Spatiotemporal Patterns of White Matter Maturation after Pre-Adolescence: A Diffusion Kurtosis Imaging Study †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Experiments
2.3. Data Processing and Statistical Analysis
- (a)
- Relative changes (ΔA) in percentage between the group mean parameter values (Ā) (i.e., averaged over all voxels for a given anatomy and a given subject and then averaged over the whole group of subjects) according to ΔA = 100 × (Āadult − Āchild)/Āchild, where A indicates one of the DT/KT parameters;
- (b)
- p-values of the between-group two-sided Student’s t-test analysis. In the following, we shall refer to statistical between-group differences as significant if p ≤ 0.00185 (after Bonferroni correction for multiple comparisons, n = 27);
- (c)
- Between-group, age-related effect sizes using Cohen’s d [86] for each anatomically defined structure. The subscript of Cohen’s d indicates the parameter for which it was evaluated, i.e., dMK is Cohen’s d for MK, dFA is Cohen’s d for FA, and so forth.
3. Results
3.1. Whole-Brain WM Histograms and Atlas-Based Analysis of WM Tracts
3.2. Assessment of Maturation Based on dMK
3.3. Patterns of Developmental Change along C-P, P-A, and I-S Directions
4. Discussion
4.1. DT Metrics
4.2. KT Metrics
4.3. Maturation “Ranking” Based on dMK
4.4. Evidence of the Heterochronicity of Fibre Maturation Based on dMK
4.5. Underlying Neurobiological Aspects
4.6. Limitations of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GM | grey matter |
WM | white matter |
DTI | diffusion tensor imaging |
MD | mean diffusivity |
FA | fractional anisotropy |
AF | association fibre |
CF | commissural fibre |
PF | projection fibre |
P-A | posterior-to-anterior |
C-P | central-to-peripheral |
I-S | inferior-to-superior |
DKI | diffusion kurtosis imaging |
MK | mean kurtosis |
KT | kurtosis tensor |
AD | axial diffusivity |
RD | radial diffusivity |
AK | axial kurtosis |
RK | radial kurtosis |
KA | kurtosis anisotropy |
R-L | right-to-left |
References
- Dennis, E.L.; Thompson, P.M. Typical and Atypical Brain Development: A Review of Neuroimaging Studies. Dialogues Clin. Neurosci. 2013, 15, 359–384. [Google Scholar] [CrossRef] [PubMed]
- Giedd, J.N. The Teen Brain: Insights from Neuroimaging. J. Adolesc. Health 2008, 42, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Ladouceur, C.D.; Peper, J.S.; Crone, E.A.; Dahl, R.E. White Matter Development in Adolescence: The Influence of Puberty and Implications for Affective Disorders. Dev. Cogn. Neurosci. 2012, 2, 36–54. [Google Scholar] [CrossRef] [PubMed]
- Hedman, A.M.; van Haren, N.E.M.; Schnack, H.G.; Kahn, R.S.; Hulshoff Pol, H.E. Human Brain Changes across the Life Span: A Review of 56 Longitudinal Magnetic Resonance Imaging Studies. Hum. Brain Mapp. 2012, 33, 1987–2002. [Google Scholar] [CrossRef] [PubMed]
- Mills, K.L.; Tamnes, C.K. Methods and Considerations for Longitudinal Structural Brain Imaging Analysis across Development. Dev. Cogn. Neurosci. 2014, 9, 172–190. [Google Scholar] [CrossRef]
- Lenroot, R.K.; Gogtay, N.; Greenstein, D.K.; Wells, E.M.; Wallace, G.L.; Clasen, L.S.; Blumenthal, J.D.; Lerch, J.; Zijdenbos, A.P.; Evans, A.C.; et al. Sexual Dimorphism of Brain Developmental Trajectories during Childhood and Adolescence. Neuroimage 2007, 36, 1065–1073. [Google Scholar] [CrossRef]
- Lebel, C.; Beaulieu, C. Longitudinal Development of Human Brain Wiring Continues from Childhood into Adulthood. J. Neurosci. 2011, 31, 10937–10947. [Google Scholar] [CrossRef]
- Lebel, C.; Walker, L.; Leemans, A.; Phillips, L.; Beaulieu, C. Microstructural Maturation of the Human Brain from Childhood to Adulthood. Neuroimage 2008, 40, 1044–1055. [Google Scholar] [CrossRef]
- Ge, Y.; Grossman, R.I.; Babb, J.S.; Rabin, M.L.; Mannon, L.J.; Kolson, D.L. Age-Related Total Gray Matter and White Matter Changes in Normal Adult Brain. Part I: Volumetric MR Imaging Analysis. Am. J. Neuroradiol. 2002, 23, 1327–1333. [Google Scholar]
- Westlye, L.T.; Walhovd, K.B.; Dale, A.M.; Bjørnerud, A.; Due-Tønnessen, P.; Engvig, A.; Grydeland, H.; Tamnes, C.K.; Østby, Y.; Fjell, A.M. Life-Span Changes of the Human Brain White Matter: Diffusion Tensor Imaging (DTI) and Volumetry. Cereb. Cortex 2010, 20, 2055–2068. [Google Scholar] [CrossRef]
- Jara, H.; Sakai, O.; Farrher, E.; Oros-Peusquens, A.M.; Shah, N.J.; Alsop, D.C.; Keenan, K.E. Primary Multiparametric Quantitative Brain MRI: State-of-the-Art Relaxometric and Proton Density Mapping Techniques. Radiology 2022, 305, 5–18. [Google Scholar] [CrossRef]
- Shah, N.J. Hybrid MR-PET Imaging: Systems, Methods and Applications; Shah, N.J., Ed.; The Royal Society of Chemistry: London, UK, 2018; ISBN 978-1-78801-074-0. [Google Scholar]
- Jones, D.K. Diffusion MRI: Theory, Methods, and Applications; Oxford University Press: Oxford, UK, 2010; ISBN 978-0-19536-977-9. [Google Scholar]
- Johansen-Berg, H.; Behrens, T.E.J. Diffusion MRI: From Quantitative Measurement to In-Vivo Neuroanatomy, 2nd ed.; Johansen-Berg, H., Behrens, T.E.J., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2009; ISBN 978-0-12374-709-9. [Google Scholar]
- Lebel, C.; Deoni, S. The Development of Brain White Matter Microstructure. Neuroimage 2018, 182, 207–218. [Google Scholar] [CrossRef] [PubMed]
- Lebel, C.; Treit, S.; Beaulieu, C. A Review of Diffusion MRI of Typical White Matter Development from Early Childhood to Young Adulthood. NMR Biomed. 2019, 32, e3778. [Google Scholar] [CrossRef] [PubMed]
