Neurocognitive and Neuropsychiatric Sequelae in Long COVID-19 Infection
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Participants
2.2. Data Collection and Definitions
2.3. Statistical Analysis
3. Results
3.1. Demographic and Clinical Characteristics
3.2. Neuropsychological Findings
3.2.1. Neuropsychological Results Depending on the Severity of the Disease
3.2.2. Neuropsychological Results Based on Cognitive Complaints
3.2.3. Neuropsychological Results Based on Clinical Symptoms
Neuropsychological Results Depending on the Initial Symptom
Neuropsychological Results Depending on the Persistent Symptom
4. Discussion
4.1. Neuropsychological Outcomes
4.1.1. Illness Severity
4.1.2. Subjective Cognitive Complaints
4.1.3. Initial and Persistent Clinical Symptoms
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Romero-Sánchez, C.M.; Díaz-Maroto, I.; Fernández-Díaz, E.; Sánchez-Larsen, A.; Layos-Romero, A.; García-García, J.; González, E.; Redondo-Peñas, I.; Perona-Moratalla, A.B.; Del Valle-Pérez, J.A.; et al. Neurologic manifestations in hospitalized patients with COVID-19: The ALBACOVID registry. Neurology 2020, 95, e1060–e1070. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.C.; Bai, W.Z.; Hashikawa, T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J. Med. Virol. 2020, 92, 552–555. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, X.; Yang, L.; Liu, C.; Yang, C. Nervous system damage after COVID-19 infection: Presence or absence? Brain Behav. Immun. 2020, 87, 55. [Google Scholar] [CrossRef]
- Helms, J.; Kremer, S.; Merdji, H.; Clere-Jehl, R.; Schenck, M.; Kummerlen, C.; Collange, O.; Boulay, C.; Fafi-Kremer, S.; Ohana, M.; et al. Neurologic Features in Severe SARS-CoV-2 Infection. N. Engl. J. Med. 2020, 382, 2268–2270. [Google Scholar] [CrossRef]
- Almeria, M.; Cejudo, J.C.; Sotoca, J.; Deus, J.; Krupinski, J. Cognitive profile following COVID-19 infection: Clinical predictors leading to neuropsychological impairment. Brain Behav. Immun. Health 2020, 9, 100163. [Google Scholar] [CrossRef] [PubMed]
- Montalvan, V.; Lee, J.; Bueso, T.; De Toledo, J.; Rivas, K. Neurological manifestations of COVID-19 and other coronavirus infections: A systematic review. Clin. Neurol. Neurosurg. 2020, 194, 105921. [Google Scholar] [CrossRef] [PubMed]
- Misra, S.; Kolappa, K.; Prasad, M.; Radhakrishnan, D.; Thakur, K.T.; Solomon, T.; Michael, B.D.; Winkler, A.S.; Beghi, E.; Guekht, A.; et al. Frequency of neurologic manifestations in COVID-19. Neurology 2021, 97, E2269–E2281. [Google Scholar] [CrossRef]
- Al-Ramadan, A.; Rabab’h, O.; Shah, J.; Gharaibeh, A. Acute and post-acute neurological complications of COVID-19. Neurol. Int. 2021, 13, 102–119. [Google Scholar] [CrossRef]
- Ercoli, T.; Masala, C.; Pinna, I.; Orofino, N.; Solla, P.; Rocchi, L.; Defazio, G. Qualitative smell/taste disorders as sequelae of acute COVID-19. Neurol. Sci. 2021, 42, 4921–4926. [Google Scholar] [CrossRef]
- Almeria, M.; Cejudo, J.C.; Sanz-Santos, J.; Deus, J.; Krupinski, J. Impact of COVID-19 infection on cognition and its association with neurological symptoms. Brain Behav. 2023, 13, e2902. [Google Scholar] [CrossRef]
- Premraj, L.; Kannapadi, N.V.; Briggs, J.; Seal, S.M.; Battaglini, D.; Fanning, J.; Suen, J.; Robba, C.; Frase, J.; Cho, S.M. Mid and long-term neurological and neuropsychiatric manifestations of post-COVID-19 syndrome: A meta-analysis. J. Neurol. Sci. 2022, 434, 120162. [Google Scholar] [CrossRef] [PubMed]
- Bliddal, S.; Banasik, K.; Pedersen, O.B.; Nissen, J.; Cantwell, L.; Schwinn, M.; Tulstrup, M.; Westergaard, W.; Ullum, H.; Brunak, S.; et al. Acute and persistent symptoms in non-hospitalized PCR-confirmed COVID-19 patients. Sci. Rep. 2021, 11, 13153. [Google Scholar] [CrossRef] [PubMed]
- Shukla, A.K.; Misra, S. An overview of post COVID sequelae. J. Basic Clin. Physiol. Pharmacol. 2022, 33, 715–726. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Post COVID-19 Condition (Long COVID). Available online: https://www.who.int/europe/news-room/fact-sheets/item/post-covid-19-condition (accessed on 1 May 2024).
- Michelen, M.; Manoharan, L.; Elkheir, N.; Cheng, V.; Dagens, A.; Hastie, C.; O’Hara, M.; Suett, J.; Dahmash, D.; Bugaeva, P.; et al. Characterising long COVID: A living systematic review. BMJ Glob. Health 2021, 6, e005427. [Google Scholar] [CrossRef] [PubMed]
- Yong, S.J. Long COVID or post-COVID-19 syndrome: Putative pathophysiology, risk factors, and treatments. Infect. Dis. 2021, 53, 737–754. [Google Scholar] [CrossRef]
- O’Mahoney, L.L.; Routen, A.; Gillies, C.; Ekezie, W.; Welford, A.; Zhang, A.; Karamchandani, U.; Simms-Williams, N.; Cassambai, S.; Ardavani, A.; et al. The prevalence and long-term health effects of Long Covid among hospitalised and non-hospitalised populations: A systematic review and meta-analysis. EClinicalMedicine 2022, 55, 101762. [Google Scholar] [CrossRef]
- Cabrera Martimbianco, A.L.; Pacheco, R.L.; Bagattini, Â.M.; Riera, R. Frequency, signs and symptoms, and criteria adopted for long COVID-19: A systematic review. Int. J. Clin. Pract. 2021, 75, e14357. [Google Scholar] [CrossRef]
- Chuang, H.J.; Lin, C.W.; Hsiao, M.Y.; Wang, T.G.; Liang, H.W. Long COVID and rehabilitation. J. Formos. Med. Assoc. 2023, 13, S61–S69. [Google Scholar] [CrossRef]
- Boesl, F.; Audebert, H.; Endres, M.; Prüss, H.; Franke, C. A Neurological Outpatient Clinic for Patients with Post-COVID-19 Syndrome—A Report on the Clinical Presentations of the First 100 Patients. Front. Neurol. 2021, 12, 738405. [Google Scholar] [CrossRef]
