Unraveling the Influence of Litter Size, Maternal Care, Exercise, and Aging on Neurobehavioral Plasticity and Dentate Gyrus Microglia Dynamics in Male Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Groups
2.2. Maternal Care Assessment
- (a)
- Mother’s absence from pups.
- (b)
- Mother engaging in licking/grooming behavior towards pups, including both general body grooming and specific attention to the anogenital region.
- (c)
- Mother nursing pups in an arched-back or low-back posture, often referred to as the ‘blanket’ posture, where the mother lays over the pups.
- (d)
- Mother assuming a passive posture, lying either on her back or side while the pups nurse.
- (e)
- Nest-building behavior exhibited by the mother.
- (f)
- Mother carrying or retrieving pups to the nest.
- (g)
- Pups being away from the nest.
- (h)
- Mother displaying passive behavior within the nest.
- (i)
- Mother being away from pups while eating.
2.3. Environment, Exercise, and Sedentary Conditions
2.4. Behavioral Assessment and Testing Procedures
- Object identity test: The rats explored two identical objects during a 5 min sample trial. After a 50 min intermission, a second 5 min test trial introduced a “novel” object alongside a “familiar” one.
- Object identity recognition test: Mirroring the previous procedure, except one identical object was relocated during the test trial, termed the “displaced” object.
2.5. Immunohistochemical Analysis
2.6. Quantification Using the Optical Fractionator Method
2.7. Volume Estimations of Dentate Gyrus Using Planimetric Techniques
2.8. Photomicrography and Processing
2.9. Statistical Analyses
3. Results
3.1. Body Weights and Dentate Gyrus Volumes
3.2. Impact of Litter Size on Maternal Care
3.3. Cognitive Assays
3.4. Enhanced Microglial Dynamics in the Dentate Gyrus: Insights from Litter Size, Aging, and Exercise
4. Discussion
4.1. Litter Size, Growth, and Somatic Maturation
4.2. Litter Size and Microglial Response
4.3. Litter Size, Aging, and Cognitive Decline
4.4. Technical Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Curley, J.P.; Champagne, F.A. Influence of maternal care on the developing brain: Mechanisms, temporal dynamics and sensitive periods. Front. Neuroendocrinol. 2016, 40, 52–66. [Google Scholar] [CrossRef] [PubMed]
- Nishi, M. Effects of Early-Life Stress on the Brain and Behaviors: Implications of Early Maternal Separation in Rodents. Int. J. Mol. Sci. 2020, 21, 7212. [Google Scholar] [CrossRef] [PubMed]
- Čater, M.; Majdič, G. How early maternal deprivation changes the brain and behavior? Eur. J. Neurosci. 2022, 55, 2058–2075. [Google Scholar] [CrossRef] [PubMed]
- Hegde, A.; Mitra, R. Environment and early life: Decisive factors for stress-resilience and vulnerability. Int. Rev. Neurobiol. 2020, 150, 155–185. [Google Scholar] [PubMed]
- Kundakovic, M.; Champagne, F.A. Early-life experience, epigenetics, and the developing brain. Neuropsychopharmacology 2015, 40, 141–153. [Google Scholar] [CrossRef] [PubMed]
- Seay, B.; Hansen, E.; Harlow, H.F. Mother-infant separation in monkeys. J. Child Psychol. Psychiatry 1962, 3, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Suchecki, D. Maternal regulation of the infant’s hypothalamic-pituitary-adrenal axis stress response: Seymour ‘Gig’ Levine’s legacy to neuroendocrinology. J. Neuroendocrinol. 2018, 30, e12610. [Google Scholar] [CrossRef] [PubMed]
