A Computational Model for the Simulation of Prepulse Inhibition and Its Modulation by Cortical and Subcortical Units
Abstract
:1. Introduction
2. Methods
2.1. Test Procedures
2.2. Drug Action Tests
2.3. Computational Methods
3. Results
3.1. Basic Features of PPI
3.1.1. ISI Test
3.1.2. Prepulse Intensity Test
3.1.3. ASR Habituation Test
3.2. Manipulation of GABAergic Transmission
3.2.1. GABAergic Test: Trial
3.2.2. GABAergic Test: Session
3.3. Manipulation of Dopaminergic Transmission
3.3.1. Dopaminergic Test: Trial
3.3.2. Systemic Test
3.3.3. Amygdala Test
3.3.4. NAc Test
3.3.5. Dopaminergic Test: Session
4. Discussion
Limitations and Future Works
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ASR | Acoustic startle response |
Ch | Cochlea |
CRN | Cochlear root nucleus |
CPRN | Caudal pontine reticular nucleus |
MN | Motor neuron |
IC | Inferior colliculus |
ISI | Interstimulus interval |
ITI | Intertrial interval |
SC | Superior colliculus |
PPI | Prepulse inhibition |
PPTg | Pedunculopontine tegmental nucleus |
mPFC | Medial prefrontal cortex |
Amyg | Amygdala |
NAc | Nucleus accumbens |
NAcD | Nucleus accumbens direct pathway |
NAcI | Nucleus accumbens indirect pathway |
VP | Ventral pallidum |
VTA | Ventral tegmental area |
Appendix A. Model Equations
Appendix A.1. ASR Pathway
Appendix A.2. PPI Pathway
Parameter | Value |
---|---|
Connection Strengths | |
(strong connections) | 0.10 |
(mild connections) | 0.30 |
(weak connections) | 0.50 |
35 | |
90 | |
Dopaminergic Transmission Parameters | |
0.06 | |
0.20 | |
0.81 | |
0.60 | |
Thresholds | |
0.45 | |
0.50 | |
0.70 | |
0.30 | |
0.45 | |
0.30 | |
0.40 | |
0.50 | |
0.10 | |
Tonic Activities | |
0.30 | |
0.20 | |
0.40 | |
Time Constants | |
10 ms | |
60 ms | |
15 s | |
285 ms | |
5 ms |
Appendix A.3. Modulatory Pathway
Appendix B. Model Parameters
Appendix C. Shapiro–Wilk Test for Normality
Group | SAL/SAL | SAL/VP | Amyg/SAL | Amyg/VP |
---|---|---|---|---|
PP0 + P60 | 0.922 (0.374) | 0.918 (0.339) | 0.901 (0.223) | 0.894 (0.187) |
PP15 + P60 | 0.939 (0.547) | 0.938 (0.528) | 0.974 (0.924) | 0.937 (0.519) |
PP20 + P60 | 0.946 (0.617) | 0.939 (0.540) | 0.927 (0.418) | 0.971 (0.901) |
PP25 + P60 | 0.985 (0.985) | 0.924 (0.392) | 0.904 (0.243) | 0.977 (0.946) |
PPI15 | 0.975 (0.937) | 0.937 (0.523) | 0.956 (0.735) | 0.957 (0.745) |
PPI20 | 0.949 (0.655) | 0.942 (0.570) | 0.953 (0.700) | 0.978 (0.951) |
PPI25 | 0.941 (0.564) | 0.967 (0.864) | 0.946 (0.619) | 0.966 (0.850) |
Group | Control | Systemic | Amyg | NAc |
---|---|---|---|---|
PP0 + P60 | 0.860 (0.077) | 0.877 (0.119) | 0.886 (0.151) | 0.884 (0.145) |
PP15 + P60 | 0.967 (0.859) | 0.957 (0.748) | 0.924 (0.390) | 0.984 (0.981) |
PP20 + P60 | 0.969 (0.877) | 0.955 (0.723) | 0.933 (0.474) | 0.964 (0.835) |
PP25 + P60 | 0.982 (0.976) | 0.947 (0.630) | 0.925 (0.397) | 0.968 (0.872) |
PPI15 | 0.994 (1.000) | 0.865 (0.087) | 0.967 (0.864) | 0.924 (0.391) |
PPI20 | 0.986 (0.988) | 0.913 (0.301) | 0.951 (0.677) | 0.968 (0.872) |
PPI25 | 0.952 (0.687) | 0.916 (0.321) | 0.976 (0.939) | 0.977 (0.945) |
References
- Davis, M. The mammalian startle response. In Neural Mechanisms of Startle Behavior; Springer: Berlin, Germany, 1984; pp. 287–351. [Google Scholar]
- Swerdlow, N.R.; Braff, D.L.; Geyer, M.A. Cross-species studies of sensorimotor gating of the startle reflex. Ann. N. Y. Acad. Sci. 1999, 877, 202–216. [Google Scholar] [CrossRef]
- Davis, M.; Gendelman, D.S.; Tischler, M.D.; Gendelman, P.M. A primary acoustic startle circuit: Lesion and stimulation studies. J. Neurosci. 1982, 2, 791–805. [Google Scholar] [CrossRef]
- Lee, Y.; López, D.E.; Meloni, E.G.; Davis, M. A primary acoustic startle pathway: Obligatory role of cochlear root neurons and the nucleus reticularis pontis caudalis. J. Neurosci. 1996, 16, 3775–3789. [Google Scholar] [CrossRef]
- Swerdlow, N.R.; Geyer, M.; Braff, D. Neural circuit regulation of prepulse inhibition of startle in the rat: Current knowledge and future challenges. Psychopharmacology 2001, 156, 194–215. [Google Scholar] [CrossRef]
- Fulcher, N.; Azzopardi, E.; De Oliveira, C.; Hudson, R.; Schormans, A.L.; Zaman, T.; Allman, B.L.; Laviolette, S.R.; Schmid, S. Deciphering midbrain mechanisms underlying prepulse inhibition of startle. Prog. Neurobiol. 2020, 185, 101734. [Google Scholar] [CrossRef]
