Revisiting Cognitive Deficits in Outpatients with Psychotic Disorders: A Transdiagnostic Comparison of Cognitive Performance While Accounting for Putative Confounding Factors
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Procedure
2.3. Interview-Based and Self-Report Measures Assessed at Appointment One
2.4. Non-Cognitive Measures Assessed before Cognitive Testing
2.5. Cognitive Performance Is Assessed at Appointment Two
2.6. Statistical Analyses
3. Results
3.1. Sample Characteristics and Preliminary Analyses
3.2. Group Differences in Cognitive Performance (Hypothesis 1)
3.3. Associations between Cognitive Performance and Non-Cognitive Factors (Hypothesis 2)
3.4. Group Differences in Cognitive Performance While Accounting for Non-Cognitive Factors (Hypothesis 3)
4. Discussion
Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fioravanti, M.; Bianchi, V.; Cinti, M.E. Cognitive deficits in schizophrenia: An updated metanalysis of the scientific evidence. BMC Psychiatry 2012, 12, 64. [Google Scholar] [CrossRef]
- Chu, A.O.K.; Chang, W.C.; Chan, S.K.W.; Lee, E.H.M.; Hui, C.L.M.; Chen, E.Y.H. Comparison of cognitive functions between first-episode schizophrenia patients, their unaffected siblings and individuals at clinical high-risk for psychosis. Psychol. Med. 2019, 49, 1929–1936. [Google Scholar] [CrossRef] [PubMed]
- Bora, E.; Murray, R.M. Meta-analysis of cognitive deficits in ultra-high risk to psychosis and first-episode psychosis: Do the cognitive deficits progress over, or after, the onset of psychosis? Schizophr. Bull. 2014, 40, 744–755. [Google Scholar] [CrossRef] [PubMed]
- Nuechterlein, K.H.; Dawson, M.E.; Ventura, J.; Gitlin, M.; Subotnik, K.L.; Snyder, K.S.; Mintz, J.; Bartzokis, G. The vulnerability/stress model of schizophrenic relapse: A longitudinal study. Acta Psychiatr. Scand. 1994, 89, 58–64. [Google Scholar] [CrossRef]
- Keefe, R.S.E.; Harvey, P.D. Cognitive impairment in schizophrenia. Handb. Exp. Pharmacol. 2012, 213, 11–37. [Google Scholar]
- Schaefer, J.; Giangrande, E.; Weinberger, D.R.; Dickinson, D. The global cognitive impairment in schizophrenia: Consistent over decades and around the world. Schizophr. Res. 2013, 150, 42–50. [Google Scholar] [CrossRef]
- Diamond, A. Executive functions. Annu. Rev. Psychol. 2013, 64, 135–168. [Google Scholar] [CrossRef]
- Beck, A.T.; Himelstein, R.; Bredemeier, K.; Silverstein, S.M.; Grant, P. What accounts for poor functioning in people with schizophrenia: A re-evaluation of the contributions of neurocognitive v. attitudinal and motivational factors. Psychol. Med. 2018, 48, 2776–2785. [Google Scholar] [CrossRef]
- Moritz, S.; Silverstein, S.M.; Dietrichkeit, M.; Gallinat, J. Neurocognitive deficits in schizophrenia are likely to be less severe and less related to the disorder than previously thought. World Psychiatry 2020, 19, 254–255. [Google Scholar] [CrossRef]
- Kohn, N.; Hermans, E.J.; Fernández, G. Cognitive benefit and cost of acute stress is differentially modulated by individual brain state. Soc. Cogn. Affect. Neurosci. 2017, 12, 1179. [Google Scholar] [CrossRef]