- Eid, R.S.; Chaiton, J.A.; Lieblich, S.E.; Bodnar, T.S.; Weinberg, J.; Galea, L.A.M. Early and late effects of maternal experience on hippocampal neurogenesis, microglia, and the circulating cytokine milieu. Neurobiol. Aging 2019, 78, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Hanamsagar, R.; Alter, M.D.; Block, C.S.; Sullivan, H.; Bolton, J.L.; Bilbo, S.D. Generation of a microglial developmental index in mice and in humans reveals a sex difference in maturation and immune reactivity. Glia 2017, 65, 1504–1520. [Google Scholar] [CrossRef]
- Roque, A.; Ochoa-Zarzosa, A.; Torner, L. Maternal separation activates microglial cells and induces an inflammatory response in the hippocampus of male rat pups, independently of hypothalamic and peripheral cytokine levels. Brain Behav. Immun. 2016, 55, 39–48. [Google Scholar] [CrossRef]
- Bachiller, S.; Paulus, A.; Vázquez-Reyes, S.; García-Domínguez, I.; Deierborg, T. Maternal separation leads to regional hippocampal microglial activation and alters the behavior in the adolescence in a sex-specific manner. Brain Behav. Immun. Health 2020, 9, 100142. [Google Scholar] [CrossRef]
- Reshetnikov, V.; Ryabushkina, Y.; Kovner, A.; Lepeshko, A.; Bondar, N. Repeated and single maternal separation specifically alter microglial morphology in the prefrontal cortex and neurogenesis in the hippocampus of 15-day-old male mice. NeuroReport 2020, 31, 1256–1264. [Google Scholar] [CrossRef] [PubMed]
- Banqueri, M.; Méndez, M.; Gómez-Lázaro, E.; Arias, J.L. Early life stress by repeated maternal separation induces long-term neuroinflammatory response in glial cells of male rats. Stress 2019, 22, 563–570. [Google Scholar] [CrossRef] [PubMed]
- Nicolas, S.; McGovern, A.J.; Hueston, C.M.; O’Mahony, S.M.; Cryan, J.F.; O’Leary, O.F.; Nolan, Y.M. Prior maternal separation stress alters the dendritic complexity of new hippocampal neurons and neuroinflammation in response to an inflammatory stressor in juvenile female rats. Brain Behav. Immun. 2022, 99, 327–338. [Google Scholar] [CrossRef] [PubMed]
- Hou, M.; Liu, Y.; Zhu, L.; Sun, B.; Guo, M.; Burén, J.; Li, X. Neonatal overfeeding induced by small litter rearing causes altered glucocorticoid metabolism in rats. PLoS ONE 2011, 6, e25726. [Google Scholar] [CrossRef]
- Carvalho, A.L.O.; Ferri, B.G.; de Sousa, F.A.L.; Vilela, F.C.; Giusti-Paiva, A. Early life overnutrition induced by litter size manipulation decreases social play behavior in adolescent male rats. Int. J. Dev. Neurosci. 2016, 53, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, A.L.; de Moura, E.G.; Passos, M.C.; Dutra, S.C.; Lisboa, P.C. Postnatal early overnutrition changes the leptin signalling pathway in the hypothalamic-pituitary-thyroid axis of young and adult rats. J. Physiol. 2009, 587, 2647–2661. [Google Scholar] [CrossRef] [PubMed]
- Rodel, H.G.; Meyer, S.; Prager, G.; Stefanski, V.; Hudson, R. Litter size is negatively correlated with corticosterone levels in weanling and juvenile laboratory rats. Physiol. Behav. 2010, 99, 644–650. [Google Scholar] [CrossRef] [PubMed]
- Velkoska, E.; Cole, T.J.; Dean, R.G.; Burrell, L.M.; Morris, M.J. Early undernutrition leads to long-lasting reductions in body weight and adiposity whereas increased intake increases cardiac fibrosis in male rats. J. Nutr. 2008, 138, 1622–1627. [Google Scholar] [CrossRef]
- Davidowa, H.; Li, Y.; Plagemann, A. Hypothalamic ventromedial and arcuate neurons of normal and postnatally overnourished rats differ in their responses to melanin-concentrating hormone. Regul. Pept. 2002, 108, 103–111. [Google Scholar] [CrossRef]
