Fifty Years of Handedness Research: A Neurological and Methodological Update
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Assessment
2.3. Statistical Analysis
3. Results
3.1. Participants
3.2. Psychometric Properties of the Edinburg Handedness Inventory
3.2.1. Reliability and Convergent Validity
3.2.2. Factor Analysis
3.2.3. Between-Group Comparisons of Edinburgh Handedness Inventory Scores
3.2.4. Predictors of the Edinburgh Handedness Inventory Factors and Laterality Quotient
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Papadatou-Pastou, M.; Ntolka, E.; Schmitz, J.; Martin, M.; Munafò, M.R.; Ocklenburg, S.; Paracchini, S. Human handedness: A meta-analysis. Psychol. Bull. 2020, 146, 481–524. [Google Scholar] [CrossRef]
- Hugdahl, K. Lateralisation of cognitive processes in the brain. Acta Psychol. 2000, 105, 211–235. [Google Scholar] [CrossRef]
- Corballis, M.C. Laterality and human evolution. Psychol. Rev. 1989, 96, 492–505. [Google Scholar] [CrossRef]
- McManus, I.C. The history and geography of human handedness. In Language Lateralisation and Psychosis; Sommer, I., Khan, R.S., Eds.; Cambridge University Press: Cambridge, UK, 2009; pp. 37–58. [Google Scholar]
- McManus, C. Half a century of handedness research: Myths, truths; fictions, facts; backwards, but mostly forwards. Brain Neurosci. Adv. 2019, 3, 2398212818820513. [Google Scholar] [CrossRef]
- Corey, D.; Hurley, M.; Foundas, A.L. Right and left handedness defined: A multivariate approach using hand preference and hand performance measures. Neuropsychiary Neuropsychol. Behav. Neurol. 2001, 14, 144–152. [Google Scholar]
- Martin, K.; Jacobs, S.; Frey, S.H. Handedness-dependent and independent cerebral asymmetries in the anterior intraparietal sulcus and ventral premotor cortex during grasp planning. NeuroImage 2011, 57, 502–512. [Google Scholar] [CrossRef]
- Pool, E.M.; Rehme, A.K.; Fink, G.R.; Eickhoff, S.B.; Grefkes, C. Handedness and effective connectivity of the motor system. NeuroImage 2014, 99, 451–460. [Google Scholar]
- Serrien, D.J.; Sovijärvi-Spapé, M.M. Manual dexterity: Functional lateralisation patterns and motor efficiency. Brain Cogn. 2016, 108, 42–46. [Google Scholar] [CrossRef]
- Ocklenburg, S.; Garland, A.; Ströckens, F.; Uber Reinert, A. Investigating the neural architecture of handedness. Front. Psychol. 2015, 6, 148. [Google Scholar] [CrossRef]
- Jang, H.; Lee, J.Y.; Lee, K.I.; Park, K.M. Are there differences in brain morphology according to handedness? Brain Behav. 2017, 7, e00730. [Google Scholar] [CrossRef]
- Chakravarthy, V.S.; Joseph, D.; Bapi, R.S. What do the basal ganglia do? A modeling perspective. Biol. Cybern. 2010, 103, 237–253. [Google Scholar] [CrossRef]
- Stocco, A.; Lebiere, C.; Anderson, J.R. Conditional routing of information to the cortex: A model of the basal ganglia’s role in cognitive coordination. Psychol. Rev. 2010, 117, 541–574. [Google Scholar] [CrossRef]
- Alexander, G.E.; Crutcher, M.D. Preparation for movement: Neural representations of intended direction in three motor areas of the monkey. J. Neurophysiol. 1990, 64, 133–150. [Google Scholar] [CrossRef]