- Beaudreau, S.A.; O’Hara, R. The association of anxiety and depressive symptoms with cognitive performance in community-dwelling older adults. Psychol. Aging 2009, 24, 507–512. [Google Scholar] [CrossRef]
- Montani, F.; Vandenberghe, C.; Khedhaouria, A.; Courcy, F. Examining the inverted U-shaped relationship between workload and innovative work behavior: The role of work engagement and mindfulness. Hum. Relat. 2020, 73, 59–93. [Google Scholar] [CrossRef]
- Schwabe, L.; Joëls, M.; Roozendaal, B.; Wolf, O.T.; Oitzl, M.S. Stress effects on memory: An update and integration. Neurosci. Biobehav. Rev. 2012, 36, 1740–1749. [Google Scholar] [CrossRef]
- Shields, G.S.; Sazma, M.A.; Yonelinas, A.P. The effects of acute stress on core executive functions: A meta-analysis and comparison with cortisol. Neurosci. Biobehav. Rev. 2016, 68, 651–668. [Google Scholar] [CrossRef]
- Mitchell, R.L.C.; Phillips, L.H. The psychological, neurochemical and functional neuroanatomical mediators of the effects of positive and negative mood on executive functions. Neuropsychologia 2007, 45, 617–629. [Google Scholar] [CrossRef] [PubMed]
- Hartley, S.; Barrowclough, C.; Haddock, G. Anxiety and depression in psychosis: A systematic review of associations with positive psychotic symptoms. Acta Psychiatr. Scand. 2013, 128, 327–346. [Google Scholar] [CrossRef]
- Walker, E.; Mittal, V.; Tessner, K. Stress and the hypothalamic pituitary adrenal axis in the developmental course of schizophrenia. Annu. Rev. Clin. Psychol. 2008, 4, 189–216. [Google Scholar] [CrossRef] [PubMed]
- Krkovic, K.; Moritz, S.; Lincoln, T.M. Neurocognitive deficits or stress overload: Why do individuals with schizophrenia show poor performance in neurocognitive tests? Schizophr. Res. 2017, 183, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Halari, R.; Mehrotra, R.; Sharma, T.; Kumari, V. Does self-perceived mood predict more variance in cognitive performance than clinician-rated symptoms in schizophrenia? Schizophr. Bull. 2006, 32, 751–757. [Google Scholar] [CrossRef]
- Hoffman, B.; Schraw, G. The influence of self-efficacy and working memory capacity on problem-solving efficiency. Learn. Individ. Differ. 2009, 19, 91–100. [Google Scholar] [CrossRef]
- Duckworth, A.L.; Quinn, P.D.; Lynam, D.R.; Loeber, R.; Stouthamer-Loeber, M. Role of test motivation in intelligence testing. Proc. Natl. Acad. Sci. USA 2011, 108, 7716–7720. [Google Scholar] [CrossRef] [PubMed]
- Fervaha, G.; Foussias, G.; Agid, O.; Remington, G. Motivational and neurocognitive deficits are central to the prediction of longitudinal functional outcome in schizophrenia. Acta Psychiatr. Scand. 2014, 130, 290–299. [Google Scholar] [CrossRef] [PubMed]
- Grant, P.M.; Beck, A.T. Defeatist beliefs as a mediator of cognitive impairment, negative symptoms, and functioning in schizophrenia. Schizophr. Bull. 2009, 35, 798–806. [Google Scholar] [CrossRef] [PubMed]