- Prager, G.; Stefanski, V.; Hudson, R.; Rodel, H.G. Family matters: Maternal and litter-size effects on immune parameters in young laboratory rats. Brain Behav. Immun. 2010, 24, 1371–1378. [Google Scholar] [CrossRef] [PubMed]
- Enes-Marques, S.; Giusti-Paiva, A. Litter size reduction accentuates maternal care and alters behavioral and physiological phenotypes in rat adult offspring. J. Physiol. Sci. 2018, 68, 789–798. [Google Scholar] [CrossRef] [PubMed]
- Cortes-Barberena, E.; Gonzalez-Marquez, H.; Gomez-Olivares, J.L.; Ortiz-Muniz, R. Effects of moderate and severe malnutrition in rats on splenic T lymphocyte subsets and activation assessed by flow cytometry. Clin. Exp. Immunol. 2008, 152, 585–592. [Google Scholar] [CrossRef] [PubMed]
- Kohman, R.A.; DeYoung, E.K.; Bhattacharya, T.K.; Peterson, L.N.; Rhodes, J.S. Wheel running attenuates microglia proliferation and increases expression of a proneurogenic phenotype in the hippocampus of aged mice. Brain Behav. Immun. 2012, 26, 803–810. [Google Scholar] [CrossRef] [PubMed]
- Hudson, R.; Maqueda, B.; Velazquez Moctezuma, J.; Morales Miranda, A.; Rodel, H.G. Individual differences in testosterone and corticosterone levels in relation to early postnatal development in the rabbit Oryctolagus cuniculus. Physiol. Behav. 2011, 103, 336–341. [Google Scholar] [CrossRef]
- Ziko, I.; De Luca, S.; Dinan, T.; Barwood, J.M.; Sominsky, L.; Cai, G.; Kenny, R.; Stokes, L.; Jenkins, T.A.; Spencer, S.J. Neonatal overfeeding alters hypothalamic microglial profiles and central responses to immune challenge long-term. Brain Behav. Immun. 2014, 41, 32–43. [Google Scholar] [CrossRef] [PubMed]
- De Luca, S.N.; Ziko, I.; Dhuna, K.; Sominsky, L.; Tolcos, M.; Stokes, L.; Spencer, S.J. Neonatal overfeeding by small-litter rearing sensitises hippocampal microglial responses to immune challenge: Reversal with neonatal repeated injections of saline or minocycline. J. Neuroendocrinol. 2017, 29, e12540. [Google Scholar] [CrossRef]
- Tapia-Gonzalez, S.; Garcia-Segura, L.M.; Tena-Sempere, M.; Frago, L.M.; Castellano, J.M.; Fuente-Martin, E.; Garcia-Caceres, C.; Argente, J.; Chowen, J.A. Activation of microglia in specific hypothalamic nuclei and the cerebellum of adult rats exposed to neonatal overnutrition. J. Neuroendocrinol. 2011, 23, 365–370. [Google Scholar] [CrossRef] [PubMed]
- Viana, L.C.; Lima, C.M.; Oliveira, M.A.; Borges, R.P.; Cardoso, T.T.; Almeida, I.N.F.; Diniz, D.G.; Bento-Torres, J.; Pereira, A.; Batista-de-Oliveira, M.; et al. Litter size, age-related memory impairments, and microglial changes in rat dentate gyrus: Stereological analysis and three dimensional morphometry. Neuroscience 2013, 238, 280–296. [Google Scholar] [CrossRef]
- Bredy, T.W.; Humpartzoomian, R.A.; Cain, D.P.; Meaney, M.J. Partial reversal of the effect of maternal care on cognitive function through environmental enrichment. Neuroscience 2003, 118, 571–576. [Google Scholar] [CrossRef]
- Bredy, T.W.; Zhang, T.Y.; Grant, R.J.; Diorio, J.; Meaney, M.J. Peripubertal environmental enrichment reverses the effects of maternal care on hippocampal development and glutamate receptor subunit expression. Eur. J. Neurosci. 2004, 20, 1355–1362. [Google Scholar] [CrossRef] [PubMed]
- Baroncelli, L.; Braschi, C.; Spolidoro, M.; Begenisic, T.; Sale, A.; Maffei, L. Nurturing brain plasticity: Impact of environmental enrichment. Cell Death Differ. 2010, 17, 1092–1103. [Google Scholar] [CrossRef] [PubMed]