- DeLong, M.R.; Alexander, G.E.; Georgopoulos, A.P.; Crutcher, M.D.; Mitchell, S.J.; Richardson, R.T. Role of basal ganglia in limb movements. Hum. Neurobiol. 1984, 2, 235–244. [Google Scholar]
- Delong, M.R.; Georgopoulos, A.P.; Crutcher, M.; Mitchell, S.J.; Richardson, R.T.; Alexander, G.E. Functional organization of the basal ganglia: Contributions of single-cell recording studies. Ciba Found. Symp. 1984, 107, 64–82. [Google Scholar] [CrossRef]
- Marchand, W.R.; Lee, J.N.; Thatcher, J.W.; Hsu, E.W.; Rashkin, E.; Suchy, Y.; Chelune, G.; Starr, J.; Barbera, S.S. Putamen coactivation during motor task execution. Neuroreport 2008, 19, 957–960. [Google Scholar] [CrossRef]
- Brotchie, P.; Iansek, R.; Horne, M.K. Motor function of the monkey globus pallidus. 2. Cognitive aspects of movement and phasic neuronal activity. Brain 1991, 114, 1685–1702. [Google Scholar] [CrossRef]
- Stephenson-Jones, M.; Yu, K.; Ahrens, S.; Tucciarone, J.M.; van Huijstee, A.N.; Mejia, L.A.; Penzo, M.A.; Tai, L.H.; Wilbrecht, L.; Li, B. A basal ganglia circuit for evaluating action outcomes. Nature 2016, 539, 289–293. [Google Scholar] [CrossRef]
- Cho, H.; Kim, J.H.; Kim, C.; Ye, B.S.; Kim, H.J.; Yoon, C.W.; Noh, Y.; Kim, G.H.; Kim, Y.J.; Kim, J.H.; et al. Shape changes of the basal ganglia and thalamus in Alzheimer’s disease: A three-year longitudinal study. J. Alzheimer’s Dis. 2014, 40, 285–295. [Google Scholar] [CrossRef]
- Sha, Z.; Pepe, A.; Schijven, D.; Carrión-Castillo, A.; Roe, J.M.; Westerhausen, R.; Joliot, M.; Fisher, S.E.; Crivello, F.; Francks, C. Handedness and its genetic influences are associated with structural asymmetries of the cerebral cortex in 31,864 individuals. Proc. Natl. Acad. Sci. USA 2021, 118, e2113095118. [Google Scholar] [CrossRef]
- Budisavljevic, S.; Castiello, U.; Begliomini, C. Handedness and White Matter Networks. Neuroscientist 2021, 27, 88–103. [Google Scholar] [CrossRef]
- Fagard, J. The nature and nurture of human infant hand preference. Ann. N. Y. Acad. Sci. 2013, 1288, 114–123. [Google Scholar] [CrossRef]
- Michel, G.F.; Nelson, E.L.; Babik, I.; Campbell, J.M.; Marcinowski, E.C. Multiple trajectories in the developmental psychobiology of human handedness. Adv. Child Dev. Behav. 2013, 45, 227–260. [Google Scholar] [CrossRef]
- Perelle, I.B.; Ehrman, L. On the other hand. Behav. Genet. 2005, 35, 343–350. [Google Scholar] [CrossRef]
- Schmitz, J.; Metz, G.A.S.; Güntürkün, O.; Ocklenburg, S. Beyond the genome-Towards an epigenetic understanding of handedness ontogenesis. Prog. Neurobiol. 2017, 159, 69–89. [Google Scholar] [CrossRef]
- Cuellar-Partida, G.; Tung, J.Y.; Eriksson, N.; Albrecht, E.; Aliev, F.; Andreassen, O.A.; Barroso, I.; Beckmann, J.S.; Boks, M.P.; Boomsma, D.I.; et al. Genome-wide association study identifies 48 common genetic variants associated with handedness. Nat. Hum. Behav. 2021, 5, 59–70. [Google Scholar] [CrossRef]
- Laland, K.N. Exploring gene-culture interactions: Insights from handedness, sexual selection and niche-construction case studies. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2008, 363, 3577–3589. [Google Scholar] [CrossRef]
- Bryden, P.J. The influence of M. P. Bryden’s work on lateralization of motor skill: Is the preferred hand selected for and better at tasks requiring a high degree of skill? Laterality 2016, 2, 312–328. [Google Scholar] [CrossRef]