- Ventura, J.; Subotnik, K.L.; Ered, A.; Gretchen-Doorly, D.; Hellemann, G.S.; Vaskinn, A.; Nuechterlein, K.H. The relationship of attitudinal beliefs to negative symptoms, neurocognition, and daily functioning in recent-onset schizophrenia. Schizophr. Bull. 2014, 40, 1308–1318. [Google Scholar] [CrossRef] [PubMed]
- Moritz, S.; Klein, J.P.; Desler, T.; Lill, H.; Gallinat, J.; Schneider, B.C. Neurocognitive deficits in schizophrenia. Are we making mountains out of molehills? Psychol. Med. 2017, 47, 2602–2612. [Google Scholar] [CrossRef] [PubMed]
- Krause, A.J.; Ben Simon, E.; Mander, B.A.; Greer, S.M.; Saletin, J.M.; Goldstein-Piekarski, A.N.; Walker, M.P. The sleep-deprived human brain. Nat. Rev. Neurosci. 2017, 18, 404–418. [Google Scholar] [CrossRef] [PubMed]
- Lowe, C.J.; Safati, A.; Hall, P.A. The neurocognitive consequences of sleep restriction: A meta-analytic review. Neurosci. Biobehav. Rev. 2017, 80, 586–604. [Google Scholar] [CrossRef] [PubMed]
- Bromundt, V.; Köster, M.; Georgiev-Kill, A.; Opwis, K.; Wirz-Justice, A.; Stoppe, G.; Cajochen, C. Sleep-wake cycles and cognitive functioning in schizophrenia. Br. J. Psychiatry 2011, 198, 269–276. [Google Scholar] [CrossRef]
- Laskemoen, J.F.; Büchmann, C.; Barrett, E.A.; Collier-Høegh, M.; Haatveit, B.; Vedal, T.J.; Ueland, T.; Melle, I.; Aas, M.; Simonsen, C. Do sleep disturbances contribute to cognitive impairments in schizophrenia spectrum and bipolar disorders? Eur. Arch. Psychiatry Clin. Neurosci. 2020, 270, 749–759. [Google Scholar] [CrossRef]
- Cosgrave, J.; Wulff, K.; Gehrman, P. Sleep, circadian rhythms, and schizophrenia: Where we are and where we need to go. Curr. Opin. Psychiatry 2018, 31, 176–182. [Google Scholar] [CrossRef]
- Shin, N.Y.; Lee, T.Y.; Kim, E.; Kwon, J.S. Cognitive functioning in obsessive-compulsive disorder: A meta-analysis. Psychol. Med. 2014, 44, 1121–1130. [Google Scholar] [CrossRef]
- Rasmussen, A.R.; Parnas, J. What is obsession? Differentiating obsessive-compulsive disorder and the schizophrenia spectrum. Schizophr. Res. 2022, 243, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Lehrl, S. MWT-B—Mehrfachwahl-Wortschatz-Intelligenztest, 5th ed.; Hogrefe: Göttingen, Germany, 2005. [Google Scholar]
- Wittchen, H.U.; Wunderlich, U.; Gruschwitz, S.; Zaudig, M. Strukturiertes Klinische Interview fuer DSM-IV; Hogrefe: Göttingen, Germany, 1997. [Google Scholar]
- Falkai, P. Diagnostisches und Statistisches Manual Psychischer Stoerungen DSM-5; Hogrefe: Göttingen, Germany, 2015. [Google Scholar]
- Kay, S.R.; Fiszbein, A.; Opler, L.A. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr. Bull. 1987, 13, 261–276. [Google Scholar] [CrossRef] [PubMed]
- Schlier, B.; Jaya, E.S.; Moritz, S.; Lincoln, T.M. The Community Assessment of Psychic Experiences measures nine clusters of psychosis-like experiences: A validation of the German version of the CAPE. Schizophr. Res. 2015, 169, 274–279. [Google Scholar] [CrossRef]