- Rohleder, C.; Jung, F.; Mertgens, H.; Wiedermann, D.; Sué, M.; Neumaier, B.; Graf, R.; Leweke, F.M.; Endepols, H. Neural correlates of sensorimotor gating: A metabolic positron emission tomography study in awake rats. Front. Behav. Neurosci. 2014, 8, 178. [Google Scholar] [CrossRef]
- Rohleder, C.; Wiedermann, D.; Neumaier, B.; Drzezga, A.; Timmermann, L.; Graf, R.; Leweke, F.M.; Endepols, H. The functional networks of prepulse inhibition: Neuronal connectivity analysis based on FDG-PET in awake and unrestrained rats. Front. Behav. Neurosci. 2016, 10, 148. [Google Scholar] [CrossRef]
- Forcelli, P.A.; West, E.A.; Murnen, A.T.; Malkova, L. Ventral pallidum mediates amygdala-evoked deficits in prepulse inhibition. Behav. Neurosci. 2012, 126, 290. [Google Scholar] [CrossRef]
- Cano, J.C.; Huang, W.; Fénelon, K. The amygdala modulates prepulse inhibition of the auditory startle reflex through excitatory inputs to the caudal pontine reticular nucleus. BMC Biol. 2021, 19, 116. [Google Scholar] [CrossRef]
- Pothuizen, H.H.; Jongen-Rêlo, A.L.; Feldon, J. The effects of temporary inactivation of the core and the shell subregions of the nucleus accumbens on prepulse inhibition of the acoustic startle reflex and activity in rats. Neuropsychopharmacology 2005, 30, 683–696. [Google Scholar] [CrossRef]
- Vallone, D.; Picetti, R.; Borrelli, E. Structure and function of dopamine receptors. Neurosci. Biobehav. Rev. 2000, 24, 125–132. [Google Scholar] [CrossRef]
- Dobbs, L.K.; Kaplan, A.R.; Lemos, J.C.; Matsui, A.; Rubinstein, M.; Alvarez, V.A. Dopamine regulation of lateral inhibition between striatal neurons gates the stimulant actions of cocaine. Neuron 2016, 90, 1100–1113. [Google Scholar] [CrossRef] [PubMed]
- Kröner, S.; Rosenkranz, J.A.; Grace, A.A.; Barrionuevo, G. Dopamine modulates excitability of basolateral amygdala neurons in vitro. J. Neurophysiol. 2005, 93, 1598–1610. [Google Scholar] [CrossRef] [PubMed]
- Floresco, S.B.; Maric, T.T. Dopaminergic regulation of inhibitory and excitatory transmission in the basolateral amygdala–prefrontal cortical pathway. J. Neurosci 2007, 27, 2045–2057. [Google Scholar] [CrossRef] [PubMed]
- McGinty, V.B.; Grace, A.A. Selective activation of medial prefrontal-to-accumbens projection neurons by amygdala stimulation and Pavlovian conditioned stimuli. Cereb. Cortex. 2008, 18, 1961–1972. [Google Scholar] [CrossRef]
- Rosenkranz, J.A.; Grace, A.A. Dopamine attenuates prefrontal cortical suppression of sensory inputs to the basolateral amygdala of rats. J. Neurosci. 2001, 21, 4090–4103. [Google Scholar] [CrossRef]
- Salum, C.; Issy, A.; Brandão, M.; Guimarães, F.; Bel, E.D. Nitric oxide modulates dopaminergic regulation of prepulse inhibition in the basolateral amygdala. J. Psychopharmacol. 2011, 25, 1639–1648. [Google Scholar] [CrossRef]
- Stevenson, C.W.; Gratton, A. Role of basolateral amygdala dopamine in modulating prepulse inhibition and latent inhibition in the rat. Psychopharmacology 2004, 176, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Swerdlow, N.R.; Braff, D.; Masten, V.; Geyer, M. Schizophrenic-like sensorimotor gating abnormalities in rats following dopamine infusion into the nucleus accumbens. Psychopharmacology 1990, 101, 414–420. [Google Scholar] [CrossRef]
- Salum, C.; Guimaraes, F.; Brandao, M.; Del Bel, E. Dopamine and nitric oxide interaction on the modulation of prepulse inhibition of the acoustic startle response in the Wistar rat. Psychopharmacology 2006, 185, 133–141. [Google Scholar] [CrossRef]
- Zhang, J.; Forkstam, C.; Engel, J.A.; Svensson, L. Role of dopamine in prepulse inhibition of acoustic startle. Psychopharmacology 2000, 149, 181–188. [Google Scholar] [CrossRef]
- Caine, S.B.; Plant, S.; Furbish, K.; Yerton, M.; Smaragdi, E.; Niclou, B.; Lorusso, J.; Chang, J.; Bitter, C.; Basu, A.; et al. Sprague Dawley rats from different vendors vary in the modulation of prepulse inhibition of startle (PPI) by dopamine, acetylcholine, and glutamate drugs. Psychopharmacology 2023, 240, 2005–2012. [Google Scholar] [CrossRef]
- Kutlu, M.G.; Zachry, J.E.; Melugin, P.R.; Cajigas, S.A.; Chevee, M.F.; Kelly, S.J.; Kutlu, B.; Tian, L.; Siciliano, C.A.; Calipari, E.S. Dopamine release in the nucleus accumbens core signals perceived saliency. Curr. Biol. 2021, 31, 4748–4761. [Google Scholar] [CrossRef]