- Pavli, A.; Theodoridou, M.; Maltezou, H.C. Post-COVID Syndrome: Incidence, Clinical Spectrum, and Challenges for Primary Healthcare Professionals. Arch. Med Res. 2021, 52, 575–581. [Google Scholar] [CrossRef]
- Nalbandian, A.; Sehgal, K.; Gupta, A.; Madhavan, M.V.; McGroder, C.; Stevens, J.S.; Cook, J.R.; Nordvig, A.S.; Shalev, D.; Sehrawat, T.S.; et al. Post-acute COVID-19 syndrome. Nat. Med. 2021, 27, 601–615. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Kim, S.E.; Kim, T.; Yun, K.W.; Lee, S.H.; Lee, E.; Seo, J.W.; Jung, Y.H.; Chong, Y.P. Preliminary Guidelines for the Clinical Evaluation and Management of Long COVID. Infect. Chemother. 2022, 54, 566–597. [Google Scholar] [CrossRef] [PubMed]
- Wilson, C. Concern coronavirus may trigger post-viral fatigue syndromes. New Sci. (1971) 2020, 246, 10. [Google Scholar] [CrossRef]
- Bradley, A.; Bishop, K.; Kiani-Alikhan, S.; Ford, B. Chronic fatigue syndrome, the immune system and viral infection. Brain, Behav. Immun. 2011, 26, 24–31. [Google Scholar]
- Townsend, L.; Dyer, A.H.; Jones, K.; Dunne, J.; Mooney, A.; Gaffney, F.; O’Connor, L.; Leavy, D.; O’Brien, K.; Dowds, J.; et al. Persistent fatigue following SARS-CoV-2 infection is common and independent of severity of initial infection. PLoS ONE 2020, 15, e0240784. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Yao, Q.; Gu, X.; Wang, Q.; Ren, L.; Wang, Y.; Hu, P.; Guo, L.; Liu, M.; Xu, J.; et al. 1-year outcomes in hospital survivors with COVID-19: A longitudinal cohort study. Lancet 2021, 398, 747–758. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.; Benzouak, T.; Gunpat, S.; Burns, R.J.; Tahir, T.A.; Jolles, S.; Kisely, S. Fatigue Symptoms Associated with COVID-19 in Convalescent or Recovered COVID-19 Patients. A Systematic Review and Meta-Analysis. Ann. Behav. Med. 2022, 56, 219–234. [Google Scholar] [CrossRef] [PubMed]
- Stavem, K.; Ghanima, W.; Olsen, M.K.; Gilboe, H.M.; Einvik, G. Prevalence and Determinants of Fatigue after COVID-19 in Non-Hospitalized Subjects: A Population-Based Study. Int. J. Environ. Res. Public Health 2021, 18, 2030. [Google Scholar] [CrossRef] [PubMed]
- Korchut, A.; Rejdak, K. Late neurological consequences of SARS-CoV-2 infection: New challenges for the neurologist. Front. Neurosci. 2023, 17, 1004957. [Google Scholar] [CrossRef] [PubMed]
- Pilotto, A.; Cristillo, V.; Cotti Piccinelli, S.; Zoppi, N.; Bonzi, G.; Sattin, D.; Schiavolin, S.; Raggi, A.; Canale, A.; Gipponi, S.; et al. Long-term neurological manifestations of COVID-19: Prevalence and predictive factors. Neurol. Sci. 2021, 42, 4903–4907. [Google Scholar] [CrossRef]
- Lopez-Leon, S.; Wegman-Ostrosky, T.; Perelman, C.; Sepulveda, R.; Rebolledo, P.A.; Cuapio, A.; Villapol, S. More than 50 long-term effects of COVID-19: A systematic review and meta-analysis. Sci. Rep. 2021, 11, 16144. [Google Scholar] [CrossRef] [PubMed]
- Taquet, M.; Dercon, Q.; Luciano, S.; Geddes, J.R.; Husain, M.; Harrison, P.J. Incidence, co-occurrence, and evolution of long-COVID features: A 6-month retrospective cohort study of 273,618 survivors of COVID-19. PLoS Med. 2021, 18, e1003773. [Google Scholar] [CrossRef] [PubMed]
- Davis, H.E.; Assaf, G.S.; McCorkell, L.; Wei, H.; Low, R.J.; Re’em, Y.; Redfield, S.; Austin, J.; Akrami, A. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. EClinicalMedicine 2021, 38, 101019. [Google Scholar] [CrossRef]
- Méndez, R.; Balanzá-Martínez, V.; Luperdi, S.C.; Estrada, I.; Latorre, A.; González-Jiménez, P.; Feced, L.; Bouzas, L.; Yépez, K.; Ferrando, A.; et al. Short-term neuropsychiatric outcomes and quality of life in COVID-19 survivors. J. Intern. Med. 2021, 290, 621–631. [Google Scholar] [CrossRef] [PubMed]
- Mazza, M.G.; Palladini, M.; De Lorenzo, R.; Magnaghi, C.; Poletti, S.; Furlan, R.; Ciceri, F.; COVID-19 BioB Outpatient Clinic Study group; Rovere-Querin, P.; Benedetti, F. Persistent psychopathology and neurocognitive impairment in COVID-19 survivors: Effect of inflammatory biomarkers at three-month follow-up. Brain Behav. Immun. 2021, 94, 138–147. [Google Scholar] [CrossRef] [PubMed]
- Hadad, R.; Khoury, J.; Stanger, C.; Fisher, T.; Schneer, S.; Ben-Hayun, R.; Possin, K.; Valcour, V.; Aharon-Peretz, J.; Adir, Y. Cognitive dysfunction following COVID-19 infection. J. NeuroVirology 2022, 28, 430–437. [Google Scholar] [CrossRef] [PubMed]
- Guo, P.; Benito Ballesteros, A.; Yeung, S.P.; Liu, R.; Saha, A.; Curtis, L.; Kaser, M.; Haggard, M.P.; Cheke, L.G. COVCOG 1: Factors Predicting Physical, Neurological and Cognitive Symptoms in Long COVID in a Community Sample. A First Publication from the COVID and Cognition Study. Front. Aging Neurosci. 2022, 14, 804922. [Google Scholar] [CrossRef] [PubMed]
- Becker, J.H.; Lin, J.J.; Doernberg, M.; Stone, K.; Navis, A.; Festa, J.R.; Wisniveski, J.P. Assessment of Cognitive Function in Patients after COVID-19 Infection. JAMA Netw. Open 2021, 4, e2130645. [Google Scholar] [CrossRef]
- Velichkovsky, B.B.; Razvaliaeva, A.Y.; Khlebnikova, A.A.; Manukyan, P.A.; Kasatkin, V.N.; Barmin, A.V. Systematic Review and Meta-Analysis of Clinically Relevant Executive Functions Tests Performance after COVID-19. Behav. Neurol. 2023, 9, 1094267. [Google Scholar] [CrossRef]
- Velichkovsky, B.B.; Razvaliaeva, A.Y.; Khlebnikova, A.A.; Manukyan, P.A.; Kasatkin, V.N. Attention and memory after COVID-19 as measured by neuropsychological tests: Systematic review and meta-analysis. Acta Psychol. 2023, 233, 103838. [Google Scholar] [CrossRef]
- Guo, P.; Benito Ballesteros, A.; Yeung, S.P.; Liu, R.; Saha, A.; Curtis, L.; Kaser, M.; Haggard, M.P.; Cheke, L.G. COVCOG 2: Cognitive and Memory Deficits in Long COVID: A Second Publication from the COVID and Cognition Study. Front. Aging Neurosci. 2022, 14, 804937. [Google Scholar] [CrossRef]