- Xiao, K.; Luo, Y.; Liang, X.; Tang, J.; Wang, J.; Xiao, Q.; Qi, Y.; Li, Y.; Zhu, P.; Yang, H.; et al. Beneficial effects of running exercise on hippocampal microglia and neuroinflammation in chronic unpredictable stress-induced depression model rats. Transl. Psychiatry 2021, 11, 461. [Google Scholar] [CrossRef] [PubMed]
- Littlefield, A.M.; Setti, S.E.; Priester, C.; Kohman, R.A. Voluntary exercise attenuates LPS-induced reductions in neurogenesis and increases microglia expression of a proneurogenic phenotype in aged mice. J. Neuroinflamm. 2015, 12, 138. [Google Scholar] [CrossRef]
- Moita, L.; Lustosa, M.F.; Silva, A.T.; Pires-de-Melo, I.H.; de Melo, R.J.; de Castro, R.M.; Filho, N.T.; Ferraz, J.C.; Leandro, C.G. Moderate physical training attenuates the effects of perinatal undernutrition on the morphometry of the splenic lymphoid follicles in endotoxemic adult rats. Neuroimmunomodulation 2011, 18, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Delprato, A.; Bonheur, B.; Algéo, M.P.; Rosay, P.; Lu, L.; Williams, R.W.; Crusio, W.E. Systems genetic analysis of hippocampal neuroanatomy and spatial learning in mice. Genes. Brain Behav. 2015, 14, 591–606. [Google Scholar] [CrossRef] [PubMed]
- Crusio, W.E.; Schwegler, H. Learning spatial orientation tasks in the radial-maze and structural variation in the hippocampus in inbred mice. Behav. Brain Funct. 2005, 1, 3. [Google Scholar] [CrossRef]
- Di Castro, M.A.; Volterra, A. Astrocyte control of the entorhinal cortex-dentate gyrus circuit: Relevance to cognitive processing and impairment in pathology. Glia 2022, 70, 1536–1553. [Google Scholar] [CrossRef]
- Danieli, K.; Guyon, A.; Bethus, I. Episodic Memory formation: A review of complex Hippocampus input pathways. Prog. Neuropsychopharmacol. Biol. Psychiatry 2023, 126, 110757. [Google Scholar] [CrossRef]
- Asim, M.; Wang, H.; Chen, X. Shedding light on cholecystokinin’s role in hippocampal neuroplasticity and memory formation. Neurosci. Biobehav. Rev. 2024, 159, 105615. [Google Scholar] [CrossRef]
- Baudry, M.; Bi, X. Revisiting the calpain hypothesis of learning and memory 40 years later. Front. Mol. Neurosci. 2024, 17, 1337850. [Google Scholar] [CrossRef] [PubMed]
- Förster, E.; Zhao, S.; Frotscher, M. Laminating the hippocampus. Nat. Rev. Neurosci. 2006, 7, 259–267. [Google Scholar] [CrossRef] [PubMed]
- van Groen, T.; Miettinen, P.; Kadish, I. The entorhinal cortex of the mouse: Organization of the projection to the hippocampal formation. Hippocampus 2003, 13, 133–149. [Google Scholar] [CrossRef] [PubMed]
- Diniz, D.G.; de Oliveira, M.A.; de Lima, C.M.; Foro, C.A.R.; Sosthenes, M.C.K.; Bento-Torres, J.; Vasconcelos, P.F.D.; Anthony, D.C.; Diniz, C.W.P. Age, environment, object recognition and morphological diversity of GFAP-immunolabeled astrocytes. Behav. Brain Funct. 2016, 12, 28. [Google Scholar] [CrossRef] [PubMed]
- Diniz, D.G.; Foro, C.A.R.; Rego, C.M.D.; Gloria, D.A.; de Oliveira, F.R.R.; Paes, J.M.P.; de Sousa, A.A.; Tokuhashi, T.P.; Trindade, L.S.; Turiel, M.C.P.; et al. Environmental impoverishment and aging alter object recognition, spatial learning, and dentate gyrus astrocytes. Eur. J. Neurosci. 2010, 32, 509–519. [Google Scholar] [CrossRef]
- Jans, J.E.; Woodside, B. Effects of litter age, litter size, and ambient temperature on the milk ejection reflex in lactating rats. Dev. Psychobiol. 1987, 20, 333–344. [Google Scholar] [CrossRef]