- Lisman, J.E.; Grace, A.A. The hippocampal-VTA loop: Controlling the entry of information into long-term memory. Neuron 2005, 46, 703–713. [Google Scholar] [CrossRef]
- Swerdlow, N.R.; Shoemaker, J.M.; Bongiovanni, M.J.; Neary, A.C.; Tochen, L.S.; Saint Marie, R.L. Strain differences in the disruption of prepulse inhibition of startle after systemic and intra-accumbens amphetamine administration. Pharmacol. Biochem. Behav. 2007, 87, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Wan, F.; Swerdlow, N.R. Intra-accumbens infusion of quinpirole impairs sensorimotor gating of acoustic startle in rats. Psychopharmacology 1993, 113, 103–109. [Google Scholar] [CrossRef]
- Auclair, A.L.; Kleven, M.S.; Besnard, J.; Depoortere, R.; Newman-Tancredi, A. Actions of novel antipsychotic agents on apomorphine-induced PPI disruption: Influence of combined serotonin 5-HT 1A receptor activation and dopamine D 2 receptor blockade. Neuropsychopharmacology 2006, 31, 1900–1909. [Google Scholar] [CrossRef]
- Schwarzkopf, S.B.; Bruno, J.P.; Mitra, T. Effects of haloperidol and SCH 23390 on acoustic startle and prepulse inhibition under basal and stimulated conditions. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 1993, 17, 1023–1036. [Google Scholar] [CrossRef]
- Hoffman, D.C.; Donovan, H. D1 and D2 dopamine receptor antagonists reverse prepulse inhibition deficits in an animal model of schizophrenia. Psychopharmacology 1994, 115, 447–453. [Google Scholar] [CrossRef]
- Ralph, R.J.; Caine, S.B. Dopamine D1 and D2 agonist effects on prepulse inhibition and locomotion: Comparison of Sprague-Dawley rats to Swiss-Webster, 129X1/SvJ, C57BL/6J, and DBA/2J mice. JPET 2005, 312, 733–741. [Google Scholar] [CrossRef]
- Schwienbacher, I.; Fendt, M.; Hauber, W.; Koch, M. Dopamine D1 receptors and adenosine A1 receptors in the rat nucleus accumbens regulate motor activity but not prepulse inhibition. Eur. J. Pharmacol. 2002, 444, 161–169. [Google Scholar] [CrossRef]
- Heilbronner, S.R.; Rodriguez-Romaguera, J.; Quirk, G.J.; Groenewegen, H.J.; Haber, S.N. Circuit-based corticostriatal homologies between rat and primate. Biol. Psychiatry 2016, 80, 509–521. [Google Scholar] [CrossRef] [PubMed]
- Haber, S.N. Corticostriatal circuitry. DCNS 2016, 18, 7–21. [Google Scholar]
- Santos-Carrasco, D.; De la Casa, L.G. Prepulse inhibition deficit as a transdiagnostic process in neuropsychiatric disorders: A systematic review. BMC Psychol. 2023, 11, 226. [Google Scholar] [CrossRef]
- Swerdlow, N.R.; Paulsen, J.; Braff, D.L.; Butters, N.; Geyer, M.A.; Swenson, M.R. Impaired prepulse inhibition of acoustic and tactile startle response in patients with Huntington’s disease. J. Neurol. Neurosurg. Psychiatry 1995, 58, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Mao, Z.; Bo, Q.; Li, W.; Wang, Z.; Ma, X.; Wang, C. Prepulse inhibition in patients with bipolar disorder: A systematic review and meta-analysis. BMC Psychiatry 2019, 19, 282. [Google Scholar] [CrossRef] [PubMed]
- San-Martin, R.; Zimiani, M.I.; de Ávila, M.A.V.; Shuhama, R.; Del-Ben, C.M.; Menezes, P.R.; Fraga, F.J.; Salum, C. Early Schizophrenia and Bipolar Disorder Patients Display Reduced Neural Prepulse Inhibition. Brain Sci. 2022, 12, 93. [Google Scholar] [CrossRef] [PubMed]
- Storozheva, Z.I.; Akhapkin, R.V.; Bolotina, O.V.; Korendrukhina, A.; Novototsky-Vlasov, V.Y.; Shcherbakova, I.V.; Kirenskaya, A.V. Sensorimotor and sensory gating in depression, anxiety, and their comorbidity. World J. Biol. Psychiatry 2021, 22, 183–193. [Google Scholar] [CrossRef] [PubMed]
- San-Martin, R.; Castro, L.A.; Menezes, P.R.; Fraga, F.J.; Simões, P.W.; Salum, C. Meta-analysis of sensorimotor gating deficits in patients with schizophrenia evaluated by prepulse inhibition test. Schizophr. Bull. 2020, 46, 1482–1497. [Google Scholar] [CrossRef]
- Gómez-Nieto, R.; Hormigo, S.; López, D.E. Prepulse inhibition of the auditory startle reflex assessment as a hallmark of brainstem sensorimotor gating mechanisms. Brain Sci. 2020, 10, 639. [Google Scholar] [CrossRef]
- Kohl, S.; Heekeren, K.; Klosterkötter, J.; Kuhn, J. Prepulse inhibition in psychiatric disorders–apart from schizophrenia. J. Psychiatr. Res. 2013, 47, 445–452. [Google Scholar] [CrossRef] [PubMed]