- Stefanis, N.C.; Hanssen, M.; Smirnis, N.K.; Avramopoulos, D.A.; Evdokimidis, I.K.; Stefanis, C.N.; Verdoux, H.; van Os, J. Evidence that three dimensions of psychosis have a distribution in the general population. Psychol. Med. 2002, 32, 347–358. [Google Scholar] [CrossRef]
- Krkovic, K.; Nowak, U.; Kammerer, M.K.; Bott, A.; Lincoln, T.M. Aberrant adapting of beliefs under stress: A mechanism relevant to the formation of paranoia? Psychol. Med. 2021, 53, 1881–1890. [Google Scholar] [CrossRef]
- Giesbrecht, C.J.; O’rourke, N.; Leonova, O.; Strehlau, V.; Paquet, K.; Vila-Rodriguez, F.; Panenka, W.J.; MacEwan, G.W.; Smith, G.N.; Thornton, A.E.; et al. The Positive and Negative Syndrome Scale (PANSS): A Three-Factor Model of Psychopathology in Marginally Housed Persons with Substance Dependence and Psychiatric Illness. PLoS ONE 2016, 11, e0151648. [Google Scholar] [CrossRef]
- Gaab, J.; Rohleder, N.; Nater, U.M.; Ehlert, U. Psychological determinants of the cortisol stress response: The role of anticipatory cognitive appraisal. Psychoneuroendocrinology 2005, 30, 599–610. [Google Scholar] [CrossRef] [PubMed]
- Krkovic, K.; Krink, S.; Lincoln, T.M. Emotion regulation as a moderator of the interplay between self-reported and physiological stress and paranoia. Eur. Psychiatry 2018, 49, 43–49. [Google Scholar] [CrossRef]
- Stemmler, G.; Heldmann, M.; Pauls, C.A.; Scherer, T. Constraints for emotion specificity in fear and anger: The context counts. Psychophysiology 2001, 38, 275–291. [Google Scholar] [CrossRef]
- Hennig, T.; Lincoln, T.M. Sleeping paranoia away? An actigraphy and experience-sampling study with adolescents. Child Psychiatry Hum. Dev. 2017, 49, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Lang, J.W.B.; Fries, S. A revised 10-item version of the achievement motives scale: Psychometric properties in German-speaking samples. Eur. J. Psychol. Assess. 2006, 22, 216–224. [Google Scholar] [CrossRef]
- Ancoli-Israel, S.; Martin, J.L.; Blackwell, T.; Buenaver, L.; Liu, L.; Meltzer, L.J.; Sadeh, A.; Spira, A.P.; Taylor, D.J. The SBSM guide to actigraphy monitoring: Clinical and research applications. Behav. Sleep Med. 2015, 13, 4–38. [Google Scholar] [CrossRef] [PubMed]
- Baandrup, L.; Jennum, P.J. A validation of wrist actigraphy against polysomnography in patients with schizophrenia or bipolar disorder. Neuropsychiatr. Dis. Treat. 2015, 11, 2271–2277. [Google Scholar] [CrossRef] [PubMed]
- Nuechterlein, K.H.; Green, M.F.; Kern, R.S.; Baade, L.E.; Barch, D.M.; Cohen, J.D.; Essock, S.; Fenton, W.S.; Frese, F.J., III; Gold, J.M.; et al. The MATRICS Consensus Cognitive Battery, part 1: Test selection, reliability, and validity. Am. J. Psychiatry 2008, 165, 203–213. [Google Scholar] [CrossRef] [PubMed]
- Keefe, R.S.E.; Fox, K.H.; Harvey, P.D.; Cucchiaro, J.; Siu, C.; Loebel, A. Characteristics of the MATRICS Consensus Cognitive Battery in a 29-site antipsychotic schizophrenia clinical trial. Schizophr. Res. 2011, 125, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Laere, E.; Tee, S.F.; Tang, P.Y. Assessment of cognition in schizophrenia using trail making test: A meta-analysis. Psychiatry Investig. 2018, 15, 945. [Google Scholar] [CrossRef]