- García-Sánchez, C.; Calabria, M.; Grunden, N.; Pons, C.; Arroyo, J.A.; Gómez-Anson, B.; Lleó, A.; Alcolea, D.; Belvís, A.; Morollón, N.; et al. Neuropsychological deficits in patients with cognitive complaints after COVID-19. Brain Behav. 2022, 12, e2508. [Google Scholar] [CrossRef]
- Ariza, M.; Cano, N.; Segura, B.; Adan, A.; Bargalló, N.; Caldú, X.; Campabadal, A.; Jurado, M.A.; Mataró, M.; Pueyo, R.; et al. Neuropsychological impairment in post-COVID condition individuals with and without cognitive complaints. Front. Aging Neurosci. 2022, 14, 1029842. [Google Scholar] [CrossRef]
- Mattioli, F.; Stampatori, C.; Righetti, F.; Sala, E.; Tomasi, C.; De Palma, G. Neurological and cognitive sequelae of COVID-19: A four month follow-up. J. Neurol. 2021, 268, 4422–4428. [Google Scholar] [CrossRef]
- Mattioli, F.; Piva, S.; Stampatori, C.; Righetti, F.; Mega, I.; Peli, E.; Sala, M.; Tomasi, C.; Indelicato, M.A.; Latronico, N.; et al. Neurologic and cognitive sequelae after SARS-CoV2 infection: Different impairment for ICU patients. J. Neurol. Sci. 2022, 432, 120061. [Google Scholar] [CrossRef]
- Ariza, M.; Cano, N.; Segura, B.; Adan, A.; Bargalló, N.; Caldú, X.; Campabadal, A.; Jurado, M.A.; Mataró, M.; Pueto, R.; et al. COVID-19 severity is related to poor executive function in people with post-COVID conditions. J. Neurol. 2023, 270, 2392–2408. [Google Scholar] [CrossRef]
- Perrottelli, A.; Sansone, N.; Giordano, G.M.; Caporusso, E.; Giuliani, L.; Melillo, A.; Pezzella, P.; Bucci, P.; Mucci, A.; Galdersini, S. Cognitive Impairment after Post-Acute COVID-19 Infection: A Systematic Review of the Literature. J. Pers. Med. 2022, 12, 2070. [Google Scholar] [CrossRef]
- Hellgren, L.; Birberg Thornberg, U.; Samuelsson, K.; Levi, R.; Divanoglou, A.; Blystad, I. Brain MRI and neuropsychological findings at long-term follow-up after COVID-19 hospitalisation: An observational cohort study. BMJ Open 2021, 11, e055164. [Google Scholar] [CrossRef]
- Miskowiak, K.W.; Johnsen, S.; Sattler, S.M.; Nielsen, S.; Kunalan, K.; Rungby, J.; Lapperre, T.; Porsberg, C.M. Cognitive impairments four months after COVID-19 hospital discharge: Pattern, severity and association with illness variables. Eur. Neuropsychopharmacol. 2021, 46, 39–48. [Google Scholar] [CrossRef]
- Groiss, S.J.; Balloff, C.; Elben, S.; Brandenburger, T.; Müttel, T.; Kindgen-Milles, D.; Vollmer, C.; Feldt, T.; Kunstein, A.; Jensen, B.O.; et al. Prolonged Neuropsychological Deficits, Central Nervous System Involvement, and Brain Stem Affection after COVID-19-A Case Series. Front. Neurol. 2020, 11, 574004. [Google Scholar] [CrossRef]
- Hellmuth, J.; Barnett, T.A.; Asken, B.M.; Kelly, J.D.; Torres, L.; Stephens, M.L.; Greenhouse, B.; Martin, J.N.; Chow, F.C.; Deeks, S.G.; et al. Persistent COVID-19-associated neurocognitive symptoms in non-hospitalized patients. J. NeuroVirol. 2021, 27, 191–195. [Google Scholar] [CrossRef]
- Vannorsdall, T.D.; Brigham, E.; Fawzy, A.; Raju, S.; Gorgone, A.; Pletnikova, A.; Lyketsos, C.G.; Parker, A.M.; Oh, E.S. Cognitive Dysfunction, Psychiatric Distress, and Functional Decline After COVID-19. Psychosom 2021, 63, 133–143. [Google Scholar] [CrossRef]
- Graham, E.L.; Clark, J.R.; Orban, Z.S.; Lim, P.H.; Szymanski, A.L.; Taylor, C.; Dibiasse, R.M.; Jia, D.T.; Balabanov, R.; Ho, S.U.; et al. Persistent neurologic symptoms and cognitive dysfunction in non-hospitalized COVID-19 «long haulers». Ann. Clin. Transl. Neurol. 2021, 8, 1073–1085. [Google Scholar] [CrossRef]
- Abdelghani, M.; Atwa, S.A.; Said, A.; Zayed, N.E.; Abdelmoaty, A.A.; Hassan, M.S. Cognitive after-effects and associated correlates among post-illness COVID-19 survivors: A cross-sectional study, Egypt. Egypt J. Neurol. Psychiatr. Neurosurg. 2022, 58, 77. [Google Scholar] [CrossRef]
- Miskowiak, K.W.; Fugledalen, L.; Jespersen, A.E.; Sattler, S.M.; Podlekareva, D.; Rungby, J.; Porsberg, C.M.; Johnsen, N. Trajectory of cognitive impairments over 1 year after COVID-19 hospitalisation: Pattern, severity, and functional implications. Eur. Neuropsychopharmacol. 2022, 59, 82–92. [Google Scholar] [CrossRef]
- Vialatte de Pémille, C.; Ray, A.; Michel, A.; Stefano, F.; Yim, T.; Bruel, C.; Zuber, M. Prevalence and prospective evaluation of cognitive dysfunctions after SARS due to SARS-CoV-2 virus. The COgnitiVID study. Rev. Neurol. 2022, 178, 802–807. [Google Scholar] [CrossRef]
- Cian, V.; De Laurenzis, A.; Siri, C.; Gusmeroli, A.; Canesi, M. Cognitive and Neuropsychiatric Features of COVID-19 Patients After Hospital Dismission: An Italian Sample. Front. Psychol. 2022, 13, 908363. [Google Scholar] [CrossRef]
- Cecchetti, G.; Agosta, F.; Canu, E.; Basaia, S.; Barbieri, A.; Cardamone, R.; Bernasconi, M.P.; Castelnovo, V.; Cividini, C.; Cursi, M.; et al. Cognitive, EEG, and MRI features of COVID-19 survivors: A 10-month study. J. Neurol. 2022, 269, 3400–3412. [Google Scholar] [CrossRef]
- Zhou, H.; Lu, S.; Chen, J.; Wei, N.; Wang, D.; Lyu, H.; Shi, C.; Hu, S. The landscape of cognitive function in recovered COVID-19 patients. J. Psychiatr. Res. 2020, 129, 98–102. [Google Scholar] [CrossRef]
- Aiello, E.N.; Radici, A.; Mora, G.; Pain, D. Cognitive phenotyping of post-infectious SARS-CoV-2 patients. Neurol. Sci. 2022, 43, 4599–4604. [Google Scholar] [CrossRef]
- Serrano-Castro, P.J.; Garzón-Maldonado, F.J.; Casado-Naranjo, I.; Ollero-Ortiz, A.; Mínguez-Castellanos, A.; Iglesias-Espinosa, M.; Baena-Palomino, P.; Sánchez-Sanchez, V.; Sánchez-Pérez, R.M.; Rubi-Callejon, J.; et al. The cognitive and psychiatric subacute impairment in severe COVID-19. Sci. Rep. 2022, 12, 3563. [Google Scholar] [CrossRef]