- Hammond, G. Correlates of human handedness in primary motor cortex: A review and hypothesis. Neurosci. Biobehav. Rev. 2002, 26, 285–292. [Google Scholar] [CrossRef]
- Hatta, T. Handedness and the brain: A review of brain-imaging techniques. Magn. Reson. Med. Sci. 2007, 6, 99–112. [Google Scholar] [CrossRef]
- Levy, J. A review of evidence for a genetic component in the determination of handedness. Behav. Genet. 1976, 6, 429–453. [Google Scholar] [CrossRef]
- Khansari, D.N.; Murgo, A.J.; Faith, R.E. Effects of stress on the immune system. Immunol. Today 1990, 11, 70–175. [Google Scholar] [CrossRef]
- Laudenslager, M.L.; Ryan, S.M.; Drugan, R.C.; Hyson, R.L.; Maier, S.F. Coping and immunosuppression: Inescapable but not escapable shock suppresses lymphocyte proliferation. Science 1983, 221, 568–570. [Google Scholar] [CrossRef]
- Ader, R.; Cohen, N. CNS–immune system interactions: Conditioning phenomena. Behav. Brain Sci. 1985, 8, 379–426. [Google Scholar] [CrossRef]
- Ader, R.; Felten, D.; Cohen, N. Interactions between the brain and the immune system. Ann. Rev. Pharmacol. Toxicol. 1990, 30, 561–602. [Google Scholar] [CrossRef]
- Felten, D.L.; Felten, S.Y.; Carlson, S.L.; Olschowka, J.A.; Livnat, S. Noradrenergic and peptidergic innervation of lymphoid tissue. J. Immunol. 1985, 135, 755s–765s. [Google Scholar] [CrossRef]
- Blalock, J.E. A molecular basis for bidirectional communication between the immune and neuroendocrine systems. Physiol. Rev. 1989, 69, 1–32. [Google Scholar] [CrossRef]
- Bateman, A.; Singh, A.; Kral, T.; Solomon, S. The immune-hypothalamic-pituitary-adrenal axis. Endocrinol. Rev. 1989, 10, 92–112. [Google Scholar] [CrossRef]
- Plata-Salamán, C.R. Immunoregulators in the nervous system. Neurosci. Biobehav. Rev. 1991, 15, 85–215. [Google Scholar] [CrossRef]
- Cerqueira, J.J.; Catania, C.; Sotiropoulos, I.; Schubert, M.; Kalisch, R.; Almeida, O.F.X.; Auer, D.P.; Sousa, N. Corticosteroid status influences the volume of the rat cingulate cortex—A magnetic resonance imaging study. J. Psychiatr. Res. 2005, 39, 451–460. [Google Scholar] [CrossRef]
- MacLullich, A.M.; Ferguson, K.J.; Wardlaw, J.M.; Starr, J.M.; Deary, I.J.; Seckl, J.R. Smaller left anterior cingulate cortex volumes are associated with impaired hypothalamic–pituitary–adrenal axis regulation in healthy elderly men. J. Clin. Endocrinol. Metab. 2006, 91, 1591–1594. [Google Scholar] [CrossRef]
- Neveu, P.J. Cerebral neocortex modulation of immune function. Life Sci. 1988, 42, 1917–1923. [Google Scholar] [CrossRef]
- Neveu, P.J. Brain asymmetry in neural–immune interactions. Eur. Neuropsychopharmacol. 1991, 1, 367–369. [Google Scholar] [CrossRef]
- Neveu, P.J. Asymmetrical brain modulation of the immune system. Brain Res. Rev. 1992, 17, 101–107. [Google Scholar] [CrossRef]
- Neveu, P.J.; Betancur, C.; Barnéoud, P.; Vitiello, S.; Le Moal, M. Functional brain asymmetry and lymphocyte proliferation in female mice: Effects of right and left cortical ablation. Brain Res. 1991, 550, 25–128. [Google Scholar] [CrossRef]