- Tamnes, C.K.; Roalf, D.R.; Goddings, A.L.; Lebel, C. Diffusion MRI of White Matter Microstructure Development in Childhood and Adolescence: Methods, Challenges and Progress. Dev. Cogn. Neurosci. 2018, 33, 161–175. [Google Scholar] [CrossRef] [PubMed]
- Basser, P.J.; Jones, D.K. Diffusion-Tensor MRI: Theory, Experimental Design and Data Analysis—A Technical Review. NMR Biomed. 2002, 15, 456–467. [Google Scholar] [CrossRef]
- Basser, P.J.; Pierpaoli, C. Microstructural and Physiological Features of Tissues Elucidated by Quantitative-Diffusion-Tensor MRI. J. Magn. Reson. B 1996, 111, 209–219. [Google Scholar] [CrossRef] [PubMed]
- Hüppi, P.S.; Dubois, J. Diffusion Tensor Imaging of Brain Development. Semin. Fetal Neonatal Med. 2006, 11, 489–497. [Google Scholar] [CrossRef] [PubMed]
- Kochunov, P.; Williamson, D.E.; Lancaster, J.; Fox, P.; Cornell, J.; Blangero, J.; Glahn, D.C. Fractional Anisotropy of Water Diffusion in Cerebral White Matter across the Lifespan. Neurobiol. Aging 2012, 33, 9–20. [Google Scholar] [CrossRef] [PubMed]
- Lebel, C.; Gee, M.; Camicioli, R.; Wieler, M.; Martin, W.; Beaulieu, C. Diffusion Tensor Imaging of White Matter Tract Evolution over the Lifespan. Neuroimage 2012, 60, 340–352. [Google Scholar] [CrossRef]
- Löbel, U.; Sedlacik, J.; Güllmar, D.; Kaiser, W.A.; Reichenbach, J.R.; Mentzel, H.J. Diffusion Tensor Imaging: The Normal Evolution of ADC, RA, FA, and Eigenvalues Studied in Multiple Anatomical Regions of the Brain. Neuroradiology 2009, 51, 253–263. [Google Scholar] [CrossRef]
- Mukherjee, P.; Miller, J.H.; Shimony, J.S.; Philip, J.V.; Nehra, D.; Snyder, A.Z.; Conturo, T.E.; Neil, J.J.; McKinstry, R.C. Diffusion-Tensor MR Imaging of Gray and White Matter Development during Normal Human Brain Maturation. Am. J. Neuroradiol. 2002, 23, 1445–1456. [Google Scholar]
- Sala, S.; Agosta, F.; Pagani, E.; Copetti, M.; Comi, G.; Filippi, M. Microstructural Changes and Atrophy in Brain White Matter Tracts with Aging. Neurobiol. Aging 2012, 33, 488–498.e2. [Google Scholar] [CrossRef] [PubMed]
- Salat, D.H.; Tuch, D.S.; Greve, D.N.; Van Der Kouwe, A.J.W.; Hevelone, N.D.; Zaleta, A.K.; Rosen, B.R.; Fischl, B.; Corkin, S.; Diana Rosas, H.; et al. Age-Related Alterations in White Matter Microstructure Measured by Diffusion Tensor Imaging. Neurobiol. Aging 2005, 26, 1215–1227. [Google Scholar] [CrossRef]
- Yoshida, S.; Oishi, K.; Faria, A.V.; Mori, S. Diffusion Tensor Imaging of Normal Brain Development. Proc. Pediatr. Radiol. 2013, 43, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Jahanshad, N.; Kochunov, P.V.; Sprooten, E.; Mandl, R.C.; Nichols, T.E.; Almasy, L.; Blangero, J.; Brouwer, R.M.; Curran, J.E.; de Zubicaray, G.I.; et al. Multi-Site Genetic Analysis of Diffusion Images and Voxelwise Heritability Analysis: A Pilot Project of the ENIGMA-DTI Working Group. Neuroimage 2013, 81, 455–469. [Google Scholar] [CrossRef] [PubMed]
- Kochunov, P.; Jahanshad, N.; Marcus, D.; Winkler, A.; Sprooten, E.; Nichols, T.E.; Wright, S.N.; Hong, L.E.; Patel, B.; Behrens, T.; et al. Heritability of Fractional Anisotropy in Human White Matter: A Comparison of Human Connectome Project and ENIGMA-DTI Data. Neuroimage 2015, 111, 300–311. [Google Scholar] [CrossRef] [PubMed]
- Nagy, Z.; Westerberg, H.; Klingberg, T. Maturation of White Matter Is Associated with the Development of Cognitive Functions during Childhood. J. Cogn. Neurosci. 2004, 16, 1227–1233. [Google Scholar] [CrossRef]
- Schmithorst, V.J.; Wilkes, M.; Dardzinski, B.J.; Holland, S.K. Cognitive Functions Correlate with White Matter Architecture in a Normal Pediatric Population: A Diffusion Tensor HRI Study. Hum. Brain Mapp. 2005, 26, 139–147. [Google Scholar] [CrossRef]
- Bartzokis, G.; Lu, P.H.; Tingus, K.; Mendez, M.F.; Richard, A.; Peters, D.G.; Oluwadara, B.; Barrall, K.A.; Finn, J.P.; Villablanca, P.; et al. Lifespan Trajectory of Myelin Integrity and Maximum Motor Speed. Neurobiol. Aging 2010, 31, 1554–1562. [Google Scholar] [CrossRef]
- Deutsch, G.K.; Dougherty, R.F.; Bammer, R.; Siok, W.T.; Gabrieli, J.D.E.; Wandell, B. Children’s Reading Performance Is Correlated with White Matter Structure Measured by Diffusion Tensor Imaging. Cortex 2005, 41, 354–363. [Google Scholar] [CrossRef]
- Fears, S.C.; Schür, R.; Sjouwerman, R.; Service, S.K.; Araya, C.; Araya, X.; Bejarano, J.; Knowles, E.; Gomez-Makhinson, J.; Lopez, M.C.; et al. Brain Structure-Function Associations in Multi-Generational Families Genetically Enriched for Bipolar Disorder. Brain 2015, 138, 2087–2102. [Google Scholar] [CrossRef]
- Kochunov, P.; Coyle, T.; Lancaster, J.; Robin, D.A.; Hardies, J.; Kochunov, V.; Bartzokis, G.; Stanley, J.; Royall, D.; Schlosser, A.E.; et al. Processing Speed Is Correlated with Cerebral Health Markers in the Frontal Lobes as Quantified by Neuroimaging. Neuroimage 2010, 49, 1190–1199. [Google Scholar] [CrossRef] [PubMed]
- Kochunov, P.; Thompson, P.M.; Winkler, A.; Morrissey, M.; Fu, M.; Coyle, T.R.; Du, X.; Muellerklein, F.; Savransky, A.; Gaudiot, C.; et al. The Common Genetic Influence over Processing Speed and White Matter Microstructure: Evidence from the Old Order Amish and Human Connectome Projects. Neuroimage 2016, 125, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Madden, D.J.; Bennett, I.J.; Burzynska, A.; Potter, G.G.; Chen, N.K.; Song, A.W. Diffusion Tensor Imaging of Cerebral White Matter Integrity in Cognitive Aging. Biochim. Biophys. Acta Mol. Basis Dis. 2012, 1822, 386–400. [Google Scholar] [CrossRef] [PubMed]