- Altunisik, E.; Sayiner, H.S.; Aksoz, S.; Cil, E.; Ozgenc, G. Neurological symptoms in COVID-19 patients. Bratisl. Med. J. 2021, 122, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Jaywant, A.; Vanderlind, W.M.; Alexopoulos, G.S.; Fridman, C.B.; Perlis, R.H.; Gunning, F.M. Frrequency and profile of objective cognitive deficits in hospitalized patients recovering from COVID-19. Neuropsychopharmacology 2021, 46, 2235–2240. [Google Scholar] [CrossRef]
- Albu, S.; Zozaya, N.R.; Murillo, N.; García-Molina, A.; Chacón, C.A.F.; Kumru, H. What’s going on following acute COVID-19? Clinical characteristics of patients in an out-patient rehabilitation program. NeuroRehabilitation 2021, 48, 469–480. [Google Scholar] [CrossRef]
- Bolattürk, F.; Soylu, A.C. Evaluation of cognitive, mental, and sleep patterns of post-acute COVID-19 patients and their correlation with thorax CT. Acta Neurol. Belg. 2022, 123, 1089–1093. [Google Scholar] [CrossRef]
- Dressing, A.; Bormann, T.; Blazhenets, G.; Schroeter, N.; Walter, L.I.; Thurow, J.; August, D.; Hilger, H.; Stete, K.; Gerstacker, K.; et al. Neuropsychologic Profiles and Cerebral Glucose Metabolism in Neurocognitive Long COVID Syndrome. J. Nucl. Med. 2022, 63, 1058–1063. [Google Scholar] [CrossRef]
- Ferrucci, R.; Dini, M.; Groppo, E.; Rosci, C.; Reitano, M.R.; Bai, F.; Poletti, B.; Brugnera, A.; Silani, V.; Monforte, A.D.; et al. Long-Lasting Cognitive Abnormalities after COVID-19. Brain Sci. 2021, 11, 235. [Google Scholar] [CrossRef] [PubMed]
- Puchner, B.; Sahanic, S.; Kirchmair, R.; Pizzini, A.; Sonnweber, B.; Wöll, E.; Mühlbacher, A.; Garimorth, K.; Dareb, B.; Ehling, R.; et al. Beneficial effects of multi-disciplinary rehabilitation in postacute COVID-19: An observational cohort study. Eur. J. Phys. Rehabilitation Med. 2021, 57, 189–198. [Google Scholar] [CrossRef]
- Hosp, J.A.; Dressing, A.; Blazhenets, G.; Bormann, T.; Rau, A.; Schwabenland, M.; Thurow, J.; Wagner, D.; Waller, C.; Niesen, W.D.; et al. Cognitive impairment and altered cerebral glucose metabolism in the subacute stage of COVID-19. Brain 2021, 144, 1263–1276. [Google Scholar] [CrossRef]
- Venturelli, S.; Benatti, S.V.; Casati, M.; Binda, F.; Zuglian, G.; Imeri, G.; Conti, C.; Biffi, A.M.; Spada, M.S.; Bondi, E.; et al. Surviving COVID-19 in Bergamo province: A post-acute outpatient re-evaluation. Epidemiol. Infect. 2021, 149, e32. [Google Scholar] [CrossRef]
- Weihe, S.; Mortensen, C.B.; Haase, N.; Andersen, L.P.K.; Mohr, T.; Siegel, H.; Ibsen, M.; Jørgensen, V.R.; Buck, D.L.; Pedersen, H.B.; et al. Long-term cognitive and functional status in Danish ICU patients with COVID-19. Acta Anaesthesiol. Scand. 2022, 66, 978–986. [Google Scholar] [CrossRef] [PubMed]
- Bonizzato, S.; Ghiggia, A.; Ferraro, F.; Galante, E. Cognitive, behavioral, and psychological manifestations of COVID-19 in post-acute rehabilitation setting: Preliminary data of an observational study. Neurol. Sci. 2021, 43, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Buonsenso, D.; Munblit, D.; De Rose, C.; Sinatti, D.; Ricchiuto, A.; Carfi, A.; Valentini, P. Preliminary evidence on long COVID in children. Acta Paediatr. 2021, 110, 2208–2211. [Google Scholar] [CrossRef] [PubMed]
- Amalakanti, S.; Arepalli, K.V.R.; Jillella, J.P. Cognitive assessment in asymptomatic COVID-19 subjects. VirusDisease 2021, 32, 146–149. [Google Scholar] [CrossRef] [PubMed]
- Tolentino, J.C.; Gjorup, A.L.T.; Schmidt, G.J.; Schmidt, S.L. Early attention impairment in a patient with COVID-19. Psychiatry Clin. Neurosci. 2021, 75, 66–67. [Google Scholar] [CrossRef] [PubMed]
- Monti, G.; Leggieri, C.; Fominskiy, E.; Scandroglio, A.M.; Colombo, S.; Tozzi, M.; Moizi, E.; Mucci, M.; Crivellari, M.; Pieri, M.; et al. Two-months quality of life of COVID-19 invasively ventilated survivors; An Italian single-center study. Acta Anaesthesiol. Scand. 2021, 65, 912. [Google Scholar] [CrossRef] [PubMed]
- Soldati, A.B.; Almeida, C.; Lima, M.; Araujo, A.; Araujo-Leite, M.A.; Silva, M.T.T. Telephone Screening of Cognitive Status (TICS) in severe COVID-19 patients: Utility in the era of social isolation. eNeurologicalSci 2021, 22, 100322. [Google Scholar] [CrossRef] [PubMed]
- Latronico, N.; Peli, E.; Calza, S.; Rodella, F.; Novelli, M.P.; Cella, A.; Marshall, J.; Needham, D.M.; Rasulo, F.A.; Piva, S.; et al. Physical, cognitive and mental health outcomes in 1-year survivors of COVID-19-associated ARDS. Thorax 2021, 77, 300–303. [Google Scholar] [CrossRef]
- Biagianti, B.; Di Liberto, A.; Nicolò Edoardo, A.; Lisi, I.; Nobilia, L.; de Ferrabonc, G.D.; Zanier, E.R.; Stocchetti, N.; Brambilla, P. Cognitive Assessment in SARS-CoV-2 Patients: A Systematic Review. Front. Aging Neurosci. 2022, 14, 909661. [Google Scholar] [CrossRef]
- Fernández-De-las-peñas, C.; Martín-Guerrero, J.D.; Pellicer-Valero, Ó.J.; Navarro-Pardo, E.; Gómez-Mayordomo, V.; Cuadrado, M.L.; Arias-Navalón, J.A.; Cigarán-Méndez, C.; Hernández-Barrera, V.; Arendt-Nielsen, L. Female Sex Is a Risk Factor Associated with Long-Term Post-COVID Related-Symptoms but Not with COVID-19 Symptoms: The LONG-COVID-EXP-CM Multicenter Study. J. Clin. Med. 2022, 11, 413. [Google Scholar] [CrossRef]
- Benedet, M.J.; Alejandre, M.A. TAVEC. Test de Aprendizaje Verbal España-Complutense; TEA Ediciones: Madrid, Spain, 2014; Available online: https://web.teaediciones.com/Ejemplos/TAVEC-Manual-Extracto.pdf (accessed on 1 April 2020).