- Moshel, Y.A.; Durkin, H.G.; Amassian, V.E. Lateralized neocortical control of T lymphocyte export from the thymus I. Increased export after left cortical stimulation in behaviorally active rats, mediated by sympathetic pathways in the upper spinal cord. J. Neuroimmunol. 2005, 158, 3–13. [Google Scholar] [CrossRef]
- Goldstein, K.R.; Bhatt, R.; Barton, B.E.; Zalcman, S.S.; Rameshwar, P.; Siegel, A. Effects of hemispheric lateralization and site specificity on immune alterations induced by kindled temporal lobe seizures. Brain Behav. Immun. 2002, 16, 706–719. [Google Scholar] [CrossRef]
- Gontova, I.A.; Abramov, V.V.; Kozlov, V.A. The role of asymmetry of nervous and immune systems in the formation of cellular immunity of (CBaxC57Bl/6) F1 mice. Neuroimmunomodulation 2004, 11, 385–391. [Google Scholar] [CrossRef]
- Geschwind, N.; Behan, P. Left-handedness: Association with immune disease, migraine, and developmental learning disorder. Proc. Natl. Acad. Sci. USA 1982, 79, 5097–5100. [Google Scholar] [CrossRef]
- Geschwind, N.; Galaburda, A.M. Cerebral lateralization. Biological mechanisms, associations, and pathology: I. A hypothesis and a program for research. Arch. Neurol. 1985, 42, 428–459. [Google Scholar] [CrossRef]
- Geschwind, N.; Galaburda, A.M. Cerebral lateralization. Biological mechanisms, associations, and pathology: II. A hypothesis and a program for research. Arch. Neurol. 1985, 42, 521–552. [Google Scholar] [CrossRef]
- Geschwind, N.; Galaburda, A.M. Cerebral lateralization. Biological mechanisms, associations, and pathology: III. A hypothesis and a program for research. Arch. Neurol. 1985, 42, 634–654. [Google Scholar] [CrossRef]
- Morfit, N.S.; Weekes, N.Y. Handedness and immune function. Brain Cogn. 2001, 46, 209–213. [Google Scholar] [CrossRef]
- McManus, I.C.; Bryden, M.P. Geschwind’s theory of cerebral lateralization: Developing a formal, causal model. Psychol. Bul. 1991, 110, 237–253. [Google Scholar] [CrossRef]
- Abbas, A.K.; Lichtman, A.H.; Pober, J.S. Immunologie; Verlag Hans Huber: Bern, Switzerland; Göttingen, Germany; Toronto, ON, Canada; Seattle, WA, USA, 1996. [Google Scholar]
- Peeva, E.; Zouali, M. Spotlight on the role of hormonal factors in the emergence of autoreactive B-lymphocytes. Immunol. Lett. 2005, 101, 123–143. [Google Scholar] [CrossRef]
- Lengen, C.; Regard, M.; Joller, H.; Landis, T.; Lalive, P. Anomalous brain dominance and the immune system: Do left-handers have specific immunological patterns? Brain Cogn. 2009, 69, 188–193. [Google Scholar] [CrossRef]
- Meador, K.J.; De Lecuona, J.M.; Helman, S.W.; Loring, D.W. Differential immunologic effects of language-dominant and nondominant cerebral resections. Neurology 1999, 52, 1183–1187. [Google Scholar] [CrossRef]
- Giorelli, M.; Livrea, P.; Trojano, M. Dopamine fails to regulate activation of peripheral blood lymphocytes from multiple sclerosis patients: Effects of IFN-beta. J. Interferon Cytokine Res. 2005, 25, 395–406. [Google Scholar] [CrossRef]
- Bernatsky, S.; Pineau, C.A.; Lee, J.L.; Clarke, A.E. Headache, Raynaud’s syndrome and serotonin receptor agonists in systemic lupus erythematosus. Lupus 2006, 15, 671–674. [Google Scholar] [CrossRef]