- Little, R.J.A. A test of missing completely at random for multivariate data with missing values. J. Am. Stat. Assoc. 1988, 83, 1198–1202. [Google Scholar] [CrossRef]
- Murman, D.L. The impact of age on cognition. In Seminars in Hearing; Thieme Medical Publishers: New York, NY, USA, 2015; Volume 36, pp. 111–121. [Google Scholar]
- Finch, W.H. Missing data and multiple imputation in the context of multivariate analysis of variance. J. Exp. Educ. 2016, 84, 356–372. [Google Scholar] [CrossRef]
- Gill, S.K.; Gomez, R.G.; Keller, J.; Schatzberg, A.F. Diagnostic differences in verbal learning strategies and verbal memory in patients with mood disorders and psychotic disorders. Psychiatry Res. 2018, 269, 733–739. [Google Scholar] [CrossRef]
- Bogie, B.J.; Noël, C.; Alftieh, A.; MacDonald, J.; Lei, Y.T.; Mongeon, J.; Mayaud, C.; Dans, P.; Guimond, S. Verbal memory impairments in mood disorders and psychotic disorders: A systematic review of comparative studies. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2024, 129, 110891. [Google Scholar] [CrossRef] [PubMed]
- Gaines, J.; Vgontzas, A.N.; Fernandez-Mendoza, J.; Basta, M.; Pejovic, S.; He, F.; Bixler, E.O. Short- and long-term sleep stability in insomniacs and healthy controls. Sleep 2015, 38, 1727–1734. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.E.A.; Halvorsen, M.; Eisemann, M.; Waterloo, K. Stability of dysfunctional attitudes and early maladaptive schemas: A 9-year follow-up study of clinically depressed subjects. J. Behav. Ther. Exp. Psychiatry 2010, 41, 389–396. [Google Scholar] [CrossRef]
- Badcock, J.C.; Shah, S.; Mackinnon, A.; Stain, H.J.; Galletly, C.; Jablensky, A.; Morgan, V.A. Loneliness in psychotic disorders and its association with cognitive function and symptom profile. Schizophr. Res. 2015, 169, 268–273. [Google Scholar] [CrossRef] [PubMed]
- Fervaha, G.; Zakzanis, K.K.; Foussias, G.; Graff-Guerrero, A.; Agid, O.; Remington, G. Motivational deficits and cognitive test performance in schizophrenia. JAMA Psychiatry 2014, 71, 1058–1065. [Google Scholar] [CrossRef] [PubMed]
- Stubbs, B.; Ku, P.-W.; Chung, M.-S.; Chen, L.-J. Relationship between objectively measured sedentary behavior and cognitive performance in patients with schizophrenia vs controls. Schizophr. Bull. 2016, 43, sbw126. [Google Scholar] [CrossRef]
- Collett, N.; Pugh, K.; Waite, F.; Freeman, D. Negative cognitions about the self in patients with persecutory delusions: An empirical study of self-compassion, self-stigma, schematic beliefs, self-esteem, fear of madness, and suicidal ideation. Psychiatry Res. 2016, 239, 79–84. [Google Scholar] [CrossRef]
- Velthorst, E.; Mollon, J.; Murray, R.M.; de Haan, L.; Germeys, I.M.; Glahn, D.C.; Arango, C.; van der Ven, E.; Di Forti, M.; Bernardo, M. Cognitive functioning throughout adulthood and illness stages in individuals with psychotic disorders and their unaffected siblings. Mol. Psychiatry 2021, 26, 4529–4543. [Google Scholar] [CrossRef]