- Voineskos, A.N.; Rajji, T.K.; Lobaugh, N.J.; Miranda, D.; Shenton, M.E.; Kennedy, J.L.; Pollock, B.G.; Mulsant, B.H. Age-Related Decline in White Matter Tract Integrity and Cognitive Performance: A DTI Tractography and Structural Equation Modeling Study. Neurobiol. Aging 2012, 33, 21–34. [Google Scholar] [CrossRef] [PubMed]
- Wright, S.N.; Hong, L.E.; Winkler, A.M.; Chiappelli, J.; Nugent, K.; Muellerklein, F.; Du, X.; Rowland, L.M.; Wang, D.J.J.; Kochunov, P. Perfusion Shift from White to Gray Matter May Account for Processing Speed Deficits in Schizophrenia. Hum. Brain Mapp. 2015, 36, 3793–3804. [Google Scholar] [CrossRef]
- Dubois, J.; Dehaene-Lambertz, G.; Mangin, J.-F.; Le Bihan, D.; Hüppi, P.S.; Hertz-Pannier, L. Brain Development of Infant and MRI by Diffusion Tensor Imaging. Neurophysiol. Clin. 2012, 42, 1–9. [Google Scholar] [CrossRef]
- Schmithorst, V.J.; Yuan, W. White Matter Development during Adolescence as Shown by Diffusion MRI. Brain Cogn. 2010, 72, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Stiles, J.; Jernigan, T.L. The Basics of Brain Development. Neuropsychol. Rev. 2010, 20, 327–348. [Google Scholar] [CrossRef]
- Asato, M.R.; Terwilliger, R.; Woo, J.; Luna, B. White Matter Development in Adolescence: A DTI Study. Cereb. Cortex 2010, 20, 2122–2131. [Google Scholar] [CrossRef]
- Colby, J.B.; Van Horn, J.D.; Sowell, E.R. Quantitative in Vivo Evidence for Broad Regional Gradients in the Timing of White Matter Maturation during Adolescence. Neuroimage 2011, 54, 25–31. [Google Scholar] [CrossRef]
- Gerván, P.; Soltész, P.; Filep, O.; Berencsi, A.; Kovács, I. Posterior-Anterior Brain Maturation Reflected in Perceptual, Motor and Cognitive Performance. Front. Psychol. 2017, 8, 674. [Google Scholar] [CrossRef]
- Giedd, J.N.; Blumenthal, J.; Jeffries, N.O.; Castellanos, F.X.; Liu, H.; Zijdenbos, A.; Paus, T.; Evans, A.C.; Rapoport, J.L. Brain Development during Childhood and Adolescence: A Longitudinal MRI Study [2]. Nat. Neurosci. 1999, 2, 861–863. [Google Scholar] [CrossRef]
- Gogtay, N.; Giedd, J.N.; Lusk, L.; Hayashi, K.M.; Greenstein, D.; Vaituzis, A.C.; Nugent, T.F.; Herman, D.H.; Clasen, L.S.; Toga, A.W.; et al. Dynamic Mapping of Human Cortical Development during Childhood through Early Adulthood. Proc. Natl. Acad. Sci. USA 2004, 101, 8174–8179. [Google Scholar] [CrossRef]
- Huttenlocher, P.R. Morphometric Study of Human Cerebral Cortex Development. Neuropsychologia 1990, 28, 517–527. [Google Scholar] [CrossRef]
- Paus, T. Mapping Brain Maturation and Cognitive Development during Adolescence. Trends Cogn. Sci. 2005, 9, 60–68. [Google Scholar] [CrossRef]
- Simmonds, D.J.; Hallquist, M.N.; Asato, M.; Luna, B. Developmental Stages and Sex Differences of White Matter and Behavioral Development through Adolescence: A Longitudinal Diffusion Tensor Imaging (DTI) Study. Neuroimage 2014, 92, 356–368. [Google Scholar] [CrossRef]
- Sowell, E.R.; Peterson, B.S.; Thompson, P.M.; Welcome, S.E.; Henkenius, A.L.; Toga, A.W. Mapping Cortical Change across the Human Life Span. Nat. Neurosci. 2003, 6, 309–315. [Google Scholar] [CrossRef]
- Sowell, E.R.; Thompson, P.M.; Leonard, C.M.; Welcome, S.E.; Kan, E.; Toga, A.W. Longitudinal Mapping of Cortical Thickness and Brain Growth in Normal Children. J. Neurosci. 2004, 24, 8223–8231. [Google Scholar] [CrossRef]
- Sowell, E.R.; Trauner, D.A.; Gamst, A.; Jernigan, T.L. Development of Cortical and Subcortical Brain Structures in Childhood and Adolescence: A Structural MRI Study. Dev. Med. Child Neurol. 2002, 44, 4–16. [Google Scholar] [CrossRef]
- Krogsrud, S.K.; Fjell, A.M.; Tamnes, C.K.; Grydeland, H.; Mork, L.; Due-Tønnessen, P.; Bjørnerud, A.; Sampaio-Baptista, C.; Andersson, J.; Johansen-Berg, H.; et al. Changes in White Matter Microstructure in the Developing Brain—A Longitudinal Diffusion Tensor Imaging Study of Children from 4 to 11 years of Age. Neuroimage 2016, 124, 473–486. [Google Scholar] [CrossRef]
- Jensen, J.H.; Helpern, J.A.; Ramani, A.; Lu, H.; Kaczynski, K. Diffusional Kurtosis Imaging: The Quantification of Non-Gaussian Water Diffusion by Means of Magnetic Resonance Imaging. Magn. Reson. Med. 2005, 53, 1432–1440. [Google Scholar] [CrossRef]
- Jensen, J.H.; Helpern, J.A. MRI Quantification of Non-Gaussian Water Diffusion by Kurtosis Analysis. NMR Biomed. 2010, 23, 698–710. [Google Scholar] [CrossRef]
- Grinberg, F.; Maximov, I.I.I.; Farrher, E.; Neuner, I.; Amort, L.; Thönneßen, H.; Oberwelland, E.; Konrad, K.; Shah, N.J.; Jon Shah, N. Diffusion Kurtosis Metrics as Biomarkers of Microstructural Development: A Comparative Study of a Group of Children and a Group of Adults. Neuroimage 2017, 144, 12–22. [Google Scholar] [CrossRef]
- Paydar, A.; Fieremans, E.; Nwankwo, J.I.; Lazar, M.; Sheth, H.D.; Adisetiyo, V.; Helpern, J.A.; Jensen, J.H.; Milla, S.S. Diffusional Kurtosis Imaging of the Developing Brain. Am. J. Neuroradiol. 2014, 35, 808–814. [Google Scholar] [CrossRef]
- Helpern, J.A.; Adisetiyo, V.; Falangola, M.F.; Hu, C.; Di Martino, A.; Williams, K.; Castellanos, F.X.; Jensen, J.H. Preliminary Evidence of Altered Gray and White Matter Microstructural Development in the Frontal Lobe of Adolescents with Attention-Deficit Hyperactivity Disorder: A Diffusional Kurtosis Imaging Study. J. Magn. Reson. Imaging 2011, 33, 17–23. [Google Scholar] [CrossRef]
- Li, X.; Gao, J.; Hou, X.; Chan, K.C.; Ding, A.; Sun, Q.; Wan, M.; Wu, E.X.; Yang, J. Diffusion Kurtosis Imaging with Tract-Based Spatial Statistics Reveals White Matter Alterations in Preschool Children. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, San Diego, CA, USA, 28 August–1 September 2012. [Google Scholar]