- Morag, M.; Popliker, F.; Yagil, R. Effect of litter size on milk yield in the rat. Lab. Anim. 1975, 9, 43–47. [Google Scholar] [CrossRef]
- Yagil, R.; Etzion, Z.; Berlyne, G.M. Changes in rat milk quantity and quality due to variations in litter size and high ambient temperature. Lab. Anim. Sci. 1976, 26, 33–37. [Google Scholar]
- Caldji, C.; Tannenbaum, B.; Sharma, S.; Francis, D.; Plotsky, P.M.; Meaney, M.J. Maternal care during infancy regulates the development of neural systems mediating the expression of fearfulness in the rat. Proc. Natl. Acad. Sci. USA 1998, 95, 5335–5340. [Google Scholar] [CrossRef]
- Uriarte, N.; Breigeiron, M.K.; Benetti, F.; Rosa, X.F.; Lucion, A.B. Effects of maternal care on the development, emotionality, and reproductive functions in male and female rats. Dev. Psychobiol. 2007, 49, 451–462. [Google Scholar] [CrossRef]
- Brooks, G.A.; White, T.P. Determination of metabolic and heart rate responses of rats to treadmill exercise. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1978, 45, 1009–1015. [Google Scholar] [CrossRef]
- Vanzella, C.; Neves, J.D.; Vizuete, A.F.; Aristimunha, D.; Kolling, J.; Longoni, A.; Gonçalves, C.A.S.; Wyse, A.T.S.; Netto, C.A. Treadmill running prevents age-related memory deficit and alters neurotrophic factors and oxidative damage in the hippocampus of Wistar rats. Behav. Brain Res. 2017, 334, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Vanzella, C.; Sanches, E.F.; Odorcyk, F.K.; Nicola, F.; Kolling, J.; Longoni, A.; Dos Santos, T.M.; Wyse, A.T.S.; Netto, C.A. Forced Treadmill Exercise Prevents Spatial Memory Deficits in Aged Rats Probably Through the Activation of Na. Neurochem. Res. 2017, 42, 1422–1429. [Google Scholar] [CrossRef] [PubMed]
- Ennaceur, A.; Michalikova, S.; Bradford, A.; Ahmed, S. Detailed analysis of the behavior of Lister and Wistar rats in anxiety, object recognition and object location tasks. Behav. Brain Res. 2005, 159, 247–266. [Google Scholar] [CrossRef] [PubMed]
- Dere, E.; Huston, J.P.; De Souza Silva, M.A. The pharmacology, neuroanatomy and neurogenetics of one-trial object recognition in rodents. Neurosci. Biobehav. Rev. 2007, 31, 673–704. [Google Scholar] [CrossRef] [PubMed]
- Tulving, E. Episodic memory: From mind to brain. Annu. Rev. Psychol. 2002, 53, 1–25. [Google Scholar] [CrossRef]
- Tulving, E. Episodic memory and common sense: How far apart? Philos. Trans. R. Soc. Lond. B Biol. Sci. 2001, 356, 1505–1515. [Google Scholar] [CrossRef]
- Dere, E.; Huston, J.P.; De Souza Silva, M.A. Episodic-like memory in mice: Simultaneous assessment of object, place and temporal order memory. Brain Res. Brain Res. Protoc. 2005, 16, 10–19. [Google Scholar] [CrossRef]
- Dix, S.L.; Aggleton, J.P. Extending the spontaneous preference test of recognition: Evidence of object-location and object-context recognition. Behav. Brain Res. 1999, 99, 191–200. [Google Scholar] [CrossRef]
- Shu, S.; Ju, G.; Fan, L. The glucose oxidase-DAB-nickel method in peroxidase histochemistry of the nervous system. Neurosci. Lett. 1988, 85, 169–171. [Google Scholar] [CrossRef]
- Saper, C.B.; Sawchenko, P.E. Magic peptides, magic antibodies: Guidelines for appropriate controls for immunohistochemistry. J. Comp. Neurol. 2003, 465, 161–163. [Google Scholar] [CrossRef] [PubMed]
- West, M.J. Design-based stereological methods for counting neurons. Prog. Brain Res. 2002, 135, 43–51. [Google Scholar] [PubMed]