- Wechsler, D. Escala de Inteligencia de Wechsler para Adultos-IV (WAIS-IV); Edición Original; NCS Pearson, Inc.; Bloomington, MN, USA, 2012; Available online: https://www.pearsonclinical.es/wais-iv-escala-de-inteligencia-de-wechsler-para-adultos-iv (accessed on 1 April 2020).
- Peña-Casanova, J.; Quiñones-Úbeda, S.; Quintana-Aparicio, M.; Aguilar, M.; Badenes, D.; Molinuevo, J.L.; Torner, L.; Robles, A.; Sagrairo Baquero, M.; Villanueva, C.; et al. Spanish Multicenter Normative Studies (NEURONORMA Project): Norms for verbal span, visuospatial span, letter and number sequencing, trail making test, and symbol digit modalities test. Arch. Clin. Neuropsychol. 2009, 24, 321–341. [Google Scholar] [CrossRef]
- Peña-Casanova, J.; Gramunt-Fombuena, N.; Quiñones-Úbeda, S.; Sánchez-Benavides, G.; Aguilar, M.; Badenes, D.; Molinuevo, J.L.; Robles, A.; Sagrario Baquero, M.; Payno, M.; et al. Spanish Multicenter Normative Studies (NEURONORMA Project): Norms for the Rey-Osterrieth Complex Figure (Copy and Memory), and Free and Cued Selective Reminding Test. Arch. Clin. Neuropsychol. 2009, 24, 371–393. [Google Scholar] [CrossRef]
- Peña-Casanova, J.; Quiñones-Úbeda, S.; Gramunt-Fombuena, N.; Aguilar, M.; Casas, L.; Molinuevo, J.L.; Robles, A.; Rodríguez, D.; Sagrario Baquero, M.; Antúnez, C.; et al. Spanish Multicenter Normative Studies (NEURONORMA Project): Norms for Boston naming test and token test. Arch. Clin. Neuropsychol. 2009, 24, 343–354. [Google Scholar] [CrossRef]
- Peña-Casanova, J.; Quiñones-Úbeda, S.; Gramunt-Fombuena, N.; Quintana-Aparicio, M.; Aguilar, M.; Badenes, D.; Cerulla, N.; Molinuevo, J.L.; Ruiz, E.; Robles, A.; et al. Spanish Multicenter Normative Studies (NEURONORMA Project): Norms for Verbal Fluency Tests. Arch. Clin. Neuropsychol. 2009, 24, 395–411. [Google Scholar] [CrossRef]
- Peña-Casanova, J.; Quiñones-Úbeda, S.; Gramunt-Fombuena, N.; Quintana, M.; Aguilar, M.; Molinuevo, J.L.; Serradell, M.; Robles, A.; Sagrario Baquero, M.; Payno, M.; et al. Spanish Multicenter Normative Studies (NEURONORMA Project): Norms for the Stroop color-word interference test and the Tower of London-Drexel. Arch. Clin. Neuropsychol. 2009, 24, 413–429. [Google Scholar] [CrossRef]
- Tamayo, F.; Casals-Coll, M.; Sánchez-Benavides, G.; Quintana, M.; Manero, R.M.; Rognoni, T.; Palomo, R.; Aranciva, F.; Tamayo, F.; Peña-Casanova, J. Estudios normativos españoles en población adulta joven (Proyecto NEURONORMA jóvenes): Normas para las pruebas span verbal, span visuoespacial, Letter-Number Sequencing, Trail Making Test y Symbol Digit Modalities Test. Neurología 2012, 27, 319–329. [Google Scholar] [CrossRef]
- Saad, M.; Omrani, A.S.; Baig, K.; Bahloul, A.; Elzein, F.; Matin, M.A.; Selim, M.A.; Al Mutairi, M.; Al Nakhli, D.A.; Al Aidaroos, A.Y.; et al. Clinical aspects and outcomes of 70 patients with Middle East respiratory syndrome coronavirus infection: A single-center experience in Saudi Arabia. Int. J. Infect. Dis. 2014, 29, 301–306. [Google Scholar] [CrossRef] [PubMed]
- Terol-Cantero, M.C.; Cabrera-Perona, V.; Martín-Aragón, M. Hospital Anxiety and Depression Scale (HADS) review in Spanish Samples. An. Psicol. 2015, 31, 494–503. [Google Scholar] [CrossRef]
- Wang, F.; Kream, R.M.; Stefano, G.B. Long-term respiratory and neurological sequelae of COVID-19. Med. Sci. Monit. 2020, 26, e928996. [Google Scholar] [CrossRef]
- Pinzon, R.T.; Wijaya, V.O.; Jody AAl Nunsio, P.N.; Buana, R.B. Persistent neurological manifestations in long COVID-19 syndrome: A systematic review and meta-analysis. J. Infect. Public Health 2022, 15, 856–869. [Google Scholar] [CrossRef]
- Joli, J.; Buck, P.; Zipfel, S.; Stengel, A. Post-COVID-19 fatigue: A systematic review. Front. Psychiatry 2022, 13, 947973. [Google Scholar] [CrossRef]
- Sharma, P.; Bharti, S.; Garg, I. Post COVID fatigue: Can we really ignore it? Indian J. Tuberc. 2022, 69, 238–241. [Google Scholar] [CrossRef] [PubMed]
- Van Herck, M.; Goërtz, Y.M.J.; Houben-Wilke, S.; Machado, F.V.C.; Meys, R.; Delbressine, J.M.; Vaes, A.W.; Burtin, C.; Posthuma, R.; Franseen, F.M.; et al. Severe Fatigue in Long COVID: Web-Based Quantitative Follow-up Study in Members of Online Long COVID Support Groups. J. Med. Internet Res. 2021, 23, e30274. [Google Scholar] [CrossRef] [PubMed]
- Willi, S.; Lüthold, R.; Hunt, A.; Hänggi, N.V.; Sejdiu, D.; Scaff, C.; Bender, N.; Staub, K.; Schlagenhauf, P. COVID-19 sequelae in adults aged less than 50 years: A systematic review. Travel Med. Infect. Dis. 2023, 40, 101995. [Google Scholar] [CrossRef]
- Evans, P.C.; Ed Rainger, G.; Mason, J.C.; Guzik, T.J.; Osto, E.; Stamataki, Z.; Neil, D.; Hoefer, I.E.; Fragiadaki, M.; Waltenberger, W.; et al. Endothelial dysfunction in COVID-19: A position paper of the ESC Working Group for Atherosclerosis and Vascular Biology, and the ESC Council of Basic Cardiovascular Science. Cardiovasc. Res. 2020, 116, 2177–2184. [Google Scholar] [CrossRef] [PubMed]
- Romero-Duarte, Á.; Rivera-Izquierdo, M.; Guerrero-Fernández de Alba, I.; Pérez-Contreras, M.; Fernández-Martínez, N.F.; Ruiz-Montero, R.; Serrano-Ortiz, A.; González-Serna, R.M.; Salcedo-Leal, I.; Jiménez-Mejías, E.; et al. Sequelae, persistent symptomatology and outcomes after COVID-19 hospitalization: The ANCOHVID multicentre 6-month follow-up study. BMC Med. 2021, 19, 129. [Google Scholar] [CrossRef]
- Huarcaya-Victoria, J.; Barreto, J.; Aire, L.; Podestá, A.; Caqui, M.; Guija-Igreda, R.; Castillo, C.; Alarcón-Ruiz, C.A. Mental Health in COVID-2019 Survivors from a General Hospital in Peru: Sociodemographic, Clinical, and Inflammatory Variable Associations. Int. J. Ment. Health Addict. 2023, 21, 1264–1285. [Google Scholar] [CrossRef]