- Coutu, J.P.; Chen, J.J.; Rosas, H.D.; Salat, D.H. Non-Gaussian Water Diffusion in Aging White Matter. Neurobiol. Aging 2014, 35, 1412–1421. [Google Scholar] [CrossRef]
- Falangola, M.F.; Jensen, J.H.; Babb, J.S.; Hu, C.; Castellanos, F.X.; Di Martino, A.; Ferris, S.H.; Helpern, J.A. Age-Related Non-Gaussian Diffusion Patterns in the Prefrontal Brain. J. Magn. Reson. Imaging 2008, 28, 1345–1350. [Google Scholar] [CrossRef]
- Gong, N.J.; Wong, C.S.; Chan, C.C.; Leung, L.M.; Chu, Y.C. Aging in Deep Gray Matter and White Matter Revealed by Diffusional Kurtosis Imaging. Neurobiol. Aging 2014, 35, 2203–2216. [Google Scholar] [CrossRef]
- Lätt, J.; Nilsson, M.; Wirestam, R.; Ståhlberg, F.; Karlsson, N.; Cand, M.; Johansson, M.; Sundgren, P.C.; Van Westen, D. Regional Values of Diffusional Kurtosis Estimates in the Healthy Brain. J. Magn. Reson. Imaging 2013, 37, 610–618. [Google Scholar] [CrossRef]
- Ng, S.H.; Hsu, W.C.; Wai, Y.Y.; Der Lee, J.; Chan, H.L.; Chen, Y.L.; Fung, H.C.; Wu, Y.R.; Tsai, M.L.; Wang, J.J. Sex Dimorphism of Cortical Water Diffusion in Normal Aging Measured by Magnetic Resonance Imaging. Front. Aging Neurosci. 2013, 5, 71. [Google Scholar] [CrossRef]
- Das, S.K.; Wang, J.L.; Bing, L.; Bhetuwal, A.; Yang, H.F. Regional Values of Diffusional Kurtosis Estimates in the Healthy Brain during Normal Aging. Clin. Neuroradiol. 2017, 27, 283–298. [Google Scholar] [CrossRef]
- Cheung, J.S.; Wang, E.; Lo, E.H.; Sun, P.Z. Stratification of Heterogeneous Diffusion MRI Ischemic Lesion with Kurtosis Imaging: Evaluation of Mean Diffusion and Kurtosis MRI Mismatch in an Animal Model of Transient Focal Ischemia. Stroke 2012, 43, 2252–2254. [Google Scholar] [CrossRef]
- Grinberg, F.; Ciobanu, L.; Farrher, E.; Shah, N.J. Diffusion Kurtosis Imaging and Log-Normal Distribution Function Imaging Enhance the Visualisation of Lesions in Animal Stroke Models. NMR Biomed. 2012, 25, 1295–1304. [Google Scholar] [CrossRef]
- Grinberg, F.; Farrher, E.; Ciobanu, L.; Geffroy, F.; Le Bihan, D.; Shah, N.J. Non-Gaussian Diffusion Imaging for Enhanced Contrast of Brain Tissue Affected by Ischemic Stroke. PLoS ONE 2014, 9, e89225. [Google Scholar] [CrossRef]
- Hui, E.S.; Du, F.; Huang, S.; Shen, Q.; Duong, T.Q. Spatiotemporal Dynamics of Diffusional Kurtosis, Mean Diffusivity and Perfusion Changes in Experimental Stroke. Brain Res. 2012, 1451, 100–109. [Google Scholar] [CrossRef]
- Hui, E.S.; Fieremans, E.; Jensen, J.H.; Tabesh, A.; Feng, W.; Bonilha, L.; Spampinato, M.V.; Adams, R.; Helpern, J.A. Stroke Assessment with Diffusional Kurtosis Imaging. Stroke 2012, 43, 2968–2973. [Google Scholar] [CrossRef]
- Jensen, J.H.; Falangola, M.F.; Hu, C.; Tabesh, A.; Rapalino, O.; Lo, C.; Helpern, J.A. Preliminary Observations of Increased Diffusional Kurtosis in Human Brain Following Recent Cerebral Infarction. NMR Biomed. 2011, 24, 452–457. [Google Scholar] [CrossRef]
- Blockx, I.; De Groof, G.; Verhoye, M.; Van Audekerke, J.; Raber, K.; Poot, D.; Sijbers, J.; Osmand, A.P.; Von Hörsten, S.; Van der Linden, A. Microstructural Changes Observed with DKI in a Transgenic Huntington Rat Model: Evidence for Abnormal Neurodevelopment. Neuroimage 2012, 59, 957–967. [Google Scholar] [CrossRef]
- Gong, N.J.; Wong, C.S.; Chan, C.C.; Leung, L.M.; Chu, Y.C. Correlations between Microstructural Alterations and Severity of Cognitive Deficiency in Alzheimer’s Disease and Mild Cognitive Impairment: A Diffusional Kurtosis Imaging Study. Magn. Reson. Imaging 2013, 31, 688–694. [Google Scholar] [CrossRef]
- Wang, J.J.; Lin, W.Y.; Lu, C.S.; Weng, Y.H.; Ng, S.H.; Wang, C.H.; Liu, H.L.; Hsieh, R.H.; Wan, Y.L.; Wai, Y.Y. Parkinson Disease: Diagnostic Utility of Diffusion Kurtosis Imaging. Radiology 2011, 261, 210–217. [Google Scholar] [CrossRef]
- Gao, J.; Feng, S.T.; Wu, B.; Gong, N.; Lu, M.; Wu, P.M.; Wang, H.; He, X.; Huang, B. Microstructural Brain Abnormalities of Children of Idiopathic Generalized Epilepsy with Generalized Tonic-Clonic Seizure: A Voxel-Based Diffusional Kurtosis Imaging Study. J. Magn. Reson. Imaging 2015, 41, 1088–1095. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Zhang, Y.; Wong, C.S.; Wu, P.M.; Zhang, Z.; Gao, J.; Qiu, D.; Huang, B. Diffusion Abnormalities in Temporal Lobes of Children with Temporal Lobe Epilepsy: A Preliminary Diffusional Kurtosis Imaging Study and Comparison with Diffusion Tensor Imaging. NMR Biomed. 2012, 25, 1369–1377. [Google Scholar] [CrossRef]
- Zhang, Y.; Yan, X.; Gao, Y.; Xu, D.; Wu, J.; Li, Y. A Preliminary Study of Epilepsy in Children Using Diffusional Kurtosis Imaging. Clin. Neuroradiol. 2013, 23, 293–300. [Google Scholar] [CrossRef]
- Adisetiyo, V.; Tabesh, A.; Di Martino, A.; Falangola, M.F.; Castellanos, F.X.; Jensen, J.H.; Helpern, J.A. Attention-Deficit/Hyperactivity Disorder without Comorbidity Is Associated with Distinct Atypical Patterns of Cerebral Microstructural Development. Hum. Brain Mapp. 2014, 35, 2148–2162. [Google Scholar] [CrossRef]
- Poot, D.H.J.; den Dekker, A.J.; Achten, E.; Verhoye, M.; Sijbers, J. Optimal Experimental Design for Diffusion Kurtosis Imaging. Med. Imaging IEEE Trans. 2010, 29, 819–829. [Google Scholar] [CrossRef]
- Johansen-Berg, H.; Behrens, T.E.J.; Robson, M.D.; Drobnjak, I.; Rushworth, M.F.S.; Brady, J.M.; Smith, S.M.; Higham, D.J.; Matthews, P.M. Changes in Connectivity Profiles Define Functionally Distinct Regions in Human Medial Frontal Cortex. Proc. Natl. Acad. Sci. USA 2004, 101, 13335–13340. [Google Scholar] [CrossRef]