- McCutcheon, R.A.; Abi-Dargham, A.; Howes, O.D. Schizophrenia, dopamine and the striatum: From biology to symptoms. Trends Neurosci. 2019, 42, 205–220. [Google Scholar] [CrossRef] [PubMed]
- Mitelman, S.A.; Bralet, M.C.; Haznedar, M.M.; Hollander, E.; Shihabuddin, L.; Hazlett, E.A.; Buchsbaum, M.S. Positron emission tomography assessment of cerebral glucose metabolic rates in autism spectrum disorder and schizophrenia. Brain Imaging Behav. 2018, 12, 532–546. [Google Scholar] [CrossRef]
- Pinkham, A.E.; Liu, P.; Lu, H.; Kriegsman, M.; Simpson, C.; Tamminga, C. Amygdala hyperactivity at rest in paranoid individuals with schizophrenia. Am. J. Psychiatry 2015, 172, 784–792. [Google Scholar] [CrossRef]
- Białoń, M.; Wąsik, A. Advantages and limitations of animal schizophrenia models. Int. J. Mol. Sci. 2022, 23, 5968. [Google Scholar] [CrossRef]
- McCutcheon, R.A.; Beck, K.; Jauhar, S.; Howes, O.D. Defining the locus of dopaminergic dysfunction in schizophrenia: A meta-analysis and test of the mesolimbic hypothesis. Schizophr. Bull. 2018, 44, 1301–1311. [Google Scholar] [CrossRef] [PubMed]
- Uliana, D.L.; Zhu, X.; Gomes, F.V.; Grace, A.A. Using animal models for the studies of schizophrenia and depression: The value of translational models for treatment and prevention. Front. Behav. Neurosci. 2022, 16, 935320. [Google Scholar] [CrossRef] [PubMed]
- Leumann, L.; Sterchi, D.; Vollenweider, F.; Ludewig, K.; Früh, H. A neural network approach to the acoustic startle reflex and prepulse inhibition. Brain Res. Bull. 2001, 56, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Moreno, D.F.; Sejnowski, T.J. A computational model for the modulation of the prepulse inhibition of the acoustic startle reflex. Biol. Cybern. 2012, 106, 169–176. [Google Scholar] [CrossRef]
- Schmajuk, N.; Larrauri, J.; Hagenbuch, N.; Levin, E.; Feldon, J.; Yee, B. Startle and prepulse inhibition as a function of background noise: A computational and experimental analysis. Behav. Brain Res. 2006, 170, 182–196. [Google Scholar] [CrossRef]
- Hoffman, H.S.; Stitt, C.L.; Leitner, D.S. The optimum interpulse inverval for inhibition of acoustic startle in the rat. JASA 1980, 68, 1218–1220. [Google Scholar] [CrossRef]
- Ison, J.; McAdam, D.; Hammond, G. Latency and amplitude changes in the acoustic startle reflex of the rat produced by variation in auditory prestimulation. Physiol. Behav. 1973, 10, 1035–1039. [Google Scholar] [CrossRef] [PubMed]
- Reijmers, L.G.; Peeters, B.W. Effects of acoustic prepulses on the startle reflex in rats: A parametric analysis. Brain Res. 1994, 661, 274–282. [Google Scholar] [CrossRef] [PubMed]
- Plappert, C.F.; Pilz, P.K.; Schnitzler, H.U. Factors governing prepulse inhibition and prepulse facilitation of the acoustic startle response in mice. Behav. Brain Res. 2004, 152, 403–412. [Google Scholar] [CrossRef] [PubMed]
- Furuya, K.; Katsumata, Y.; Ishibashi, M.; Matsumoto, Y.; Morimoto, T.; Aonishi, T. Computational model predicts the neural mechanisms of prepulse inhibition in Drosophila larvae. Sci. Rep. 2022, 12, 15211. [Google Scholar] [CrossRef] [PubMed]
- Jovanic, T.; Schneider-Mizell, C.M.; Shao, M.; Masson, J.B.; Denisov, G.; Fetter, R.D.; Mensh, B.D.; Truman, J.W.; Cardona, A.; Zlatic, M. Competitive disinhibition mediates behavioral choice and sequences in Drosophila. Cell 2016, 167, 858–870. [Google Scholar] [CrossRef] [PubMed]
- Braff, D.L.; Geyer, M.A.; Swerdlow, N.R. Human studies of prepulse inhibition of startle: Normal subjects, patient groups, and pharmacological studies. Psychopharmacology 2001, 156, 234–258. [Google Scholar] [CrossRef] [PubMed]
- Valsamis, B.; Schmid, S. Habituation and prepulse inhibition of acoustic startle in rodents. JoVE 2011, 55, e3446. [Google Scholar]
- Roell, K.R.; Reif, D.M.; Motsinger-Reif, A.A. An introduction to terminology and methodology of chemical synergy—Perspectives from across disciplines. Front. Pharmacol. 2017, 8, 158. [Google Scholar] [CrossRef]
- Xue, C.; Li, X.H.; Liu, M.Q.; Yang, X.C.; Li, G.H.; Xu, R.J.; Wang, J.; Zhang, W.N. Enhancing excitatory projections from the ventral subiculum to the nucleus accumbens shell contribute to the MK-801-induced impairment of prepulse inhibition. Neurosci. Lett. 2020, 731, 135024. [Google Scholar] [CrossRef]