- Ganesh, R.; Grach, S.L.; Ghosh, A.K.; Bierle, D.M.; Salonen, B.R.; Collins, N.M.; Joshi, A.Y.; Boeder, N.D., Jr.; Anstine, C.V.; Mueller, M.R.; et al. The Female-Predominant Persistent Immune Dysregulation of the Post-COVID Syndrome. Mayo Clin. Proc. 2022, 97, 454–464. [Google Scholar] [CrossRef]
- Mrcpsych, S.; Archard, L.C.; Preedy, V.R.; Biochemist, R.; Phd, S.; Psychologist, R.; Edwards, R.H.; Hawton, K.E.; Lambert, H.P.; Lane, R.J. A report—Chronic fatigue syndrome: Guidelines for research. J. R. Soc. Med. 1991, 84, 118. [Google Scholar]
SCC/Group Severity | NH | HOSPI | OXY | ICU |
---|---|---|---|---|
Without SCC (n = 70) | n = 7 (10%) | n = 16 (22.9%) | n = 33 (47.1%) | n = 14 (20%) |
With SCC (n = 38) | n = 3 (7.9%) | n = 5 (13.2%) | n = 23 (60.5%) | n = 7 (18.4%) |
Neuropsychological Tests | All Sample Mean (SD) |
---|---|
TAVEC-1 | 51.49 (9.29) |
TAVECTotal | 54.35 (9.40) |
TAVEC-B | 45.92 (7.97) |
TAVEC-IMR | 54.25 (10.15) |
TAVEC-IMRSC | 55.27 (10.08) |
TAVEC-DFR | 53.92 (10.79) |
TAVEC-DFRSC | 54.67 (10.12) |
TAVEC-REC | 54.95 (6.66) |
WMS-IMR | 48.71 (7.12) |
WMS-DFR | 51.49 (6.72) |
Digits Forward | 47.93 (7.13) |
Digits Backwards | 49.05 (5.89) |
Letter & Numbers | 46.36 (6.33) |
TMT-A | 47.36 (8.68) |
TMT-B | 43.99 (8.43) |
SDMT | 44.23 (6.71) |
Stroop Lecture | 44.08 (7.63) |
Stroop Color | 43.75 (6.65) |
Stroop Int. | 43.89 (8.14) |
Semantic Fluency | 48.68 (8.24) |
Phonemic Fluency | 44.76 (6.89) |
FCRO copy | 52.63 (9.56) |
BNT | 48.34 (8.81) |
Neuropsychological Tests | NH (n = 10) Mean (SD) | HOSPI (n = 21) Mean (SD) | OXY (n = 56) Mean (SD) | ICU (n = 21) Mean (SD) |
---|---|---|---|---|
TAVEC-1 | 53.33 (8.66) | 54.28 (9.25) | 50.90 (9.67) | 49.04 (8.30) |
TAVECTotal | 58.88 (10.54) | 56.66 (9.12) | 53.57 (9.42) | 51.90 (8.72) |
TAVEC-B | 45.55 (8.81) | 50.95 (7.68) | 43.92 (6.51) | 46.19 (9.73) |
TAVEC-IMR | 56.66 (7.07) | 55.71 (10.28) | 53.39 (10.66) | 53.80 (10.23) |
TAVEC-IMRSC | 58.88 (6.00) | 53.80 (8.04) | 54.82 (11.75) | 56.19 (8.64) |
TAVEC-DFR | 55.55 (5.27) | 56.00 (7.53) | 53.39 (12.68) | 52.38 (9.95) |
TAVEC-DFRSC | 57.77 (4.40) | 55.00 (6.88) | 54.28 (11.88) | 53.80 (9.73) |
TAVEC-REC | 55.55 (7.26) | 51.50 (7.45) | 55.63 (6.60) | 56.00 (5.02) |
WMS-IMR | 49.72 (8.23) | 48.92 (8.38) | 48.77 (6.64) | 48.21 (7.03) |
WMS-DFR | 51.11 (9.10) | 53.21 (7.50) | 51.44 (6.36) | 50.00 (5.91) |
Dígits Forward | 50.00 (6.49) | 48.21 (6.38) | 47.48 (7.79) | 47.73 (6.65) |
Dígits Backward | 51.11 (6.97) | 49.28 (5.65) | 49.06 (5.96) | 47.97 (5.78) |
Letter & Numbers | 46.38 (3.56) | 45.35 (5.93) | 47.00 (7.22) | 45.59 (5.29) |
TMT-A | 47.77 (5.06) | 48.57 (7.76) | 47.36 (9.64) | 45.83 (8.52) |
TMT-B | 44.16 (4.67) | 46.66 (8.19) | 42.90 (9.49) | 44.04 (7.00) |
SDMT | 44.44 (4.10) | 44.52 (5.73) | 44.41 (7.22) | 43.69 (7.40) |
Stroop Lecture | 43.88 (6.13) | 45.35 (7.83) | 44.40 (8.03) | 41.78 (6.98) |
Stroop Color | 42.22 (6.54) | 44.88 (6.34) | 43.87 (7.26) | 42.87 (5.51) |
Stroop Int. | 42.77 (7.75) | 46.42 (7.00) | 44.27 (7.87) | 40.62 (9.69) |
Semantic Fluency | 47.50 (5.15) | 48.80 (6.73) | 49.60 (8.97) | 45.83 (7.83) |
Fonetic Fluency | 45.00 (3.95) | 44.52 (6.45) | 45.00 (7.16) | 43.33 (6.48) |
FCRO copy | 57.44 (9.42) | 55.00 (10.42) | 51.65 (9.58) | 50.95 (8.38) |
BNT | 50.77 (9.86) | 47.59 (7.48) | 48.48 (9.53) | 47.38 (8.04) |
Neuropsychological Tests | Without SCC (n = 70) Mean (SD) | With SCC (n = 38) Mean (SD) |
---|---|---|
TAVEC-1 | 52.17 (9.05) | 46.57 (9.66) |
TAVECTotal | 58.97 (8.13) | 49.21 (8.18) |
TAVEC-B | 45.71 (8.43) | 46.57 (8.78) |
TAVEC-IMR | 56.57 (9.15) | 47.63 (10.80) |
TAVEC-IMRSC | 56.85 (9.56) | 48.42 (10.27) |
TAVEC-DFR | 56.14 (9.21) | 49.21 (11.71) |
TAVEC-DFRSC | 56.14 (9.52) | 47.10 (11.36) |
TAVEC-REC | 56.23 (5.45) | 50.52 (9.57) |
WMS-IMR | 49.81 (6.72) | 44.60 (6.24) |
WMS-DFR | 52.38 (6.71) | 45.72 (7.25) |
Dígits Forward | 49.37 (6.76) | 45.78 (6.31) |
Dígits Backward | 48.92 (5.78) | 45.72 (7.18) |
Letter & Numbers | 46.89 (6.68) | 43.94 (5.12) |
TMT-A | 48.46 (8.62) | 45.46 (7.16) |
TMT-B | 44.73 (8.96) | 42.63 (7.26) |
SDMT | 44.85 (7.12) | 41.77 (5.38) |
Stroop Lecture | 46.01 (7.57) | 42.30 (7.15) |
Stroop Color | 44.77 (6.74) | 43.48 (4.66) |
Stroop Int. | 44.37 (8.88) | 44.01 (5.11) |
Semantic Fluency | 49.97 (8.32) | 46.64 (6.65) |
Fonetic Fluency | 45.17 (7.08) | 42.82 (6.21) |
FCRO copy | 53.00 (9.39) | 51.05 (9.59) |
BNT | 48.67 (9.19) | 45.78 (7.33) |
NPS Tests—Symptoms | Fatigue No/Yes (n = 42) | Anxiety No/Yes (n = 49) | Depression No/Yes (n = 38) |
---|---|---|---|
TAVEC-1 | - | - | 7.91 (1.90)/7.08 (1–74) * d = 0.45 |
TAVECTotal | - | 58.90 (8.47)/55.22 (10.43) * d = 0.38 | 59.36 (8.37)/53.32 (10.41) *** d = 0.63 |
TAVEC-IMR | - | - | 12.79 (2.46)/11.29 (3.09) ** d = 0.53 |
TAVEC-IMRSC | - | - | 13.80 (2.14)/12.37 (2.92) ** d = 0.55 |
TAVEC-DFR | - | - | 13.11 (2.47)/11.55 (3.47) * d = 0.51 |
TAVEC-DFRSC | - | - | 13.89 (1.94)/12.29 (3.12) ** d = 0.61 |
TAVEC-REC | - | 15.51 (0.75)/14.90 (1.74) * d = 0.45 | 15.50 (0.77)/14.74 (1.89) * d = 0.52 |
WMS-IMR | 37.20 (5.19)/34.95 (5.50) * d = 0.42 | 37.75 (4.26)/34.61 (6.13) ** d = 0.59 | 37.74 (4.49)/33.71 (6.00) *** d = 0.76 |
WMS-DRF | 32.71 (7.60)/28.78 (8.58) * d = 0.48 | 33.22 (7.03)/28.82 (8.84) ** d = 0.55 | 33.29 (7.03)/27.42 (8.84) *** d = 0.73 |
Digits Forward | 6.15 (1.15)/5.45 (1.21) ** d = 0.59 | 6.17 (1.06)/5.53 (1.30) ** d = 0.53 | 6.16 (1.13)/5.37 (1.21) *** d = 0.67 |
Letter and Number | 10.17 (2.05)/9.19 (2.63) * d = 0.41 | - | 10.27 (2.13)/8.89 (2.44) ** d = 0.60 |
TMT-A | 31.68 (12.99)/40.67 (21.15) ** d = 0.51 | 29.81 (10.76)/41.63 (20.88) *** d = 0.71 | 31.39 (14.57)/42.16 (19.36) ** d = 0.62 |