- André, E.D.; Grinberg, F.; Farrher, E.; Maximov, I.I.; Shah, N.J.; Meyer, C.; Jaspar, M.; Muto, V.; Phillips, C.; Balteau, E. Influence of Noise Correction on Intra- and Inter-Subject Variability of Quantitative Metrics in Diffusion Kurtosis Imaging. PLoS ONE 2014, 9, e94531. [Google Scholar] [CrossRef]
- McGibney, G.; Smith, M.R. An Unbiased Signal-to-Noise Ratio Measure for Magnetic Resonance Images. Med. Phys. 1993, 20, 1077–1078. [Google Scholar] [CrossRef]
- Miller, A.J.; Joseph, P.M. The Use of Power Images to Perform Quantitative Analysis on Low SNR MR Images. Magn. Reson. Imaging 1993, 11, 1051–1056. [Google Scholar] [CrossRef]
- Leemans, A.; Jeurissen, B.; Sijbers, J.; Jones, D.K. ExploreDTI: A Graphical Toolbox for Processing, Analizing and Visualizing Diffusion MR Data. Proc. Int. Soc. Magn. Reson. Med. 2009, 17, 3537. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Earlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Smith, S.M.; Jenkinson, M.; Johansen-Berg, H.; Rueckert, D.; Nichols, T.E.; Mackay, C.E.; Watkins, K.E.; Ciccarelli, O.; Cader, M.Z.; Matthews, P.M.; et al. Tract-Based Spatial Statistics: Voxelwise Analysis of Multi-Subject Diffusion Data. Neuroimage 2006, 31, 1487–1505. [Google Scholar] [CrossRef]
- Ellis, P.D. The Essential Guide to Effect Sizes: Statistical Power, Meta-Analysis, and the Interpretation of Research Results; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Sawilowsky, S.S. New Effect Size Rules of Thumb. J. Mod. Appl. Stat. Methods 2009, 8, 597–599. [Google Scholar] [CrossRef]
- Chaddock-Heyman, L.; Erickson, K.I.; Voss, M.W.; Powers, J.P.; Knecht, A.M.; Pontifex, M.B.; Drollette, E.S.; Moore, R.D.; Raine, L.B.; Scudder, M.R.; et al. White Matter Microstructure Is Associated with Cognitive Control in Children. Biol. Psychol. 2013, 94, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Roberts, R.E.; Anderson, E.J.; Husain, M. White Matter Microstructure and Cognitive Function. Neuroscientist 2013, 19, 8–15. [Google Scholar] [CrossRef]
- Hasan, K.M.; Kamali, A.; Abid, H.; Kramer, L.A.; Fletcher, J.M.; Ewing-Cobbs, L. Quantification of the Spatiotemporal Microstructural Organization of the Human Brain Association, Projection and Commissural Pathways across the Lifespan Using Diffusion Tensor Tractography. Brain Struct. Funct. 2010, 214, 361–373. [Google Scholar] [CrossRef] [PubMed]
- Szczepankiewicz, F.; Lätt, J.; Wirestam, R.; Leemans, A.; Sundgren, P.; van Westen, D.; Ståhlberg, F.; Nilsson, M. Variability in Diffusion Kurtosis Imaging: Impact on Study Design, Statistical Power and Interpretation. Neuroimage 2013, 76, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Cox, S.R.; Ritchie, S.J.; Tucker-Drob, E.M.; Liewald, D.C.; Hagenaars, S.P.; Davies, G.; Wardlaw, J.M.; Gale, C.R.; Bastin, M.E.; Deary, I.J. Ageing and Brain White Matter Structure in 3,513 UK Biobank Participants. Nat. Commun. 2016, 7, 13629. [Google Scholar] [CrossRef]
- Taki, Y.; Thyreau, B.; Hashizume, H.; Sassa, Y.; Takeuchi, H.; Wu, K.; Kotozaki, Y.; Nouchi, R.; Asano, M.; Asano, K.; et al. Linear and Curvilinear Correlations of Brain White Matter Volume, Fractional Anisotropy, and Mean Diffusivity with Age Using Voxel-Based and Region-of-Interest Analyses in 246 Healthy Children. Hum. Brain Mapp. 2013, 34, 1842–1856. [Google Scholar] [CrossRef]
- Azmitia, E.C.; Segal, M. An Autoradiographic Analysis of the Differential Ascending Projections of the Dorsal and Median Raphe Nuclei in the Rat. J. Comp. Neurol. 1978, 179, 641–667. [Google Scholar] [CrossRef]
- Goldman-Rakic, P.S.; Selemon, L.D.; Schwartz, M.L. Dual Pathways Connecting the Dorsolateral Prefrontal Cortex with the Hippocampal Formation and Parahippocampal Cortex in the Rhesus Monkey. Neuroscience 1984, 12, 719–743. [Google Scholar] [CrossRef] [PubMed]
- Supekar, K.; Uddin, L.Q.; Prater, K.; Amin, H.; Greicius, M.D.; Menon, V. Development of Functional and Structural Connectivity within the Default Mode Network in Young Children. Neuroimage 2010, 52, 290–301. [Google Scholar] [CrossRef] [PubMed]
- Cullen, K.R.; Klimes-Dougan, B.; Muetzel, R.; Mueller, B.A.; Camchong, J.; Houri, A.; Kurma, S.; Lim, K.O. Altered White Matter Microstructure in Adolescents with Major Depression: A Preliminary Study. J. Am. Acad. Child Adolesc. Psychiatry 2010, 49, 173–183.e1. [Google Scholar] [CrossRef] [PubMed]
- Makris, N.; Schlerf, J.E.; Hodge, S.M.; Haselgrove, C.; Albaugh, M.D.; Seidman, L.J.; Rauch, S.L.; Harris, G.; Biederman, J.; Caviness, V.S.; et al. MRI-Based Surface-Assisted Parcellation of Human Cerebellar Cortex: An Anatomically Specified Method with Estimate of Reliability. Neuroimage 2005, 25, 1146–1160. [Google Scholar] [CrossRef] [PubMed]
- Olson, I.R.; Der Heide, R.J.V.; Alm, K.H.; Vyas, G. Development of the Uncinate Fasciculus: Implications for Theory and Developmental Disorders. Dev. Cogn. Neurosci. 2015, 14, 50–61. [Google Scholar] [CrossRef] [PubMed]
- Von Der Heide, R.J.; Skipper, L.M.; Klobusicky, E.; Olson, I.R. Dissecting the Uncinate Fasciculus: Disorders, Controversies and a Hypothesis. Brain 2013, 136, 1692–1707. [Google Scholar] [CrossRef] [PubMed]
- Kawashima, T.; Nakamura, M.; Bouix, S.; Kubicki, M.; Salisbury, D.F.; Westin, C.F.; McCarley, R.W.; Shenton, M.E. Uncinate Fasciculus Abnormalities in Recent Onset Schizophrenia and Affective Psychosis: A Diffusion Tensor Imaging Study. Schizophr. Res. 2009, 110, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Kubicki, M.; Westin, C.F.; Maier, S.E.; Frumin, M.; Nestor, P.G.; Salisbury, D.F.; Kikinis, R.; Jolesz, F.A.; McCarley, R.W.; Shenton, M.E. Uncinate Fasciculus Findings in Schizophrenia: A Magnetic Resonance Diffusion Tensor Imaging Study. Am. J. Psychiatry 2002, 159, 813–820. [Google Scholar] [CrossRef]