- Mosher, L.J.; Frau, R.; Pardu, A.; Pes, R.; Devoto, P.; Bortolato, M. Selective activation of D1 dopamine receptors impairs sensorimotor gating in Long-Evans rats. Br. J. Pharmacol. 2016, 173, 2122–2134. [Google Scholar] [CrossRef] [PubMed]
- Blanca, M.J.; Arnau, J.; García-Castro, F.J.; Alarcón, R.; Bono, R. Repeated measures ANOVA and adjusted F-tests when sphericity is violated: Which procedure is best? Front. psychol. 2023, 14, 1192453. [Google Scholar] [CrossRef]
- Frost, W.N.; Tian, L.M.; Hoppe, T.A.; Mongeluzi, D.L.; Wang, J. A cellular mechanism for prepulse inhibition. Neuron 2003, 40, 991–1001. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, Y.; Shimizu, K.; Arahata, K.; Suzuki, M.; Shimizu, A.; Takei, K.; Yamauchi, J.; Hakeda-Suzuki, S.; Suzuki, T.; Morimoto, T. Prepulse inhibition in Drosophila melanogaster larvae. Biol. Open 2018, 7, bio034710. [Google Scholar] [CrossRef]
- Simons-Weidenmaier, N.S.; Weber, M.; Plappert, C.F.; Pilz, P.K.; Schmid, S. Synaptic depression and short-term habituation are located in the sensory part of the mammalian startle pathway. BMC Neurosci. 2006, 7, 38. [Google Scholar] [CrossRef]
- Blumenthal, T.D.; Reynolds, J.Z.; Spence, T.E. Support for the interruption and protection hypotheses of prepulse inhibition of startle: Evidence from a modified Attention Network Test. Psychophysiology 2015, 52, 397–406. [Google Scholar] [CrossRef]
- Kodsi, M.; Swerdlow, N.R. Prepulse inhibition in the rat is regulated by ventral and caudodorsal striato-pallidal circuitry. Behav. Neurosci. 1995, 109, 912. [Google Scholar] [CrossRef] [PubMed]
- Johansen, P.; Hu, X.T.; White, F. Relationship between D 1 dopamine receptors, adenylate cyclase, and the electrophysiological responses of rat nucleus accumbens neurons. J. Neural Transm. 1991, 86, 97–113. [Google Scholar] [CrossRef]
- Nicola, S.M.; Surmeier, D.J.; Malenka, R.C. Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annu. Rev. Neurosci. 2000, 23, 185–215. [Google Scholar] [CrossRef]
- Hopf, F.W.; Cascini, M.G.; Gordon, A.S.; Diamond, I.; Bonci, A. Cooperative activation of dopamine D1 and D2 receptors increases spike firing of nucleus accumbens neurons via G-protein βγ subunits. J. Neurosci. 2003, 23, 5079–5087. [Google Scholar] [CrossRef]
- Kretschmer, B.D.; Koch, M. The ventral pallidum mediates disruption of prepulse inhibition of the acoustic startle response induced by dopamine agonists, but not by NMDA antagonists. Brain Res. 1998, 798, 204–210. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, S.; Ferreira, T.L. Muscimol injection into the substantia nigra but not globus pallidus affects prepulse inhibition and startle reflex. Neuropharmacology 2020, 162, 107796. [Google Scholar] [CrossRef]
- Gut, N.K.; Winn, P. The pedunculopontine tegmental nucleus—A functional hypothesis from the comparative literature. J. Mov. Disord. 2016, 31, 615–624. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Gonzalez, C.; Bolam, J.P.; Mena-Segovia, J. Topographical organization of the pedunculopontine nucleus. Front. Neuroanat. 2011, 5, 22. [Google Scholar] [CrossRef]
- Rodrigues, S.; Salum, C.; Ferreira, T.L. Dorsal striatum D1-expressing neurons are involved with sensorimotor gating on prepulse inhibition test. J. Psychopharmacol. 2017, 31, 505–513. [Google Scholar] [CrossRef] [PubMed]
- Swerdlow, N.R.; Bongiovanni, M.J.; Tochen, L.; Shoemaker, J.M. Separable noradrenergic and dopaminergic regulation of prepulse inhibition in rats: Implications for predictive validity and Tourette Syndrome. Psychopharmacology 2006, 186, 246–254. [Google Scholar] [CrossRef]
- Ou, H.; Tang, J.; Guo, G.; Shi, M.; Yang, C.; Chen, W. TCB-2, a 5-hydroxytryptamine 2A receptor agonist, disrupts prepulse inhibition in the ventral pallidum and nucleus accumbens. Behav. Brain Res. 2023, 437, 114127. [Google Scholar] [CrossRef] [PubMed]
- Pedrazzi, J.F.C.; Issy, A.; Gomes, F.; Guimarães, F.S.; Del-Bel, E.A. Cannabidiol effects in the prepulse inhibition disruption induced by amphetamine. Psychopharmacology 2015, 232, 3057–3065. [Google Scholar] [CrossRef] [PubMed]
- Zahm, D.S.; Cheng, A.Y.; Lee, T.J.; Ghobadi, C.W.; Schwartz, Z.M.; Geisler, S.; Parsely, K.P.; Gruber, C.; Veh, R.W. Inputs to the midbrain dopaminergic complex in the rat, with emphasis on extended amygdala-recipient sectors. J. Comp. Neurol. 2011, 519, 3159–3188. [Google Scholar] [CrossRef]