- West, M.J. Stereological methods for estimating the total number of neurons and synapses: Issues of precision and bias. Trends Neurosci. 1999, 22, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Bonthius, D.J.; McKim, R.; Koele, L.; Harb, H.; Karacay, B.; Mahoney, J.; Pantazis, N.J. Use of frozen sections to determine neuronal number in the murine hippocampus and neocortex using the optical disector and optical fractionator. Brain Res. Brain Res. Protoc. 2004, 14, 45–57. [Google Scholar] [CrossRef] [PubMed]
- West, M.J.; Slomianka, L.; Gundersen, H.J. Unbiased stereological estimation of the total number of neurons in thesubdivisions of the rat hippocampus using the optical fractionator. Anat. Rec. 1991, 231, 482–497. [Google Scholar] [CrossRef]
- Gundersen, H.; Jensen, E. The efficiency of systematic sampling in stereology and its prediction. J. Microsc. 1987, 147, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Glaser, E.M.; Wilson, P.D. The coefficient of error of optical fractionator population size estimates: A computer simulation comparing three estimators. J. Microsc. 1998, 192, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Slomianka, L.; West, M.J. Estimators of the precision of stereological estimates: An example based on the CA1 pyramidal cell layer of rats. Neuroscience 2005, 136, 757–767. [Google Scholar] [CrossRef]
- Meaney, M.J. Maternal care, gene expression, and the transmission of individual differences in stress reactivity across generations. Annu. Rev. Neurosci. 2001, 24, 1161–1192. [Google Scholar] [CrossRef]
- Celedon, J.M.; Santander, M.; Colombo, M. Long-term effects of early undernutrition and environmental stimulation on learning performance of adult rats. J. Nutr. 1979, 109, 1880–1886. [Google Scholar] [CrossRef]
- Chahoud, I.; Paumgartten, F.J. Influence of litter size on the postnatal growth of rat pups: Is there a rationale for litter-size standardization in toxicity studies? Environ. Res. 2009, 109, 1021–1027. [Google Scholar] [CrossRef]
- Bulfin, L.J.; Clarke, M.A.; Buller, K.M.; Spencer, S.J. Anxiety and hypothalamic-pituitary-adrenal axis responses to psychological stress are attenuated in male rats made lean by large litter rearing. Psychoneuroendocrinology 2011, 36, 1080–1091. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.S.; Lee, J. Effects of exercise interventions on weight, body mass index, lean body mass and accumulated visceral fat in overweight and obese individuals: A systematic review and meta-analysis of randomized controlled trials. Int. J. Environ. Res. Public Health 2021, 18, 2635. [Google Scholar] [CrossRef] [PubMed]
- Boschetti, D.; Muller, C.R.; Américo, A.L.V.; Vecchiatto, B.; Martucci, L.F.; Pereira, R.O.; Oliveira, C.P.; Fiorino, P.; Evangelista, F.S.; Azevedo-Martins, A.K. Aerobic Physical Exercise Improves Exercise Tolerance and Fasting Glycemia Independent of Body Weight Change in Obese Females. Front. Endocrinol. 2021, 12, 772914. [Google Scholar] [CrossRef] [PubMed]
- Mani, B.K.; Castorena, C.M.; Osborne-Lawrence, S.; Vijayaraghavan, P.; Metzger, N.P.; Elmquist, J.K.; Zigman, J.M. Ghrelin mediates exercise endurance and the feeding response post-exercise. Mol. Metab. 2018, 9, 114–130. [Google Scholar] [CrossRef] [PubMed]
- Hwang, E.; Portillo, B.; Grose, K.; Fujikawa, T.; Williams, K.W. Exercise-induced hypothalamic neuroplasticity: Implications for energy and glucose metabolism. Mol. Metab. 2023, 73, 101745. [Google Scholar] [CrossRef] [PubMed]