- D’Anna, L.; Mesulam, M.M.; Thiebaut De Schotten, M.; Dell’Acqua, F.; Murphy, D.; Wieneke, C.; Martersteck, A.; Cobia, D.; Rogalski, E.; Catani, M. Frontotemporal Networks and Behavioral Symptoms in Primary Progressive Aphasia. Neurology 2016, 86, 1393–1399. [Google Scholar] [CrossRef]
- Lin, J.J.; Riley, J.D.; Juranek, J.; Cramer, S.C. Vulnerability of the Frontal-Temporal Connections in Temporal Lobe Epilepsy. Epilepsy Res. 2008, 82, 162–170. [Google Scholar] [CrossRef]
- Metzler-Baddeley, C.; Jones, D.K.; Belaroussi, B.; Aggleton, J.P.; O’Sullivan, M.J. Frontotemporal Connections in Episodic Memory and Aging: A Diffusion MRI Tractography Study. J. Neurosci. 2011, 31, 13236–13245. [Google Scholar] [CrossRef] [PubMed]
- Kochunov, P.; Ganjgahi, H.; Winkler, A.; Kelly, S.; Shukla, D.K.; Du, X.; Jahanshad, N.; Rowland, L.; Sampath, H.; Patel, B.; et al. Heterochronicity of White Matter Development and Aging Explains Regional Patient Control Differences in Schizophrenia. Hum. Brain Mapp. 2016, 37, 4673–4688. [Google Scholar] [CrossRef] [PubMed]
- Snook, L.; Paulson, L.A.; Roy, D.; Phillips, L.; Beaulieu, C. Diffusion Tensor Imaging of Neurodevelopment in Children and Young Adults. Neuroimage 2005, 26, 1164–1173. [Google Scholar] [CrossRef]
- Aboitiz, F.; Montiel, J. One Hundred Million Years of Interhemispheric Communication: The History of the Corpus Callosum. Brazilian J. Med. Biol. Res. 2003, 36, 409–420. [Google Scholar] [CrossRef] [PubMed]
- Hinkley, L.B.N.; Marco, E.J.; Brown, E.G.; Bukshpun, P.; Gold, J.; Hill, S.; Findlay, A.M.; Jeremy, R.J.; Wakahiro, M.L.; James Barkovich, A.; et al. The Contribution of the Corpus Callosum to Language Lateralization. J. Neurosci. 2016, 36, 4522–4533. [Google Scholar] [CrossRef] [PubMed]
- Hinkley, L.B.N.; Marco, E.J.; Findlay, A.M.; Honma, S.; Jeremy, R.J.; Strominger, Z.; Bukshpun, P.; Wakahiro, M.; Brown, W.S.; Paul, L.K.; et al. The Role of Corpus Callosum Development in Functional Connectivity and Cognitive Processing. PLoS ONE 2012, 7, e39804. [Google Scholar] [CrossRef] [PubMed]
- Aubert-Broche, B.; Fonov, V.; Leppert, I.; Pike, G.B.; Collins, D.L. Human Brain Myelination from Birth to 4.5 Years. Med. Image Comput. Comput. Assist. Interv. 2008, 5242, 180–187. [Google Scholar]
- Deoni, S.C.L.; Mercure, E.; Blasi, A.; Gasston, D.; Thomson, A.; Johnson, M.; Williams, S.C.R.; Murphy, D.G.M. Mapping Infant Brain Myelination with Magnetic Resonance Imaging. J. Neurosci. 2011, 31, 784–791. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Lin, W.; Chen, Y.; Gerig, G.; Smith, J.K.; Jewells, V.; Gilmore, J.H. Temporal and Spatial Development of Axonal Maturation and Myelination of White Matter in the Developing Brain. Am. J. Neuroradiol. 2009, 30, 290–296. [Google Scholar] [CrossRef]
- Fieremans, E.; Jensen, J.H.; Helpern, J.A. White Matter Characterization with Diffusional Kurtosis Imaging. Neuroimage 2011, 58, 177–188. [Google Scholar] [CrossRef]
- Grinberg, F.; Farrher, E.; Kaffanke, J.; Oros-Peusquens, A.-M.; Shah, N.J. Non-Gaussian Diffusion in Human Brain Tissue at High b-Factors as Examined by a Combined Diffusion Kurtosis and Biexponential Diffusion Tensor Analysis. Neuroimage 2011, 57, 1087–1102. [Google Scholar] [CrossRef] [PubMed]
- Panagiotaki, E.; Schneider, T.; Siow, B.; Hall, M.G.; Lythgoe, M.F.; Alexander, D.C. Compartment Models of the Diffusion MR Signal in Brain White Matter: A Taxonomy and Comparison. Neuroimage 2012, 59, 2241–2254. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Schneider, T.; Wheeler-Kingshott, C.A.; Alexander, D.C. NODDI: Practical in Vivo Neurite Orientation Dispersion and Density Imaging of the Human Brain. Neuroimage 2012, 61, 1000–1016. [Google Scholar] [CrossRef] [PubMed]
- Jelescu, I.O.; Budde, M.D. Design and Validation of Diffusion MRI Models of White Matter. Front. Phys. 2017, 5, 61. [Google Scholar] [CrossRef] [PubMed]
- Pasternak, O.; Sochen, N.; Gur, Y.; Intrator, N.; Assaf, Y. Free Water Elimination and Mapping from Diffusion MRI. Magn. Reson. Med. 2009, 62, 717–730. [Google Scholar] [CrossRef] [PubMed]
- Farrher, E.; Grinberg, F.; Kuo, L.-W.; Cho, K.-H.; Buschbeck, R.P.; Chen, M.-J.; Chiang, H.-H.; Choi, C.-H.; Shah, N.J. Dedicated diffusion phantoms for the investigation of free water elimination and mapping: Insights into the influence of T2 relaxation properties. NMR Biomed. 2020, 33, e4210. [Google Scholar] [CrossRef] [PubMed]
- Farrher, E.; Chiang, C.-W.; Cho, K.-H.; Grinberg, F.; Buschbeck, R.P.; Chen, M.-J.; Wu, K.-J.; Wang, Y.; Huang, S.-M.; Abbas, Z.; et al. Spatiotemporal characterisation of ischaemic lesions in transient stroke animal models using diffusion free water elimination and mapping MRI with echo time dependence. Neuroimage 2021, 244, 118605. [Google Scholar] [CrossRef]
- Collier, Q.; Veraart, J.; Jeurissen, B.; Vanhevel, F.; Pullens, P.; Parizel, P.M.; den Dekker, A.J.; Sijbers, J. Diffusion kurtosis imaging with free water elimination: A bayesian estimation approach. Magn. Reson. Med. 2018, 80, 802–813. [Google Scholar] [CrossRef]
Number | WM Tract | Abbreviation |
---|---|---|
1. | Middle cerebellar peduncle | MCP |
2. | Pontine crossing tract | PCT |
3. | Genu of corpus callosum | GCC |
4. | Body of corpus callosum | BCC |
5. | Splenium of corpus callosum | SCC |