- Oud, M.J.; Jong, B.M.-D. Somatic diseases in patients with schizophrenia in general practice: Their prevalence and health care. BMC Fam. Pract. 2009, 10, 32. [Google Scholar] [CrossRef]
- Sheffield, J.M.; Karcher, N.R.; Barch, D.M. Cognitive Deficits in Psychotic Disorders: A Lifespan Perspective. Neuropsychol. Rev. 2018, 28, 509. [Google Scholar] [CrossRef]
- Waugh, C.E.; Panage, S.; Mendes, W.B.; Gotlib, I.H. Cardiovascular and affective recovery from anticipatory threat. Biol. Psychol. 2010, 84, 169. [Google Scholar] [CrossRef] [PubMed]
- Baldez, D.P.; Biazus, T.B.; Rabelo-Da-Ponte, F.D.; Nogaro, G.P.; Martins, D.S.; Kunz, M.; Czepielewski, L.S. The effect of antipsychotics on the cognitive performance of individuals with psychotic disorders: Network meta-analyses of randomized controlled trials. Neurosci. Biobehav. Rev. 2021, 126, 265–275. [Google Scholar] [CrossRef] [PubMed]
1. PSY (N = 38) | 2. AS (N = 40) | 3. OCD (N = 39) | 4. HC (N = 38) | F/χ2 | p | Post Hoc | |
---|---|---|---|---|---|---|---|
Age (Mean ± SD) | 37.71 ± 9.61 | 30.53 ± 10.58 | 35.92 ± 10.96 | 36.32 ± 11.18 | 3.496 | 0.014 | 2 < 3, 4, 1 |
Gender male/female (N) | 19/19 | 18/22 | 14/25 | 20/18 | 2.54 | 0.469 | - |
Education a (N) | |||||||
low | 2 | 1 | 4 | 1 | 10.88 | 0.092 | - |
middle | 21 | 13 | 21 | 15 | |||
high | 15 | 26 | 14 | 22 | |||
Unemployed b (N) | 18 | 7 | 15 | 5 | 15.11 | 0.002 | 4 < 2, 3, 1 |
CAPE (Mean ± SD) | 20.22 ± 10.15 | 15.56 ± 6.06 | 9.71 ± 7.43 | 3.71 ± 2.48 | 38.71 | <0.001 | 1 > 2, 3, 4 |
PANSS (Mean ± SD) | |||||||
Positive symptoms | 16.66 ± 4.23 | ||||||
Negative symptoms | 10.82 ± 3.91 | ||||||
General psychopathology | 26.42 ± 6.66 |
1. PSY (N = 33) | 2. AS (N = 37) | 3. OCD (N = 33) | 4. HC (N = 31) | |
---|---|---|---|---|
M (SD) | M (SD) | M (SD) | M (SD) | |
Speed of processing | ||||
BACS | 36.88 (10.29) | 47.32 (14.57) | 45.55 (11.24) | 44.29 (9.11) |
CF-AN | 43.30 (8.02) | 48.03 (10.65) | 49.64 (8.89) | 46.23 (10.27) |
TMT-A | 48.03 (11.76) | 50.76 (8.99) | 51.15 (10.50) | 46.48 (9.47) |
TMT-B | 44.25 (12.38) | 49.46 (12.36) | 49.38 (12.71) | 47.37 (10.68) |
Attention | ||||
CPT-IP | 41.97 (11.01) | 48.81 (8.09) | 50.58 (6.61) | 44.65 (10.06) |
Working memory | ||||
WMS-III | 47.55 (9.72) | 52.03 (8.96) | 51.00 (11.36) | 46.68 (9.33) |
LNS | 43.76 (10.61) | 49.65 (7.29) | 49.33 (9.72) | 47.45 (12.46) |
Verbal learning | ||||
HVLT-R | 44.73 (9.04) | 48.16 (8.36) | 50.12 (9.31) | 51.45 (7.90) |
Visual learning | ||||
BVMT-R | 45.61 (9.56) | 51.41 (9.47) | 49.94 (10.33) | 46.81 (9.41) |
Reasoning | ||||
NAB | 44.09 (11.21) | 47.27 (8.02) | 44.45 (10.03) | 44.58 (9.99) |
ANCOVA Group Controlled for Age and Gender | ANCOVA Group Controlled for Age, Gender, and Non-Cognitive Factors | |||||||
---|---|---|---|---|---|---|---|---|
F(3, 149) | η2partial | ppooled | Post Hoc | F(3, 141) | η2partial | ppooled | Post Hoc | |
Speed of processing | ||||||||