- Floresco, S.B.; Yang, C.R.; Phillips, A.G.; Blaha, C.D. Association basolateral amygdala stimulation evokes glutamate receptor-dependent dopamine efflux in the nucleus accumbens of the anaesthetized rat. Eur. J. Neurosci 1998, 10, 1241–1251. [Google Scholar] [CrossRef]
- Jones, J.L.; Day, J.J.; Aragona, B.J.; Wheeler, R.A.; Wightman, R.M.; Carelli, R.M. Basolateral amygdala modulates terminal dopamine release in the nucleus accumbens and conditioned responding. Biol. Psychiatry 2010, 67, 737–744. [Google Scholar] [CrossRef] [PubMed]
- Brischoux, F.; Chakraborty, S.; Brierley, D.I.; Ungless, M.A. Phasic excitation of dopamine neurons in ventral VTA by noxious stimuli. Proc. Natl. Acad. Sci. USA 2009, 106, 4894–4899. [Google Scholar] [CrossRef]
- Matsumoto, M.; Hikosaka, O. Two types of dopamine neuron distinctly convey positive and negative motivational signals. Nature 2009, 459, 837–841. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, M.; Takada, M. Distinct representations of cognitive and motivational signals in midbrain dopamine neurons. Neuron 2013, 79, 1011–1024. [Google Scholar] [CrossRef]
- Tang, W.; Kochubey, O.; Kintscher, M.; Schneggenburger, R. A VTA to basal amygdala dopamine projection contributes to signal salient somatosensory events during fear learning. J. Neurosci. 2020, 40, 3969–3980. [Google Scholar] [CrossRef]
- Zheng, J.; Anderson, K.L.; Leal, S.L.; Shestyuk, A.; Gulsen, G.; Mnatsakanyan, L.; Vadera, S.; Hsu, F.P.; Yassa, M.A.; Knight, R.T.; et al. Amygdala-hippocampal dynamics during salient information processing. Nat. Commun 2017, 8, 14413. [Google Scholar] [CrossRef]
- Lee, H.J.; Gallagher, M.; Holland, P.C. The central amygdala projection to the substantia nigra reflects prediction error information in appetitive conditioning. Learn. Mem. 2010, 17, 531–538. [Google Scholar] [CrossRef]
- Reppucci, C.J.; Petrovich, G.D. Organization of connections between the amygdala, medial prefrontal cortex, and lateral hypothalamus: A single and double retrograde tracing study in rats. Brain Struct. Funct. 2016, 221, 2937–2962. [Google Scholar] [CrossRef] [PubMed]
- Fadel, J.; Deutch, A. Anatomical substrates of orexin–dopamine interactions: Lateral hypothalamic projections to the ventral tegmental area. Neuroscience 2002, 111, 379–387. [Google Scholar] [CrossRef]
- Leinninger, G.M.; Jo, Y.H.; Leshan, R.L.; Louis, G.W.; Yang, H.; Barrera, J.G.; Wilson, H.; Opland, D.M.; Faouzi, M.A.; Gong, Y.; et al. Leptin acts via leptin receptor-expressing lateral hypothalamic neurons to modulate the mesolimbic dopamine system and suppress feeding. Cell Metab. 2009, 10, 89–98. [Google Scholar] [CrossRef]
- Aguilar, B.L.; Forcelli, P.A.; Malkova, L. Inhibition of the substantia nigra pars reticulata produces divergent effects on sensorimotor gating in rats and monkeys. Sci. Rep. 2018, 8, 9369. [Google Scholar] [CrossRef]
- Koch, M.; Fendt, M.; Kretschmer, B.D. Role of the substantia nigra pars reticulata in sensorimotor gating, measured by prepulse inhibition of startle in rats. Behav. Brain Res. 2000, 117, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Ranjbar-Slamloo, Y.; Fazlali, Z. Dopamine and noradrenaline in the brain; overlapping or dissociate functions? Front. Mol. Neurosci. 2020, 12, 334. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.X.; Yamashita, H.; Ohshita, T.; Sawamoto, N.; Nakamura, S. ATP increases extracellular dopamine level through stimulation of P2Y purinoceptors in the rat striatum. Brain Res. 1995, 691, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Cachope, R.; Cheer, J.F. Local control of striatal dopamine release. Front. Behav. Neurosci. 2014, 8, 188. [Google Scholar] [CrossRef] [PubMed]
- Swerdlow, N.R.; Braff, D.L.; Geyer, M.A. Sensorimotor gating of the startle reflex: What we said 25 years ago, what has happened since then, and what comes next. J. Psychopharmacol. 2016, 30, 1072–1081. [Google Scholar] [CrossRef] [PubMed]
- Swerdlow, N.R.; Krupin, A.S.; Bongiovanni, M.J.; Shoemaker, J.M.; Goins, J.C.; Hammer, R.P. Heritable differences in the dopaminergic regulation of behavior in rats: Relationship to D 2-like receptor G-protein function. Neuropsychopharmacology 2006, 31, 721–729. [Google Scholar] [CrossRef] [PubMed]