TMT-B | 80.28 (38.94)/108.33 (71.02) * d = 0.48 | 79.80 (39.53)/105.28 (67.63) * d = 0.45 | 81.53 (45.41)/109.83 (66.93) * d = 0.49 |
SDMT | - | 47.90 (10.10)/40.69 (13.62) ** d = 0.60 | 47.84 (9.75)/38.71 (14.33) *** d = 0.74 |
Stroop Lecture | 103.26 (18.10)/89.02 (21.82) *** d = 0.71 | 104.58 (16.67)/89.23 (22.28) *** d = 0.78 | 104.53 (16.92)/84.70 (21.32) *** d = 1.03 |
Stroop Color | 67.42 (11.87)/60.88 (12.70) ** d = 0.53 | 68.81 (11.08)/60.02 (12.67) *** d = 0.73 | 67.87 (10.76)/59.16 (13.81) *** d = 0.70 |
Stroop Int. | 40.50 (10.77)/36.14 (10.72) * d = 0.40 | 41.50 (10.66)/35.48 (10.40) ** d = 0.57 | 40.83 (10.65)/34.95 (10.49) ** d = 0.55 |
Semantic Fluency | 25.05 (6.74)/22.33 (5.78) * d = 0.43 | 25.63 (6.35)/22.02 (6.16) ** d = 0.57 | 25.47 (5.97)/21.26 (6.62) *** d = 0.66 |
Phonetic Fluency | 16.00 (5.02)/13.81 (4.19) * d = 0.47 | 16.17 (4.73)/13.92 (4.67) ** d = 0.47 | 16.13 (4.53)/13.34 (4.86) ** d = 0.59 |
FCRO copy | - | - | 33.81 (2.70)/31.34 (5.43) ** d = 0.57 |
BNT | - | 52.78 (5.46)/50.29 (7.15) * d = 0.39 | 52.90 (5.23)/49.34 (7.63) * d = 0.54 |
HAD-Anxiety | 6.00 (3.49)/9.67 (4.28) *** d = 0.93 | 4.14 (2.03)/11.39 (3.14) *** d = 2.39 | 5.26 (3.15)/11.42 (3.67) *** d = 1.80 |
HAD-Depression | 3.76 (3.49)/7.07 (4.61) *** d = 0.80 | 2.25 (2.16)/8.41 (3.76) *** d = 2.00 | 2.33 (1.78)/10.05 (2.73) *** d = 3.34 |
NPS Tests/Symptoms | Fatigue Male/Female | Anxiety Male/Female | Depression Male/Female |
---|---|---|---|
TAVEC-IMRSC | - | 13.82 (2.40)/12.26 (2.85) * d = 0.59 | - |
WMS-IMR | 37.94 (4.52)/32.95 (5.24) ** d = 1.01 | 37.09 (6.25)/32.59 (5.33) * d = 0.77 | - |
WMS-DFR | - | 32.77 (8.51)/25.59 (7.86) ** d = 0.87 | - |
Digits Forward | 6.12 (0.85)/5.00 (1.22) *** d = 1.06 | 6.32 (1.12)/4.89 (1.08) *** d = 1.29 | 6.00 (1.13)/4.96 (1.10) ** d = 0.93 |
Digits Backward | 4.94 (1.14)/4.08 (1.03) * d = 0.79 | - | - |
Letter and Numbers | 10.47 (2.12)/8.32 (2.62) ** d = 0.90 | 10.68 (2.19)/8.30 (2.35) *** d = 1.05 | - |
TMT-A | 31.06 (9.18)/47.20 (24.46) * d = 0.87 | 33.36 (10.92)/48.37 (24.58) ** d = 0.78 | 34.80 (13.41)/46.96 (21.34) * d = 0.68 |
TMT-B | - | 84.59 (38.66)/124.25 (82.46) * d = 0.61 | - |
Stroop Lecture | 97.76 (18.50)/83.08 (22.23) * d = 0.71 | 98.68 (21.40)/81.23 (20.08) ** d = 0.84 | - |
Stroop Int. | 40.76 (9.39)/33.00 (10.60) * d = 0.77 | 39.68 (10.46)/31.92 (9.10) ** d = 0.79 | - |
Semantic Fluency | - | 24.41 (6.19)/20.07 (5.52) * d = 0.74 | - |
FCRO copy | 34.14 (2.80)/31.34 (4.96) * d = 0.69 | 33.97 (3.11)/30.81 (5.20) * d = 0.73 | - |
BNT | 52.76 (4.26)/48.24 (6.71) * d = 0.80 | 52.95 (5.58)/48.11 (7.63) * d = 0.72 | - |
HAD-Anxiety | - | 10.05 (2.76)/12.48 (3.04) ** d = 0.83 | 9.47 (3.64)/12.70 (3.15) ** d = 0.94 |
HAD-Depression | 5.00 (4.79)/8.84 (4.08) * d = 0.86 | 6.73 (3.66)/9.78 (3.30) ** d = 0.87 | - |
NPS Tests | −2 (T < 30) | −1.5 (T = 30–39) | −1 (T = 40–49) | +1 (T = 50–59) | >1.5 (T = 60–69) | >+2 (T > 70) |
---|---|---|---|---|---|---|
TAVEC-1 | ||||||
Without SCC | N = 1 (1.4%) | N = 13 (18.8%) | N = 31 (44.9%) | N = 18 (26.1%) | N = 6 (8.7%) | |
SCC | N = 1 (2.6%) | N = 10 (26.3%) | N = 18 (47.4%) | N = 5 (13.2%) | N = 4 (10.5%) | |
ICU | N = 1 (4.8%) | N = 4 (19%) | N = 13 (61.9%) | N = 2 (9.5%) | N = 1 (4.8%) | |
Fatigue | N = 9 (21.4%) | N = 22 (52.4%) | N = 7 (16.7%) | N = 4 (9.5%) | ||
TAVECTotal | ||||||
Without SCC | N = 1 (1.4%) | N = 4 (5.7%) | N = 24 (15.7%) | N = 34 (48.6%) | N = 7 (10%) | |
SCC | N = 3 (7.9%) | N = 7 (18.4%) | N = 13 (34.2%) | N = 13 (34.2%) | N = 2 (5.3%) | |
ICU | N = 1 (4.8%) | N = 3 (14.3%) | N = 8 (38.2%) | N = 9 (42.9%) | ||
Fatigue | N = 3 (7.1%) | N = 4 (9.5%) | N = 15 (35.7%) | N = 18 (42.9%) | N = 2 (4.8%) | |
TAVEC-B | ||||||
Without SCC | N = 7 (10%) | N = 24 (34.3%) | N = 32 (45.7%) | N = 6 (8.7%) | N = 1 (1.4%) | |
SCC | N = 1 (2.6%) | N = 16 (42.1%) | N = 17 (44.7%) | N = 4 (10.5%) | ||
ICU | N = 3 (14.3%) | N = 6 (28.6%) | N = 8 (38.2%) | N = 4 (19%) | ||
Fatigue | N = 2 (4.8%) | N = 14 (33.3%) | N = 21 (50%) | N = 5 (11.9%) | ||
TAVEC-IMR | ||||||
Without SCC | N = 9 (12.9%) | N = 18 (25.7%) | N = 31 (20.3%) | N = 12 (17.1%) | ||
SCC | N = 3 (7.9%) | N = 10 (26.3%) | N = 11 (28.9%) | N = 12 (31.6%) | N = 2 (5.3%) | |
ICU | N = 5 (23.8%) | N = 6 (28.6%) | N = 7 (33.3%) | N = 3 (14.3%) | ||
Fatigue | N = 3 (7.1%) | N = 8 (19%) | N = 13 (31%) | N = 15 (35.7%) | N = 3 (7.1%) | |
TAVEC-IMRSC | ||||||
Without SCC | N = 1 (1.4%) | N = 6 (8.6%) | N = 22 (31.4%) | N = 26 (37.1%) | N = 15 (21.4%) | |
SCC | N = 3 (7.9%) | N = 5 (13.2%) | N = 13 (34.2%) | N = 14 (36.8%) | N = 3 (7.9%) | |
ICU | N = 1 (4.8%) | N = 10 (47.6%) | N = 6 (28.6%) | N = 4 (12.9%) | ||
Fatigue | N = 1 (2.4%) | N = 5 (11.9%) | N = 14 (33.3%) | N = 16 (38.1%) | N = 6 (14.3%) | |
TAVEC-DFR | ||||||
Without SCC | N = 11 (15.7%) | N = 15 (21.4%) | N = 34 (48.6%) | N = 10 (14.3%) | ||
SCC | N = 6 (15.8%) | N = 7 (18.4%) | N = 9 (23.7%) | N = 12 (31.6%) | N = 3 (7.9%) | |
ICU | N = 6 (28.6%) | N = 6 (28.6%) | N = 7 (33.3%) | N = 2 (9.5%) | ||
Fatigue | N = 4 (9.5%) | N = 7 (16.7%) | N = 11 (26.2%) | N = 15 (35.7%) | N = 5 (11.9%) | |
TAVEC-DFRSC | ||||||
Without SCC | N = 3 (4.3%) | N = 4 (5.7%) | N = 20 (28.6%) | N = 33 (47.1%) | N = 10 (14.3%) | |
SCC | N = 3 (7.9%) | N = 6 (15.8%) | N = 12 (31.6%) | N = 13 (34.2%) | ||
ICU | N = 1 (4.8%) | N = 2 (9.5%) | N = 8 (38.2%) | N = 8 (38.2%) | N = 2 (9.5%) | |
Fatigue | N = 3 (7.1%) | N = 5 (11.9%) | N = 11 (26.2%) | N = 18 (42.9%) | N = 5 (11.9%) | |
TAVEC-REC | ||||||
Without SCC | N = 2 (2.9%) | N = 22 (31.9%) | N = 45 (65.2%) | |||
SCC | N = 2 (5.3%) | N = 2 (5.3%) | N = 17 (44.7%) | N = 15 (39.5%) | ||
