Woo, M.A.; Macey, P.M.; Fonarow, G.C.; Hamilton, M.A.; Harper, R.M. Regional brain gray matter loss in heart failure. J. Appl. Physiol. 2003, 95, 677–684. [Google Scholar] [CrossRef]
Authors | Year | Diagnosis | Study Sample (N) | Age (Mean) | Sex at Birth (% Female) | Type of Imaging | Outcome Measures | Main Results |
---|---|---|---|---|---|---|---|---|
[19] | 2005 | cardiac disease; depression | 14 HC; 10 HFnD; 8HFD | HC: 73.4; HFnD: 74.2; HFD: 75.6 | HC: 71%; HFnD: 20%; HFD: 62%; | MRI | Frequency and severity of white matter hyperintensities | Correlation between the frontal periventricular white matter hyperintensity and depression |
[22] | 2015 | heart failure | HF: 17; HC: 34 | HF: 54.4; HC: 52.3 | HF: 29%; HC: 29% | MRI | Regional hippocampal volume loss | Regional volume reduction in HF |
[23] | 2019 | coronary artery disease; depression | CAD_D: 17; CAD_nD: 21 | CAD_D: 58; CAD_nD: 61 | CAD_D: 19%; CAD_nD: 29% | PET-SPECT | Effect of stress on brain in CAD_D patients | Increased activation in rostral portions of the anterior cingulate in CAD_D |
[24] | 2020 | heart failure; depression | HF: 35; HC: 28 | HF: 70.5; HC: 70.6 | HF: 22.4%; HC: 40% | rs-MRI | Associations between frontal brain activity and depressive symptoms in HF | Frontal brain activity assessed was reduced |
[25] | 2013 | heart failure; depression | HF: 19; IHD: 45; HC: 45 | HF: 67.7; IHD: 66.3; HC: 69.1 | HF: 26%; IHD: 26%; HC: 62% | MRI | Changes in cognition, depression, and anxiety symptoms in HF | Adults with HF experience increased symptoms of anxiety and depression |
[26] | 2014 | heart failure | HF: 100 | HF: 69.49 | HF: 31% | transcranial Doppler ultrasonagraphy | Global cerebral blood flow velocity | Cerebral perfusion decline was associated with greater depressive symptoms |
[27] | 2014 | heart failure | HF: 11; HC: 53 | HF: 51.60; HC: 46.81 | HF: 36%; HC: 40% | MRI spectroscopy | Assess anterior insular metabolites in HF | Significantly increased Cho/Cr ratios and reduced NAA/Cr levels, suggesting neuronal loss/dysfunction. |
[28] | 2009 | heart failure | HF: 13; HC: 49 | HF: 54.6; HC: 50.6 | HF: 31%; HC: 41% | MRI | Extent of injury across the entire brain in HF | Brain structural injury emerged in areas involved in autonomic, pain, mood, language, and cognitive function |
[29] | 2013 | heart failure | HF: 17; HC: 50 | HF: 54.4; HC: 50.6 | HF: 29%; HC: 42% | MRI | Mammillary bodies, frontal cortex, and hippocampi changes | Visual examination of brain MRI can detect damage in HF |
[30] | 2015 | heart failure | HF: 931 | HF: 75.9 | HF: 52.3% | MRI | Association between cardiac hemodynamics and features of brain aging | Decrease in cardiac functioning is associated with brain alteration |
[31] | 2013 | heart failure | HF: 69 | HF: 68.07 | HF: 42% | MRI | Associations between cognitive performance, physical fitness, and three indices of global brain integrity | Poor physical fitness is common in HF and associated with reduced structural brain integrity |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deste, G.; Lombardi, C.; Gasparotti, R.; Vita, A.; Corbo, D. Neuroimaging Links Between Heart Failure and Depression—A Narrative Review. Brain Sci. 2024, 14, 1283. https://doi.org/10.3390/brainsci14121283
Deste G, Lombardi C, Gasparotti R, Vita A, Corbo D. Neuroimaging Links Between Heart Failure and Depression—A Narrative Review. Brain Sciences. 2024; 14(12):1283. https://doi.org/10.3390/brainsci14121283
Chicago/Turabian StyleDeste, Giacomo, Carlo Lombardi, Roberto Gasparotti, Antonio Vita, and Daniele Corbo. 2024. "Neuroimaging Links Between Heart Failure and Depression—A Narrative Review" Brain Sciences 14, no. 12: 1283. https://doi.org/10.3390/brainsci14121283
APA StyleDeste, G., Lombardi, C., Gasparotti, R., Vita, A., & Corbo, D. (2024). Neuroimaging Links Between Heart Failure and Depression—A Narrative Review. Brain Sciences, 14(12), 1283. https://doi.org/10.3390/brainsci14121283