- Remmers, F.; Fodor, M.; de Waal, H.A.D.-V. Neonatal food restriction permanently alters rat body dimensions and energy intake. Physiol. Behav. 2008, 95, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Meaney, M.J.; Szyf, M. Environmental programming of stress responses through DNA methylation: Life at the interface between a dynamic environment and a fixed genome. Dialogues Clin. Neurosci. 2005, 7, 103–123. [Google Scholar] [CrossRef]
- van Olst, L.; Bielefeld, P.; Fitzsimons, C.P.; de Vries, H.E.; Schouten, M. Glucocorticoid-mediated modulation of morphological changes associated with aging in microglia. Aging Cell 2018, 17, e12790. [Google Scholar] [CrossRef]
- Barrientos, R.M.; Thompson, V.M.; Kitt, M.M.; Amat, J.; Hale, M.W.; Frank, M.G.; Crysdale, N.Y.; Stamper, C.E.; Hennessey, P.A.; Watkins, L.R.; et al. Greater glucocorticoid receptor activation in hippocampus of aged rats sensitizes microglia. Neurobiol. Aging 2015, 36, 1483–1495. [Google Scholar] [CrossRef]
- Park, J.H.; Yoo, K.Y.; Lee, C.H.; Kim, I.H.; Shin, B.N.; Choi, J.H.; Hwang, I.K.; Won, M.H. Comparison of glucocorticoid receptor and ionized calcium-binding adapter molecule 1 immunoreactivity in the adult and aged gerbil hippocampus following repeated restraint stress. Neurochem. Res. 2011, 36, 1037–1045. [Google Scholar] [CrossRef]
- Dimitsantos, E.; Escorihuela, R.M.; Fuentes, S.; Armario, A.; Nadal, R. Litter size affects emotionality in adult male rats. Physiol. Behav. 2007, 92, 708–716. [Google Scholar] [CrossRef] [PubMed]
- Calisir, M.; Yilmaz, O.; Kolatan, H.E.; Sezgin, A.K. Effects of litter size and caging on physical and mental development in rats. Physiol. Behav. 2023, 267, 114200. [Google Scholar] [CrossRef]
- Collazos-Castro, J.E.; Nieto-Sampedro, M. Developmental and reactive growth of dentate gyrus afferents: Cellular and molecular interactions. Restor. Neurol. Neurosci. 2001, 19, 169–187. [Google Scholar]
- Jinno, S.; Fleischer, F.; Eckel, S.; Schmidt, V.; Kosaka, T. Spatial arrangement of microglia in the mouse hippocampus: A stereological study in comparison with astrocytes. Glia 2007, 55, 1334–1347. [Google Scholar] [CrossRef] [PubMed]
- Dalmau, I.; Finsen, B.; Zimmer, J.; González, B.; Castellano, B. Development of microglia in the postnatal rat hippocampus. Hippocampus 1998, 8, 458–474. [Google Scholar] [CrossRef]
- Ransohoff, R.M.; Perry, V.H. Microglial physiology: Unique stimuli, specialized responses. Annu. Rev. Immunol. 2009, 27, 119–145. [Google Scholar] [CrossRef]
- Davies, D.S.; Ma, J.; Jegathees, T.; Goldsbury, C. Microglia show altered morphology and reduced arborization in human brain during aging and Alzheimer’s disease. Brain Pathol. 2017, 27, 795–808. [Google Scholar] [CrossRef] [PubMed]
- Godbout, J.P.; Johnson, R.W. Age and Neuroinflammation: A Lifetime of Psychoneuroimmune Consequences. Immunol. Allergy Clin. N. Am. 2009, 29, 321–337. [Google Scholar] [CrossRef]
- Costa, J.; Martins, S.; Ferreira, P.A.; Cardoso, A.M.S.; Guedes, J.R.; Peça, J.; Cardoso, A.L. The old guard: Age-related changes in microglia and their consequences. Mech. Ageing Dev. 2021, 197, 111512. [Google Scholar] [CrossRef]
- Savage, J.C.; Carrier, M.; Tremblay, M. Morphology of Microglia Across Contexts of Health and Disease. Methods Mol. Biol. 2019, 2034, 13–26. [Google Scholar] [PubMed]