ICU | N = 8 (25.8%) | N = 12 (38.7%) | ||||
Fatigue | N = 2 (4.8%) | N = 20 (47.6%) | N = 20 (47.6%) | |||
WMS-IMR | ||||||
Without SCC | N = 3 (4.3%) | N = 28 (40.5%) | N = 35 (52.1%) | N = 2 (2.9%) | ||
SCC | N = 6 (15.8%) | N = 16 (42.1%) | N = 16 (42.1%) | |||
ICU | N = 1 (4.8%) | N = 10 (47.6%) | N = 10 (47.6%) | |||
Fatigue | N = 4 (9.5%) | N = 20 (47.6%) | N = 18 (42.9%) | |||
WMS-DFR | ||||||
Without SCC | N = 2 (2.9%) | N = 21 (30.3%) | N = 36 (52.1%) | N = 10 (14.3%) | ||
SCC | N = 17 (44.7%) | N = 16 (42.1%) | N = 5 (13.2%) | |||
ICU | N = 1 (4.8%) | N = 6 (28.6%) | N = 14 (66.6%) | |||
Fatigue | N = 1 (2.4%) | N = 18 (42.9%) | N = 20 (47.6%) | N = 3 (7.1%) | ||
Digits Forward | ||||||
Without SCC | N = 4 (5.7%) | N = 29 (41.5%) | N = 32 (45.7%) | |||
SCC | N = 8 (21.2%) | N = 19 (50%) | N = 11 (28.9%) | |||
ICU | N = 2 (9.5%) | N = 11 (52.4%) | N = 8 (38.2%) | |||
Fatigue | N = 7 (16.7%) | N = 21 (50%) | N = 14 (33.3%) | |||
Digits Backward | ||||||
Without SCC | N = 2 (2.9%) | N = 31 (44.3%) | N = 34 (48.7%) | N = 3 (4.3%) | ||
SCC | N = 19 (50%) | N = 17 (44.7%) | N = 2 (5.3%) | |||
ICU | N = 11 (52.4%) | N = 10 (47.6%) | ||||
Fatigue | N = 1 (2.4%) | N = 22 (52.4%) | N = 17 (40.4%) | N = 2 (4.8%) | ||
Letter and Numbers | ||||||
Without SCC | N = 7 (10%) | N = 36 (52.1%) | N = 23 (32.9%) | N = 4 (5.7%) | ||
SCC | N = 4 (10.5%) | N = 26 (68.3%) | N = 8 (21.2%) | |||
ICU | N = 2 (9.5%) | N = 12 (57.1%) | N = 7 (33.3%) | |||
Fatigue | N = 6 (14.3%) | N = 26 (61.9%) | N = 10 (23.8%) | |||
TMT-A | ||||||
Without SCC | N = 7 (10%) | N = 32 (45.7%) | N = 20 (28.6%) | N = 11 (15.8%) | ||
SCC | N = 8 (21.2%) | N = 18 (47.4%) | N = 10 (26.3%) | N = 2 (5.3%) | ||
ICU | N = 5 (23.8%) | N = 9 (42.8%) | N = 5 (23.8%) | N = 2 (9.5%) | ||
Fatigue | N = 7 (16.7%) | N = 23 (54.7%) | N = 10 (23.8%) | N = 2 (4.8%) | ||
TMT-B | ||||||
Without SCC | N = 1 (2.4%) | N = 10 (14.3%) | N = 36 (52.1%) | N = 18 (26%) | N = 3 (4.3%) | |
SCC | N = 12 (31.6%) | N = 18 (47.4%) | N = 5 (13.2%) | N = 1 (2.6%) | ||
ICU | N = 6 (28.5%) | N = 9 (42.8%) | N = 6 (28.6%) | |||
Fatigue | N = 1 (2.4%) | N = 12 (30%) | N = 21 (50%) | N = 6 (14.3%) | N = 1 (2.4%) | |
SMDT | ||||||
Without SCC | N = 11 (15.7%) | N = 38 (54.2%) | N = 19 (27.3%) | N = 2 (5.3%) | ||
SCC | N = 10 (26.3%) | N = 22 (57.9%) | N = 5 (13.2%) | N = 1 (2.6%) | ||
ICU | N = 5 (23.8%) | N = 12 (57.1%) | N = 3 (14.4%) | N = 1 (4.8%) | ||
Fatigue | N = 8 (19%) | N = 30 (71.5%) | N = 3 (7.1%) | N = 1 (2.4%) | ||
Stroop Lecture | ||||||
Without SCC | N = 13 (18.8%) | N = 30 (43.4%) | N = 24 (24.7%) | N = 2 (5.3%) | ||
SCC | N = 17 (44.7%) | N = 17 (44.7%) | N = 3 (7.9%) | N = 1 (2.6%) | ||
ICU | N = 6 (28.5%) | N = 13 (61.9%) | N = 1 (4.8%) | N = 1 (4.8%) | ||
Fatigue | N = 16 (38.1%) | N = 22 (52.4%) | N = 3 (7.1%) | N = 1 (2.4%) | ||
Stroop Color | ||||||
Without SCC | N = 14 (20.6%) | N = 38 (55.9%) | N = 14 (20.6%) | N = 2 (5.3%) | ||
SCC | N = 11 (28.9%) | N = 23 (60.6%) | N = 4 (10.5%) | |||
ICU | N = 2 (9.5%) | N = 15 (75%) | N = 3 (15%) | |||
Fatigue | N = 11 (26.2%) | N = 29 (69%) | N = 2 (4.8%) | |||
Stroop Int. | ||||||
Without SCC | N = 18 (26%) | N = 29 (42.7%) | N = 18 (26%) | N = 3 (4.3%) | ||
SCC | N = 12 (31.4%) | N = 18 (47.4%) | N = 8 (21.2%) | |||
ICU | N = 6 (28.5%) | N = 13 (61.9%) | N = 1 (4.8%) | |||
Fatigue | N = 14 (33.3%) | N = 14 (33.3%) | N = 8 (19%) | N = 2 (4.8%) | ||
Semantic Fluency | ||||||
Without SCC | N = 8 (11.5%) | N = 20 (28.6%) | N = 34 (48.7%) | N = 7 (10%) | N = 1 (2.4%) | |
SCC | N = 7 (18.4%) | N = 19 (50%) | N = 10 (26.3%) | N = 2 (5.3%) | ||
ICU | N = 4 (19.1%) | N = 9 (42.9%) | N = 7 (33.3%) | N = 1 (4.8%) | ||
Fatigue | N = 6 (14.3%) | N = 20 (47.6%) | N = 14 (33.3%) | N = 2 (4.8%) | ||
Phonetic Fluency | ||||||
Sense queixes | N = 1 (2.4%) | N = 13 (18.8%) | N = 39 (55.8%) | N = 13 (18.8%) | N = 4 (5.7%) | |
Queixes cognitives | N = 5 (23.7%) | N = 19 (50%) | N = 10 (26.3%) | |||
UCI | N = 5 (23.8%) | N = 12 (57.1%) | N = 4 (19.1%) | |||
Fatiga | N = 10 (23.8%) | N = 24 (57.2%) | N = 8 (19%) | |||
FCRO copy | ||||||
Without SCC | N = 2 (5.3%) | N = 27 (38.5%) | N = 19 (27.3%) | N = 22 (31.9%) | ||
SCC | N = 3 (7.9%) | N = 14 (36.9%) | N = 11 (28.9%) | N = 10 (26.3%) | ||
ICU | N = 1 (4.8%) | N = 9 (42.9%) | N = 7 (33.3%) | N = 4 (19.1%) | ||
Fatigue | N = 3 (7.1%) | N = 19 (45.3%) | N = 9 (21.4%) | N = 11 (26.2%) | ||
BNT | ||||||
Without SCC | N = 1 (2.4%) | N = 10 (14.3%) | N = 22 (31.9%) | N = 30 (43.4%) | N = 7 (10%) | |
SCC | N = 3 (7.9%) | N = 19 (50%) | N = 12 (31.6%) | N = 4 (10.5%) | ||
ICU | N = 3 (9.6%) | N = 9 (42.9%) | N = 7 (33.3%) | N = 2 (9.5%) | ||
Fatigue | N = 6 (14.3%) | N = 22 (52.4%) | N = 12 (28.5%) | N = 2 (4.8%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almeria, M.; Cejudo, J.C.; Deus, J.; Krupinski, J. Neurocognitive and Neuropsychiatric Sequelae in Long COVID-19 Infection. Brain Sci. 2024, 14, 604. https://doi.org/10.3390/brainsci14060604
Almeria M, Cejudo JC, Deus J, Krupinski J. Neurocognitive and Neuropsychiatric Sequelae in Long COVID-19 Infection. Brain Sciences. 2024; 14(6):604. https://doi.org/10.3390/brainsci14060604
Chicago/Turabian StyleAlmeria, Marta, Juan Carlos Cejudo, Joan Deus, and Jerzy Krupinski. 2024. "Neurocognitive and Neuropsychiatric Sequelae in Long COVID-19 Infection" Brain Sciences 14, no. 6: 604. https://doi.org/10.3390/brainsci14060604
APA StyleAlmeria, M., Cejudo, J. C., Deus, J., & Krupinski, J. (2024). Neurocognitive and Neuropsychiatric Sequelae in Long COVID-19 Infection. Brain Sciences, 14(6), 604. https://doi.org/10.3390/brainsci14060604