6. | Fornix column and body | FCB |
7. | Corticospinal tract | CST |
8. | Medial lemniscus | ML |
9. | Inferior cerebellar peduncle | ICP |
10. | Superior cerebellar peduncle | SCP |
11. | Cerebral peduncle | CP |
12. | Anterior limb of internal capsule | ALIC |
13. | Posterior limb of internal capsule | PLIC |
14. | Retrolenticular part of internal capsule | RPIC |
15. | Anterior corona radiata | ACR |
16. | Superior corona radiata | SCR |
17. | Posterior corona radiata | PCR |
18. | Posterior thalamic radiation (including optic radiation) | PTR |
19. | Sagittal stratum (including inferior longitudinal fasciculus and inferior fronto-occipital fasciculus) | SS |
20. | External capsule | EC |
21. | Cingulum (cingulate gyrus) | Cg |
22. | Cingulum (hippocampus) | Ch |
23. | Fornix (crus) stria terminalis | FST |
24. | Superior longitudinal fasciculus | SLF |
25. | Superior fronto-occipital fasciculus | SFOF |
26. | Uncinate fasciculus | UF |
27. | Tapetum | TAP |
FA | MD | AD | RD | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
WM Tract | Δ [%] | dFA | p | Δ [%] | dMD | p | Δ [%] | dAD | p | Δ [%] | dRD | p |
MCP | 0.5 | 0.17 | 6 × 10−1 | −3.7 | 1.07 | 2 × 10−3 | −4.8 | 1.45 | 6 × 10−5 * | −2.6 | 0.64 | 5 × 10−2 |
PCT | 0.0 | 0.00 | 1 × 100 | −10 | 1.55 | 2 × 10−5 * | −10.3 | 1.95 | 4 × 10−7 * | −9.7 | 1.17 | 8 × 10−4 * |
GCC | −0.5 | 0.12 | 7 × 10−1 | 0.8 | 0.12 | 7 × 10−1 | −0.1 | 0.02 | 1 × 100 | 1.8 | 0.2 | 5 × 10−1 |
BCC | 2.8 | 0.51 | 1 × 10−1 | 0.5 | 0.1 | 8 × 10−1 | 1.6 | 0.45 | 2 × 10−1 | −0.8 | 0.08 | 8 × 10−1 |
SCC | 1.1 | 0.36 | 3 × 10−1 | 0.4 | 0.1 | 8 × 10−1 | 0.4 | 0.11 | 7 × 10−1 | 0.6 | 0.09 | 8 × 10−1 |
FCB | −6.4 | 0.57 | 8 × 10−2 | 13.5 | 1.13 | 1 × 10−3 * | 11 | 1.33 | 2 × 10−4 * | 15.8 | 1.00 | 3 × 10−3 |
CST | 5.5 | 1.18 | 7 × 10−4 * | −2.0 | 0.4 | 2 × 10−1 | 0.1 | 0.01 | 1 × 10−1 | −4.2 | 0.61 | 6 × 10−2 |
ML | 1.3 | 0.32 | 3 × 10−1 | −2.3 | 0.49 | 1 × 10−1 | −1.5 | 0.31 | 3 × 10−1 | −3.2 | 0.57 | 8 × 10−2 |
ICP | 7.8 | 1.24 | 4 × 10−4 * | −0.2 | 0.07 | 8 × 10−1 | 1.9 | 0.72 | 3 × 10−2 | −2.3 | 0.44 | 8 × 10−1 |
SCP | 5.1 | 1.20 | 6 × 10−4 * | −2.6 | 0.47 | 2 × 10−1 | −0.2 | 0.05 | 9 × 10−1 | −5.2 | 0.66 | 5 × 10−2 |
CP | −3.0 | 0.73 | 3 × 10−2 | 0.7 | 0.16 | 6 × 10−1 | −2.1 | 0.64 | 6 × 10−2 | 4.5 | 0.58 | 8 × 10−2 |
ALIC | 4.5 | 1.11 | 1 × 10−3 * | 0.4 | 0.08 | 8 × 10−1 | 1.1 | 0.26 | 4 × 10−1 | −0.4 | 0.05 | 9 × 10−1 |
PLIC | −1.0 | 0.34 | 3 × 10−1 | −4.2 | 1.12 | 1 × 10−3 * | −5.7 | 1.80 | 2 × 10−6 * | −1.7 | 0.28 | 4 × 10−1 |
RPIC | −3.2 | 0.87 | 1 × 10−2 | −1.3 | 0.34 | 3 × 10−1 | −4.1 | 1.10 | 1 × 10−3 * | 2.4 | 0.42 | 2 × 10−1 |
ACR | −1.6 | 0.30 | 4 × 10−1 | −2.5 | 0.53 | 1 × 10−1 | −3.6 | 0.99 | 4 × 10−3 | −1.3 | 0.21 | 5 × 10−1 |
SCR | −2.9 | 0.67 | 4 × 10−2 | −1.5 | 0.32 | 3 × 10−1 | −3.6 | 0.82 | 1 × 10−2 | 0.8 | 0.14 | 7 × 10−1 |
PSR | −4.1 | 0.84 | 1 × 10−2 | −1.8 | 0.37 | 2 × 10−1 | −4.3 | 1.06 | 2 × 10−3 | 0.9 | 0.14 | 7 × 10−1 |
PTR | −2.4 | 0.57 | 8 × 10−2 | −3.4 | 0.8 | 2 × 10−2 | −4.9 | 1.29 | 2 × 10−4 * | −1.6 | 0.28 | 4 × 10−1 |
SS | 0.6 | 0.12 | 7 × 10−1 | −2.6 | 0.55 | 1 × 10−1 | −2.2 | 0.53 | 1 × 10−1 | −3.1 | 0.46 | 2 × 10−1 |
EC | 0.6 | 0.14 | 7 × 10−1 | 6.7 | 1.44 | 7 × 10−5 * | 6.1 | 1.64 | 9 × 10−6 * | 7.3 | 1.22 | 5 × 10−4 * |
Cg | 5.3 | 0.96 | 5 × 10−3 | 2.0 | 0.56 | 9 × 10−2 | 3.8 | 0.87 | 9 × 10−3 | 0.3 | 0.07 | 8 × 10−1 |
Ch | 6.4 | 1.07 | 2 × 10−3 * | −3.0 | 0.94 | 6 × 10−3 | −2.6 | 0.75 | 2 × 10−2 | −3.4 | 0.86 | 1 × 10−2 |
FST | −3.2 | 0.58 | 8 × 10−2 | −2.6 | 0.5 | 1 × 10−1 | −5 | 1.21 | 6 × 10−4 * | 0.0 | 0.00 | 1 × 100 |
SLF | 1.3 | 0.31 | 3 × 10−1 | −0.1 | 0.02 | 9 × 10−1 | 0.1 | 0.03 | 9 × 10−1 | −0.3 | 0.06 | 9 × 10−1 |
SFOF | 0.4 | 0.06 | 8 × 10−1 | 1.0 | 0.12 | 7 × 10−1 | 0.2 | 0.03 | 9 × 10−1 | 1.8 | 0.18 | 6 × 10−1 |
UF | 4.9 | 0.88 | 9 × 10−3 | −2.5 | 0.73 | 3 × 10−2 | −1.5 | 0.42 | 2 × 10−1 | −3.5 | 0.79 | 2 × 10−2 |
TAP | 3.2 | 0.49 | 1 × 10−1 | −5.5 | 0.64 | 5 × 10−2 | −4.7 | 0.63 | 6 × 10−2 | −6.2 | 0.63 | 6 × 10−2 |
All fibres | 2.9 | 0.58 | 2.9 | 0.55 | 3.2 | 0.75 | 3.1 | 0.43 |
KA | MK | AK | RK | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
WM Tract | Δ [%] | dKA | p | Δ [%] | dMK | p | Δ [%] | dAK | p | Δ [%] | dRK | p |
MCP | 16.8 | 2.36 | 6 × 10−9 * | 10 | 2.35 | 8 × 10−9 * | 6.1 | 1.41 | 9 × 10−5 * | 13.8 | 2.64 | 4 × 10−10 * |
PCT | 20.3 | 1.87 | 9 × 10−7 * | 16.1 | 3.19 | 3 × 10−12 * | 10.2 | 2.26 | 2 × 10−8 * | 16.3 | 2.23 | 2 × 10−8 * |
GCC | 2.3 | 0.24 | 5 × 10−1 | 5.4 | 1.08 | 2 × 10−3 * | 10.1 | 2.38 | 6 × 10−9 * | 7.9 | 1.08 | 2 × 10−3 * |
BCC | 7.4 | 0.77 | 2 × 10−2 | 1.5 | 0.28 | 4 × 10−1 | 8.9 | 2 | 3 × 10−7 * | 1.4 | 0.17 | 6 × 10−1 |
SCC | 16.6 | 1.76 | 3 × 10−6 * | 7 | 1.46 | 5 × 10−5 * | 8.1 | 1.62 | 1 × 10−5 * | 11.6 | 1.66 | 7 × 10−6 * |
FCB | −12.5 | 0.62 | 6 × 10−2 | 0.1 | 0.01 | 1 × 100 | −1.3 | 0.26 | 4 × 10−1 | −1.6 | 0.15 | 7 × 10−1 |
CST | 17.3 | 2.15 | 5 × 10−8 * | 9.7 | 2.07 | 1 × 10−7 * | 3.4 | 0.76 | 2 × 10−2 | 16.6 | 2.57 | 9 × 10−10 * |
ML | 8.6 | 0.97 | 4 × 10−3 | 11 | 2.01 | 2 × 10−7 * | 6.6 | 1.28 | 3 × 10−4 * | 11.8 | 1.62 | 1 × 10−6 * |
ICP | 22.4 | 2.51 | 2 × 10−9 * | 11.4 | 2.72 | 2 × 10−10 * | 4.4 | 1.09 | 2 × 10−3 * | 15.8 | 2.58 | 9 × 10−10 * |
SCP | 21.6 | 2.21 | 3 × 10−8 * | 7.8 | 1.58 | 2 × 10−5 * | 3.9 | 0.85 | 1 × 10−2 | 12.9 | 2.31 | 1 × 10−8 * |
CP | 12.6 | 1.27 | 3 × 10−4 * | 11.1 | 2.15 | 5 × 10−8 * | 13 | 2.35 | 9 × 10−9 * | 17.3 | 2.4 | 4 × 10−8 * |
ALIC | 12.9 | 1.47 | 5 × 10−5 * | 11.7 | 2.43 | 4 × 10−9 * | 7.8 | 1.98 | 3 × 10−7 * | 11.1 | 1.86 | 1 × 10−6 * |