- Ferrari, M.; Cosentino, M.; Marino, F.; Bombelli, R.; Rasini, E.; Lecchini, S.; Frigo, G. Dopaminergic D1-like receptor-dependent inhibition of tyrosine hydroxylase mRNA expression and catecholamine production in human lymphocytes. Biochem. Pharmacol. 2004, 67, 865–873. [Google Scholar] [CrossRef]
- Kling, A.; Rantapää-Dahlqvist, S.; Stenlund, H.; Mjörndal, T. Decreased density of serotonin 5-HT2A receptors in rheumatoid arthritis. Ann. Rheum. Dis. 2006, 65, 816–819. [Google Scholar] [CrossRef]
- Onat, A.M.; Oztürk, M.A.; Ozçakar, L.; Ureten, K.; Kaymak, S.U.; Kiraz, S.; Ertenli, I.; Calgüneri, M. Selective serotonin reuptake inhibitors reduce the attack frequency in familial mediterranean fever. Tohoku J. Exp. Med. 2007, 211, 9–14. [Google Scholar] [CrossRef]
- Rajda, C.; Bencsik, K.; Füvesi, J.; Seres, E.; Vécsei, L.; Bergquist, J. The norepinephrine level is decreased in the lymphocytes of long-term interferon-beta-treated multiple sclerosis patients. Mult. Scler. 2006, 12, 265–270. [Google Scholar] [CrossRef]
- Oldfield, R.C. The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 1971, 9, 97–113. [Google Scholar] [CrossRef]
- Richardson, J.T. A factor analysis of self-reported handedness. Neuropsychologia 1978, 16, 747–748. [Google Scholar] [CrossRef] [PubMed]
- Williams, S.M. Factor analysis of the Edinburgh Handedness Inventory. Cortex 1986, 22, 325–326. [Google Scholar] [CrossRef]
- Espírito-Santo, H.; Pires, C.F.; Garcia, I.Q.; Daniel, F.; Silva, A.G.; Fazio, R.L. Preliminary validation of the Portuguese Edinburgh Handedness Inventory in an adult sample. Appl. Neuropsychol. Adult 2017, 24, 275–287. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, S.L.; Nelson, E.L. Factor analysis of the Home Handedness Questionnaire: Unimanual and role differentiated bimanual manipulation as separate dimensions of handedness. Appl. Neuropsychol. Adult 2021, 28, 173–184. [Google Scholar] [CrossRef] [PubMed]
- Flindall, J.W.; Gonzalez, C.L.R. Wait wait, don’t tell me: Handedness questionnaires do not predict hand preference for grasping. Laterality 2019, 24, 176–196. [Google Scholar] [CrossRef]
- Leppanen, M.L.; Lyle, K.B.; Edlin, F.M.; Schäfke, V.D. Is self-report a valid measure of unimanual object-based task performance? Laterality 2019, 24, 538–558. [Google Scholar] [CrossRef]
- McManus, I.C.; Van Horn, J.D.; Bryden, P.J. The Tapley and Bryden test of performance differences between the hands: The original data, newer data, and the relation to pegboard and other tasks. Laterality 2016, 21, 371–396. [Google Scholar] [CrossRef] [PubMed]
- Ruck, L.; Schoenemann, P.T. Handedness measures for the Human Connectome Project: Implications for data analysis. Laterality 2021, 26, 584–606. [Google Scholar] [CrossRef] [PubMed]
- Fazio, R.L.; Cantor, J.M. Factor structure of the Edinburgh Handedness Inventory versus the Fazio Laterality Inventory in a population with established atypical handedness. Appl. Neuropsychol. Adult 2015, 22, 156–160. [Google Scholar] [CrossRef] [PubMed]
- Taubert, H.; Schroeter, M.L.; Sander, C.; Kluge, M. Non-Right Handedness is Associated with More Time Awake after Sleep Onset and Higher Daytime Sleepiness than Right Handedness: Objective (Actigraphic) and Subjective Data from a Large Community Sample. Nat. Sci. Sleep 2022, 14, 877–890. [Google Scholar] [CrossRef] [PubMed]