- Swerdlow, N.R.; Stephany, N.; Wasserman, L.C.; Talledo, J.; Shoemaker, J.; Auerbach, P.P. Amphetamine effects on prepulse inhibition across-species: Replication and parametric extension. Neuropsychopharmacology 2003, 28, 640–650. [Google Scholar] [CrossRef] [PubMed]
- Smith, Y.; Wichmann, T.; DeLong, M.R. Corticostriatal and mesocortical dopamine systems: Do species differences matter? Nat. Rev. Neurosci. 2014, 15, 63. [Google Scholar] [CrossRef]
- Marinelli, M.; McCutcheon, J.E. Heterogeneity of dopamine neuron activity across traits and states. Neuroscience 2014, 282, 176–197. [Google Scholar] [CrossRef]
- Creese, I.; Stewart, K.; Snyder, S.H. Species variations in dopamine receptor binding. Eur. J. Pharmacol. 1979, 60, 55–66. [Google Scholar] [CrossRef] [PubMed]
- Devlin, B.; Kelsoe, J.R.; Sklar, P.; Daly, M.J.; O’Donovan, M.C.; Craddock, N.; Sullivan, P.F.; Smoller, J.W.; Kendler, K.S.; Wray, N.R.; et al. Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat. Genet. 2013, 45, 984–994. [Google Scholar]
- Koch, M.; Lingenhöhl, K.; Pilz, P. Loss of the acoustic startle response following neurotoxic lesions of the caudal pontine reticular formation: Possible role of giant neurons. Neuroscience 1992, 49, 617–625. [Google Scholar] [CrossRef] [PubMed]
- Zheng, A.; Schmid, S. A review of the neural basis underlying the acoustic startle response with a focus on recent developments in mammals. Neurosci. Biobehav. Rev. 2023, 148, 105129. [Google Scholar] [CrossRef]
- Weisz, C.J.; Williams, S.P.G.; Eckard, C.S.; Divito, C.B.; Ferreira, D.W.; Fantetti, K.N.; Dettwyler, S.A.; Cai, H.M.; Rubio, M.E.; Kandler, K.; et al. Outer hair cell glutamate signaling through type II spiral ganglion afferents activates neurons in the cochlear nucleus in response to nondamaging sounds. J. Neurosci. 2021, 41, 2930–2943. [Google Scholar] [CrossRef] [PubMed]
- Abbott, L.F.; Varela, J.; Sen, K.; Nelson, S. Synaptic depression and cortical gain control. Science 1997, 275, 221–224. [Google Scholar] [CrossRef] [PubMed]
- Ryugo, D.K.; Milinkeviciute, G. Differential projections from the cochlear nucleus to the inferior colliculus in the mouse. Front. Neural Circuits 2023, 17, 1229746. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Huang, H.; Snutch, T.P.; Cao, P.; Wang, L.; Wang, F. The superior colliculus: Cell types, connectivity, and behavior. Neurosci. Bull. 2022, 38, 1519–1540. [Google Scholar] [CrossRef] [PubMed]
- Fendt, M.; Schwienbacher, I.; Koch, M. Amygdaloid N-methyl-d-aspartate and γ-aminobutyric acidA receptors regulate sensorimotor gating in a dopamine-dependent way in rats. Neuroscience 2000, 98, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Rosenkranz, J.A.; Grace, A.A. Cellular mechanisms of infralimbic and prelimbic prefrontal cortical inhibition and dopaminergic modulation of basolateral amygdala neurons in vivo. J. Neurosci. 2002, 22, 324–337. [Google Scholar] [CrossRef]
- McGinty, V.; Grace, A. Activity-dependent depression of medial prefrontal cortex inputs to accumbens neurons by the basolateral amygdala. Neuroscience 2009, 162, 1429–1436. [Google Scholar] [CrossRef]
- Belujon, P.; Grace, A.A. Critical role of the prefrontal cortex in the regulation of hippocampus–accumbens information flow. J. Neurosci. 2008, 28, 9797–9805. [Google Scholar] [CrossRef]
- Floresco, S.B.; Blaha, C.D.; Yang, C.R.; Phillips, A.G. Modulation of hippocampal and amygdalar-evoked activity of nucleus accumbens neurons by dopamine: Cellular mechanisms of input selection. J. Neurosci. 2001, 21, 2851–2860. [Google Scholar] [CrossRef] [PubMed]
- Gill, K.M.; Grace, A.A. Heterogeneous processing of amygdala and hippocampal inputs in the rostral and caudal subregions of the nucleus accumbens. IJNP 2011, 14, 1301–1314. [Google Scholar] [CrossRef] [PubMed]
- Goto, Y.; Grace, A.A. Dopaminergic modulation of limbic and cortical drive of nucleus accumbens in goal-directed behavior. Nat. Neurosci. 2005, 8, 805–812. [Google Scholar] [CrossRef] [PubMed]