- Shahidehpour, R.K.; Higdon, R.E.; Crawford, N.G.; Neltner, J.H.; Ighodaro, E.T.; Patel, E.; Price, D.; Nelson, P.T.; Bachstetter, A.D. Dystrophic microglia are associated with neurodegenerative disease and not healthy aging in the human brain. Neurobiol. Aging 2021, 99, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Jurgens, H.A.; Johnson, R.W. Dysregulated neuronal-microglial cross-talk during aging, stress and inflammation. Exp. Neurol. 2012, 233, 40–48. [Google Scholar] [CrossRef] [PubMed]
- VanGuilder, H.D.; Bixler, G.V.; Brucklacher, R.M.; Farley, J.A.; Yan, H.; Warrington, J.P.; Sonntag, W.E.; Freeman, W.M. Concurrent hippocampal induction of MHC II pathway components and glial activation with advanced aging is not correlated with cognitive impairment. J. Neuroinflamm. 2011, 8, 138. [Google Scholar] [CrossRef] [PubMed]
- Mela, V.; Mota, B.C.; Milner, M.; McGinley, A.; Mills, K.H.G.; Kelly, Á.; Lynch, M.A. Exercise-induced re-programming of age-related metabolic changes in microglia is accompanied by a reduction in senescent cells. Brain Behav. Immun. 2020, 87, 413–428. [Google Scholar] [CrossRef]
- Mouton, P.R.; Long, J.M.; Lei, D.L.; Howard, V.; Jucker, M.; Calhoun, M.E.; Ingram, D.K. Age and gender effects on microglia and astrocyte numbers in brains of mice. Brain Res. 2002, 956, 30–35. [Google Scholar] [CrossRef]
- Nichols, N.R. Glial responses to steroids as markers of brain aging. J. Neurobiol. 1999, 40, 585–601. [Google Scholar] [CrossRef]
Weeks | 1st | 2nd | 3rd | 4th | 5th |
---|---|---|---|---|---|
Duration of the daily sessions | 30 min | 30 min | 30 min | 45 min | 45 min |
Number of sessions per week | 5 | 5 | 5 | 3 | 2 |
Running speed | 5 m/min | 10 m/min | 15 m/min | 25 m/min | 25 m/min |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krejcová, L.V.; Bento-Torres, J.; Diniz, D.G.; Pereira, A., Jr.; Batista-de-Oliveira, M.; de Morais, A.A.C.L.; Mendes-da-Silva, R.F.; Abadie-Guedes, R.; dos Santos, Â.A.; Lima, D.S.; et al. Unraveling the Influence of Litter Size, Maternal Care, Exercise, and Aging on Neurobehavioral Plasticity and Dentate Gyrus Microglia Dynamics in Male Rats. Brain Sci. 2024, 14, 497. https://doi.org/10.3390/brainsci14050497
Krejcová LV, Bento-Torres J, Diniz DG, Pereira A Jr., Batista-de-Oliveira M, de Morais AACL, Mendes-da-Silva RF, Abadie-Guedes R, dos Santos ÂA, Lima DS, et al. Unraveling the Influence of Litter Size, Maternal Care, Exercise, and Aging on Neurobehavioral Plasticity and Dentate Gyrus Microglia Dynamics in Male Rats. Brain Sciences. 2024; 14(5):497. https://doi.org/10.3390/brainsci14050497
Chicago/Turabian StyleKrejcová, Lane Viana, João Bento-Torres, Daniel Guerreiro Diniz, Antonio Pereira, Jr., Manuella Batista-de-Oliveira, Andreia Albuquerque Cunha Lopes de Morais, Rosângela Figueiredo Mendes-da-Silva, Ricardo Abadie-Guedes, Ângela Amâncio dos Santos, Denise Sandrelly Lima, and et al. 2024. "Unraveling the Influence of Litter Size, Maternal Care, Exercise, and Aging on Neurobehavioral Plasticity and Dentate Gyrus Microglia Dynamics in Male Rats" Brain Sciences 14, no. 5: 497. https://doi.org/10.3390/brainsci14050497
APA StyleKrejcová, L. V., Bento-Torres, J., Diniz, D. G., Pereira, A., Jr., Batista-de-Oliveira, M., de Morais, A. A. C. L., Mendes-da-Silva, R. F., Abadie-Guedes, R., dos Santos, Â. A., Lima, D. S., Guedes, R. C. A., & Picanço-Diniz, C. W. (2024). Unraveling the Influence of Litter Size, Maternal Care, Exercise, and Aging on Neurobehavioral Plasticity and Dentate Gyrus Microglia Dynamics in Male Rats. Brain Sciences, 14(5), 497. https://doi.org/10.3390/brainsci14050497