- Biehl, K.; Frese, A.; Marziniak, M.; Husstedt, I.W.; Evers, S. Migraine and left-handedness are not associated. A new case-control study and meta-analysis. Cephalalgia 2008, 28, 553–557. [Google Scholar] [CrossRef] [PubMed]
- Slezicki, K.I.; Cho, Y.W.; Yi, S.D.; Brock, M.S.; Pfeiffer, M.H.; McVearry, K.M.; Tractenberg, R.E.; Motamedi, G.K. Incidence of atypical handedness in epilepsy and its association with clinical factors. Epilepsy Behav. 2009, 16, 330–334. [Google Scholar] [CrossRef] [PubMed]
- Doody, R.S.; Vacca, J.L.; Massman, P.J.; Liao, T.Y. The influence of handedness on the clinical presentation and neuropsychology of Alzheimer disease. Arch. Neurol. 1999, 56, 1133–1137. [Google Scholar] [CrossRef] [PubMed]
- Giovagnoli, A.R.; Erbetta, A.; Villani, F.; Avanzini, G. Semantic memory in partial epilepsy: Verbal and non-verbal deficits and neuroanatomical relationships. Neuropsychologia 2005, 43, 1482–1492. [Google Scholar] [CrossRef] [PubMed]
- Ramezani, M.; Mouches, P.; Yoon, E.; Rajashekar, D.; Ruskey, J.A.; Leveille, E.; Martens, K.; Kibreab, M.; Hammer, T.; Kathol, I.; et al. Investigating the relationship between the SNCA gene and cognitive abilities in idiopathic Parkinson’s disease using machine learning. Sci. Rep. 2021, 11, 4917. [Google Scholar] [CrossRef]
- Doležalová, I.; Schachter, S.; Chrastina, J.; Hemza, J.; Hermanová, M.; Rektor, I.; Pažourková, M.; Brázdil, M. Atypical handedness in mesial temporal lobe epilepsy. Epilepsy Behav. 2017, 72, 78–81. [Google Scholar] [CrossRef]
- Sarubbo, S.; Latini, F.; Panajia, A.; Candela, C.; Quatrale, R.; Milani, P.; Fainardi, E.; Granieri, E.; Trapella, G.; Tugnoli, V.; et al. Awake surgery in low-grade gliomas harboring eloquent areas: 3-year mean follow-up. Neurol. Sci. 2011, 32, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Saltzman, K.M.; Weems, C.F.; Reiss, A.L.; Carrión, V.G. Mixed lateral preference in posttraumatic stress disorder. J. Nerv. Ment. Dis. 2006, 194, 142–144. [Google Scholar] [CrossRef] [PubMed]
- Gori, B.; Grippo, A.; Focardi, M.; Lolli, F. The Italian version of Edinburgh Handedness Inventory: Translation, transcultural adaptation, and validation in healthy subjects. Laterality 2024, 29, 151–168. [Google Scholar] [CrossRef] [PubMed]
- Viggiano, M.P.; Borelli, P.; Vannucci, M.; Rocchetti, G. Hand preference in Italian students. Laterality 2001, 6, 283–286. [Google Scholar] [CrossRef] [PubMed]
- Carlson, D.F.; Harris, L.J. Development of the infant’s hand preference for visually directed reaching: Preliminary report of a longitudinal study. Infant Ment. Health J. 1985, 6, 158–174. [Google Scholar] [CrossRef]
- Fagard, J. Changes in grasping skills and the emergence of bimanual coordination during the first year of life. In The Psychobiology of the Hand; Connolly, K.J., Ed.; Mac Keith Press: London, UK, 1998; pp. 123–143. [Google Scholar]
- McCormick, C.M.; Maurer, D.M. Unimanual hand preferences in 6-month-olds: Consistency and relation to familial-handedness. Inf. Behav. Dev. 1988, 11, 21–29. [Google Scholar] [CrossRef]