PLIC | 9.5 | 1.22 | 5 × 10−4 * | 10 | 1.87 | 9 × 10−7 * | 14.3 | 2.8 | 1 × 10−10 * | 13.2 | 1.74 | 3 × 10−6 * |
RPIC | 5.3 | 0.68 | 4 × 10−2 | 10.9 | 2.3 | 1 × 10−8 * | 14.6 | 3.12 | 6 × 10−12 * | 11.5 | 1.67 | 6 × 10−6 * |
ACR | 4.7 | 0.43 | 2 × 10−1 | 9 | 1.88 | 8 × 10−7 * | 8.6 | 2.33 | 9 × 10−9 * | 10.8 | 1.78 | 2 × 10−6 * |
SCR | 7 | 0.78 | 2 × 10−2 | 8.7 | 2.01 | 2 × 10−7 * | 10.3 | 2.6 | 8 × 10−10 * | 7.2 | 1.3 | 2 × 10−4 * |
PSR | 10.6 | 1.05 | 2 × 10−3 | 10.5 | 2.02 | 2 × 10−7 * | 9.7 | 1.96 | 4 × 10−7 * | 10.8 | 1.64 | 9 × 10−6 * |
PTR | 7 | 0.78 | 2 × 10−2 | 10.7 | 1.98 | 3 × 10−7 * | 11.5 | 2.41 | 5 × 10−9 * | 12 | 1.58 | 2 × 10−5 * |
SS | 1.7 | 0.18 | 6 × 10−1 | 12.9 | 2.32 | 1 × 10−8 * | 12.4 | 2.38 | 7 × 10−9 * | 14 | 1.9 | 7 × 10−7 * |
EC | 3.2 | 0.38 | 2 × 10−1 | 19.9 | 3.83 | 1 × 10−14 * | 11.7 | 3.31 | 1 × 10−12 * | 25.6 | 3.47 | 3 × 10−13 * |
Cg | 16.5 | 2.25 | 2 × 10−8 * | 18.4 | 4.07 | 2 × 10−15 * | 7.9 | 1.79 | 2 × 10−6 * | 23.5 | 3.1 | 7 × 10−12 * |
Ch | 27.5 | 2.9 | 4 × 10−11 * | 32.7 | 3.97 | 5 × 10−15 * | 19.8 | 3.33 | 1 × 10−12 * | 36.2 | 3.83 | 7 × 10−14 * |
FST | 10.8 | 1.1 | 2 × 10−3 * | 13.9 | 2.48 | 2 × 10−9 * | 17.3 | 3.19 | 4 × 10−12 * | 10 | 1.28 | 3 × 10−4 * |
SLF | 6.1 | 0.76 | 2 × 10−2 | 10.4 | 2.7 | 3 × 10−10 * | 8.8 | 2.15 | 6 × 10−8 * | 12.4 | 2.33 | 1 × 10−8 * |
SFOF | 17 | 1.3 | 2 × 10−4 * | 13.9 | 2.39 | 5 × 10−9 * | 8.8 | 1.84 | 1 × 10−6 * | 18 | 2.22 | 3 × 10−8 * |
UF | 15.4 | 1.57 | 2 × 10−5 * | 18.7 | 3.04 | 1 × 10−11 * | 16.8 | 2.9 | 4 × 10−11 * | 19.2 | 1.93 | 5 × 10−7 * |
TAP | 17.5 | 1.11 | 1 × 10−3 * | 3 | 0.29 | 4 × 10−1 | 2.1 | 0.35 | 3 × 10−1 | 6.9 | 0.43 | 2 × 10−1 |
All fibres | 12.3 | 1.28 | 11.3 | 2.17 | 9.6 | 2.02 | 13.7 | 1.90 |
dMD | dAD | dRD | dFA | dMK | dAK | dRK | dKA | |
---|---|---|---|---|---|---|---|---|
dMD | 1 | 0.89 * | 0.85 * | 0.00 | −0.08 | −0.17 | −0.06 | −0.41 * |
dAD | 1 | 0.52 * | 0.42 * | −0.04 | −0.34 | 0.03 | −0.15 | |
dRD | 1 | −0.50 * | −0.14 | 0.09 | −0.17 | −0.60 * | ||
dFA | 1 | 0.25 | −0.29 | 0.40 * | 0.64 * | |||
dMK | 1 | 0.56 * | 0.88 * | 0.49 * | ||||
dAK | 1 | 0.36 | −0.04 | |||||
dRK | 1 | 0.63 * | ||||||
dKA | 1 |
MD | AD | RD | FA | MK | AK | RK | KA | |
---|---|---|---|---|---|---|---|---|
R-L (left) | ||||||||
R2 (linear) | 0.18 | 0.25 | 0.12 | 0.44 | 0.81 | 0.61 | 0.68 | 0.003 |
F-stat (linear) | 14 | 20 | 9 | 48 | 270 | 97 | 131 | 0.2 |
p-value (linear) | <10−3 | <105 | 4.6 × 10−3 | <10−5 | <10−20 | <10−10 | <10−10 | 6.9 × 10−1 |
R2 (quadratic) | 0.92 | 0.90 | 0.86 | 0.44 | 0.84 | 0.72 | 0.68 | 0.06 |
F-stat (quadratic) | 348 | 264 | 189 | 24 | 159 | 78 | 65 | 2 |
p-value (quadratic) | <10−20 | <10−20 | <10−20 | <10−5 | <10−20 | <10−10 | <10−10 | 1.4 × 10−1 |
R-L (right) | ||||||||
R2 (linear) | 0.09 | 0.14 | 0.06 | 0.36 | 0.86 | 0.69 | 0.72 | 0.09 |
F-stat (linear) | 6 | 10 | 4 | 34 | 366 | 133 | 156 | 6 |
p-value (linear) | 1.8 × 10−2 | 2.5 × 10−3 | 5.7 × 10−2 | <10−5 | <10−20 | <10−10 | <10−10 | 2.1 × 10−2 |
R2 (quadratic) | 0.45 | 0.54 | 0.34 | 0.36 | 0.86 | 0.69 | 0.73 | 0.35 |
F-stat (quadratic) | 24 | 34 | 15 | 17 | 181 | 66 | 79 | 16 |
p-value (quadratic) | <10−5 | <10−5 | <10−5 | <10−5 | <10−20 | <10−10 | <10−10 | <10−5 |
R-L | ||||||||
R2 (quadratic) | 0.31 | 0.39 | 0.24 | 0.37 | 0.82 | 0.67 | 0.65 | 0.09 |
F-stat (quadratic) | 28 | 39 | 19 | 36 | 279 | 124 | 112 | 6 |
p-value (quadratic) | <10−5 | <10−10 | <10−5 | <10−10 | <10−20 | <10−20 | <10−20 | 3.5 × 10−3 |
P-A | ||||||||
R2 (linear) | 0.49 | 0.51 | 0.44 | 0.04 | 0.67 | 0.65 | 0.70 | 0.48 |
F-stat (linear) | 151 | 168 | 125 | 6 | 324 | 294 | 379 | 150 |
p-value (linear) | <10−20 | <10−20 | <10−20 | 1.4 × 10−2 | <10−20 | <10−20 | <10−20 | <10−20 |
R2 (quadratic) | 0.69 | 0.68 | 0.65 | 0.18 | 0.68 | 0.80 | 0.70 | 0.50 |
F-stat (quadratic) | 177 | 172 | 150 | 17 | 169 | 325 | 190 | 80 |
p-value (quadratic) | <10−20 | <10−20 | <10−20 | <10−5 | <10−20 | <10−20 | <10−20 | <10−20 |
I-S | ||||||||
R2 (linear) | 0.66 | 0.55 | 0.67 | 0.15 | 0.18 | 0.03 | 0.27 | 0.02 |
F-stat (linear) | 239 | 152 | 257 | 22 | 27 | 4 | 46 | 2 |
p-value (linear) | <10−20 | <10−20 | <10−20 | <10−5 | <10−5 | 4.4 × 10−2 | <10−5 | 1.2 × 10−1 |
R2 (quadratic) | 0.77 | 0.79 | 0.70 | 0.56 | 0.21 | 0.61 | 0.27 | 0.48 |
F-stat (quadratic) | 205 | 233 | 146 | 79 | 16 | 96 | 23 | 56 |
p-value (quadratic) | <10−20 | <10−20 | <10−20 | <10−20 | <10−5 | <10−20 | <10−5 | <10−10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farrher, E.; Grinberg, F.; Khechiashvili, T.; Neuner, I.; Konrad, K.; Shah, N.J. Spatiotemporal Patterns of White Matter Maturation after Pre-Adolescence: A Diffusion Kurtosis Imaging Study. Brain Sci. 2024, 14, 495. https://doi.org/10.3390/brainsci14050495
Farrher E, Grinberg F, Khechiashvili T, Neuner I, Konrad K, Shah NJ. Spatiotemporal Patterns of White Matter Maturation after Pre-Adolescence: A Diffusion Kurtosis Imaging Study. Brain Sciences. 2024; 14(5):495. https://doi.org/10.3390/brainsci14050495
Chicago/Turabian StyleFarrher, Ezequiel, Farida Grinberg, Tamara Khechiashvili, Irene Neuner, Kerstin Konrad, and N. Jon Shah. 2024. "Spatiotemporal Patterns of White Matter Maturation after Pre-Adolescence: A Diffusion Kurtosis Imaging Study" Brain Sciences 14, no. 5: 495. https://doi.org/10.3390/brainsci14050495
APA StyleFarrher, E., Grinberg, F., Khechiashvili, T., Neuner, I., Konrad, K., & Shah, N. J. (2024). Spatiotemporal Patterns of White Matter Maturation after Pre-Adolescence: A Diffusion Kurtosis Imaging Study. Brain Sciences, 14(5), 495. https://doi.org/10.3390/brainsci14050495