- McGinty, V.B.; Grace, A.A. Timing-dependent regulation of evoked spiking in nucleus accumbens neurons by integration of limbic and prefrontal cortical inputs. J. Neurophysiol. 2009, 101, 1823–1835. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, P.; Grace, A.A. Synaptic interactions among excitatory afferents to nucleus accumbens neurons: Hippocampal gating of prefrontal cortical input. J. Neurosci. 1995, 15, 3622–3639. [Google Scholar] [CrossRef]
- West, A.R.; Grace, A.A. Opposite Influences of Endogenous Dopamine D1 and D2 Receptor Activation on Activity States and Electrophysiological Properties of Striatal Neurons: Studies CombiningIn Vivo Intracellular Recordings and Reverse Microdialysis. J. Neurosci. 2002, 22, 294–304. [Google Scholar] [CrossRef] [PubMed]
- Holloway, Z.R.; Freels, T.G.; Comstock, J.F.; Nolen, H.G.; Sable, H.J.; Lester, D.B. Comparing phasic dopamine dynamics in the striatum, nucleus accumbens, amygdala, and medial prefrontal cortex. Synapse 2019, 73, e22074. [Google Scholar] [CrossRef]
- Salum, C.O.R. Estudo comportamental, farmacológico e computacional dos sistemas cerebrais envolvidos na ansiedade, no medo condicionado e na atenção seletiva. Ph.D. Thesis, Universidade de São Paulo, São Paulo, Brazil, 2000. (In Portuguese). [Google Scholar]
- Salum, C.; Roque da Silva Filho, A.C.; Pickering, A. Modelagem Computacional dos Mecanismos Dopaminérgicos Envolvidos na Aprendizagem e na Atenção Seletiva. In Proceedings of the V Brazilian Conference on Neural Networks, Rio de Janeiro, Brazil, 2–5 April 2001; pp. 631–636. (In Portuguese). [Google Scholar]
- Floresco, S.B.; West, A.R.; Ash, B.; Moore, H.; Grace, A.A. Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission. Nat. Neurosci. 2003, 6, 968–973. [Google Scholar] [CrossRef]
- Missale, C.; Nash, S.R.; Robinson, S.W.; Jaber, M.; Caron, M.G. Dopamine receptors: From structure to function. Physiol. Rev. 1998, 78, 189–225. [Google Scholar] [CrossRef] [PubMed]
- Stahl, S.M. Drugs for psychosis and mood: Unique actions at D3, D2, and D1 dopamine receptor subtypes. CNS Spectr. 2017, 22, 375–384. [Google Scholar] [CrossRef]
- Ahuja, T.; Wu, S. Intrinsic membrane properties and synaptic response characteristics of neurons in the rat’s external cortex of the inferior colliculus. Neuroscience 2007, 145, 851–865. [Google Scholar] [CrossRef]
- Carp, J.S.; Tennissen, A.M.; Mongeluzi, D.L.; Dudek, C.J.; Chen, X.Y.; Wolpaw, J.R. An in vitro protocol for recording from spinal motoneurons of adult rats. J. Neurophysiol. 2008, 100, 474–481. [Google Scholar] [CrossRef] [PubMed]
- Ehrlich, D.; Ryan, S.; Rainnie, D. Postnatal development of electrophysiological properties of principal neurons in the rat basolateral amygdala. J. Physiol. 2012, 590, 4819–4838. [Google Scholar] [CrossRef]
- Mancilla, J.G.; Manis, P.B. Two distinct types of inhibition mediated by cartwheel cells in the dorsal cochlear nucleus. J. Neurophysiol. 2009, 102, 1287–1295. [Google Scholar] [CrossRef] [PubMed]
- Taverna, S.; Van Dongen, Y.C.; Groenewegen, H.J.; Pennartz, C.M. Direct physiological evidence for synaptic connectivity between medium-sized spiny neurons in rat nucleus accumbens in situ. J. Neurophysiol. 2004, 91, 1111–1121. [Google Scholar] [CrossRef]
- Lingenhöhl, K.; Friauf, E. Giant neurons in the caudal pontine reticular formation receive short latency acoustic input: An intracellular recording and HRP-study in the rat. J. Comp. Neurol. 1992, 325, 473–492. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bezerra, T.O.; Roque, A.C.; Salum, C. A Computational Model for the Simulation of Prepulse Inhibition and Its Modulation by Cortical and Subcortical Units. Brain Sci. 2024, 14, 502. https://doi.org/10.3390/brainsci14050502
Bezerra TO, Roque AC, Salum C. A Computational Model for the Simulation of Prepulse Inhibition and Its Modulation by Cortical and Subcortical Units. Brain Sciences. 2024; 14(5):502. https://doi.org/10.3390/brainsci14050502
Chicago/Turabian StyleBezerra, Thiago Ohno, Antonio C. Roque, and Cristiane Salum. 2024. "A Computational Model for the Simulation of Prepulse Inhibition and Its Modulation by Cortical and Subcortical Units" Brain Sciences 14, no. 5: 502. https://doi.org/10.3390/brainsci14050502
APA StyleBezerra, T. O., Roque, A. C., & Salum, C. (2024). A Computational Model for the Simulation of Prepulse Inhibition and Its Modulation by Cortical and Subcortical Units. Brain Sciences, 14(5), 502. https://doi.org/10.3390/brainsci14050502