- McManus, I.C.; Sik, G.; Cole, D.R.; Mellon, A.F.; Wong, J.; Kloss, J. The development of handedness in children. Br. J. Dev. Psychol. 1988, 6, 257–273. [Google Scholar] [CrossRef]
- Ranganathan, V.K.; Siemionow, V.; Sahgal, V.; Yue, G.H. Effects of aging on hand function. J. Am. Ger. Soc. 2001, 49, 1478–1484. [Google Scholar] [CrossRef]
- Tarchi, L.; Damianti, S.; La Torraca Vittori, P.; Frick, A.; Castellini, G.; Politi, P.; Fusar-Poli, P.; Ricca, V. Progressive Voxel-Wise Homotopic Connectivity from childhood to adulthood: Age-related functional asymmetry in resting-state functional magnetic resonance imaging. Dev. Psychol. 2023, 65, e22366. [Google Scholar] [CrossRef]
IM Diseases (n = 135) | noIM Brain Lesions (n = 143) | noIM Spinal Cord, Root, or Nerve Lesions (n = 56) | Healthy Subjects (n = 40) | |
---|---|---|---|---|
Females | 83 (61%) | 64 (48%) | 25 (48%) | 29 (72%) |
Chronological age | 39.77 ± 14.28 | 46.97 ± 16.45 | 45.95 ± 15.33 | 41.95 ± 13.98 |
Participants with familial left-handedness or ambidexterity | 54 (40%) | 54 (38%) | 16 (29%) | 16 (40%) |
Participants with subjective left- handedness or ambidexterity | 23 (17%) | 27 (19%) | 9 (16%) | 12 (30%) |
Laterality quotient | 81.84 + 32.44 | 81.26 + 33.16 | 81.43 + 32.05 | 69.50 + 48.25 |
Left-handed | 3 (2%) | 2 (1%) | 1 (2%) | 2 (5%) |
Ambidextrous | 9 (7%) | 14 (10%) | 4 (7%) | 7 (17%) |
Right-handed | 123 (91%) | 127 (89%) | 51 (91%) | 31 (78%) |
Stressful events | 0.16 ± 0.58 | 0.01 ± 0.12 | 0.02 ± 0.13 | - |
Age of disease onset | 32.04 ± 14.19 | 41.94 ± 18.70 | 40.66 ± 16.69 | - |
Disease duration (years) | 7.81 ± 8.82 | 4.75 ± 7.26 | 5.29 ± 7.38 | - |
Hand Transitive | Hand Refined | Hand Median | Foot | Eye | |
---|---|---|---|---|---|
Throwing | 0.58 | ||||
Using scissors | 0.68 | ||||
Combing | 0.71 | ||||
Tooth brushing | 0.60 | ||||
Beating with the hammer | 0.73 | ||||
Screwdriver | 0.71 | ||||
Tennis racket | 0.70 | ||||
Lighting a match | 0.68 | ||||
Opening a box (cover) | 0.68 | ||||
Distributing the cards | 0.67 | ||||
Threading a needle | 0.73 | ||||
Using a knife without a fork | 0.66 | ||||
Using a knife and fork | 0.55 | ||||
Using a pencil | 0.70 | ||||
Wrapping a thread | 0.70 | ||||
Writing | 0.83 | ||||
Painting | 0.83 | ||||
Using a spoon | 0.59 | ||||
Holding the broom | 0.91 | ||||
Holding the rake | 0.90 | ||||
Right kick | 0.91 | ||||
Left kick | −0.91 | ||||
Right eye | 0.97 | ||||
Left eye | −0.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giovagnoli, A.R.; Parisi, A. Fifty Years of Handedness Research: A Neurological and Methodological Update. Brain Sci. 2024, 14, 418. https://doi.org/10.3390/brainsci14050418
Giovagnoli AR, Parisi A. Fifty Years of Handedness Research: A Neurological and Methodological Update. Brain Sciences. 2024; 14(5):418. https://doi.org/10.3390/brainsci14050418
Chicago/Turabian StyleGiovagnoli, Anna Rita, and Alessandra Parisi. 2024. "Fifty Years of Handedness Research: A Neurological and Methodological Update" Brain Sciences 14, no. 5: 418. https://doi.org/10.3390/brainsci14050418
APA StyleGiovagnoli, A. R., & Parisi, A. (2024). Fifty Years of Handedness Research: A Neurological and Methodological Update. Brain Sciences, 14(5), 418. https://doi.org/10.3390/brainsci14050418