BACS | 4.99 | 0.091 | 0.003 | 1 < 4 < 3 < 2 | 3.69 | 0.073 | 0.013 | 1 < 4 = 3 < 2 |
CF-AN | 2.67 | 0.051 | 0.050 | - | 2.62 | 0.053 | 0.054 | - |
TMT-A | 1.24 | 0.024 | 0.299 | - | 1.06 | 0.022 | 0.369 | - |
TMT-B | 2.18 | 0.042 | 0.093 | - | 1.28 | 0.027 | 0.283 | - |
Attention | ||||||||
CPT-IP | 6.15 | 0.110 | <0.001 | 1 < 4 < 2 < 3 | 6.63 | 0.124 | <0.001 | 1 < 4 < 2 < 3 |
Working memory | ||||||||
WMS-III | 2.37 | 0.046 | 0.073 | - | 2.09 | 0.043 | 0.104 | - |
LNS | 3.78 | 0.071 | 0.012 | 1 < 4 < 2 < 3 | 2.91 | 0.058 | 0.037 | 1 < 4 < 2 < 3 |
Verbal learning | ||||||||
HVLT-R | 4.05 | 0.075 | 0.008 | 1 < 2 < 3 < 4 | 2.31 | 0.047 | 0.079 | - |
Visual learning | ||||||||
BVMT-R | 2.28 | 0.044 | 0.081 | - | 1.54 | 0.032 | 0.207 | - |
Reasoning | ||||||||
NAB | 0.85 | 0.017 | 0.467 | - | 0.54 | 0.011 | 0.656 | - |
HR | Stress | NA | HS | FF | TST | SE | WASO | |
---|---|---|---|---|---|---|---|---|
BACS | −0.080 | −0.018 | −0.122 | 0.137 | −0.027 | 0.036 | 0.106 | −0.043 |
CF-AN | −0.045 | −0.017 | −0.029 | −0.094 | −0.054 | −0.094 | 0.034 | −0.053 |
TMT-A | −0.052 | 0.041 | 0.050 | 0.047 | −0.013 | 0.058 | 0.114 | 0.131 |
TMT-B | −0.054 | 0.025 | −0.087 | 0.151 | −0.158 | 0.054 | 0.099 | 0.045 |
CPT-IP | −0.073 | −0.015 | −0.026 | 0.002 | −0.045 | −0.071 | −0.075 | 0.079 |
WMS-III | −0.107 | 0.028 | 0.029 | 0.036 | 0.011 | 0.032 | 0.053 | 0.083 |
LNS | −0.136 | −0.023 | −0.115 | 0.036 | −0.091 | −0.030 | 0.055 | −0.020 |
HVLT-R | −0.158 | 0.006 | −0.114 | 0.023 | −0.155 | −0.008 | 0.056 | −0.092 |
BVMT-R | −0.164 | −0.065 | −0.105 | 0.145 | 0.039 | 0.132 | 0.245 * | −0.128 |
NAB | −0.123 | −0.148 | −0.111 | 0.045 | −0.253 ** | −0.101 | 0.034 | 0.110 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kammerer, M.K.; Nowak, U.; Lincoln, T.M.; Krkovic, K. Revisiting Cognitive Deficits in Outpatients with Psychotic Disorders: A Transdiagnostic Comparison of Cognitive Performance While Accounting for Putative Confounding Factors. Brain Sci. 2024, 14, 446. https://doi.org/10.3390/brainsci14050446
Kammerer MK, Nowak U, Lincoln TM, Krkovic K. Revisiting Cognitive Deficits in Outpatients with Psychotic Disorders: A Transdiagnostic Comparison of Cognitive Performance While Accounting for Putative Confounding Factors. Brain Sciences. 2024; 14(5):446. https://doi.org/10.3390/brainsci14050446
Chicago/Turabian StyleKammerer, Mathias Konstantin, Ulrike Nowak, Tania M. Lincoln, and Katarina Krkovic. 2024. "Revisiting Cognitive Deficits in Outpatients with Psychotic Disorders: A Transdiagnostic Comparison of Cognitive Performance While Accounting for Putative Confounding Factors" Brain Sciences 14, no. 5: 446. https://doi.org/10.3390/brainsci14050446
APA StyleKammerer, M. K., Nowak, U., Lincoln, T. M., & Krkovic, K. (2024). Revisiting Cognitive Deficits in Outpatients with Psychotic Disorders: A Transdiagnostic Comparison of Cognitive Performance While Accounting for Putative Confounding Factors. Brain Sciences, 14(5), 446. https://doi.org/10.3390/brainsci14050446