Repetitive Transcranial Magnetic Stimulation for Action Naming in Aphasia Rehabilitation: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Selection and Analysis
- Use of rTMS, including theta burst stimulation (TBS; i.e., rTMS using a specific frequency pattern).
- Target population of individuals with post-stroke aphasia.
- Articles written in French and/or English.
- Treatment outcome measures included an oral action naming task that included action verbs.
- The study aimed to improve the performance of patients with post-stroke aphasia.
- Other forms of brain stimulation, such as transcranial direct current stimulation (tDCS) or other neuromodulation techniques, can be used.
- Involvement of any other clinical pathology (e.g., primary progressive aphasia, Alzheimer’s disease, etc.) or healthy individuals.
- Brain mapping during an action naming task.
- The document was not a scientific journal article (e.g., commentaries, news articles, conference materials). Reviews and meta-analyses were not included, but their reference lists were consulted to identify articles not found in the initial search.
2.2. Assessment of the Methodological Quality of Included Studies
- Selection bias
- Study design
- Confounders
- Blinding procedures
- Data collection methods
- Withdrawals/dropouts
- Intervention integrity
- Analyses.
2.3. Meta-Analyses
3. Results
3.1. Study Selection
3.2. Description of the Included Articles
3.3. Quality Assessment
3.4. Participants
3.5. Brain Targets and Procedure
3.6. Outcome Measures
3.7. Meta-Analyses
3.7.1. Short-Term rTMS Effects
3.7.2. Medium-Term rTMS Effects
3.7.3. Long-Term rTMS Effects
3.8. Qualitative Analysis
3.8.1. Single Case Studies
3.8.2. Group Study
3.8.3. Speech-Language Therapy and rTMS Combination
4. Discussion
Limitations and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alexander, M.P.; Hillis, A.E. Chapter 14 Aphasia. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2008; Volume 88, pp. 287–309. ISBN 978-0-444-51897-2. [Google Scholar]
- Berthier, M.L. Poststroke Aphasia: Epidemiology, Pathophysiology and Treatment. Drugs Aging 2005, 22, 163–182. [Google Scholar] [CrossRef]
- Fama, M.E.; Hayward, W.; Snider, S.F.; Friedman, R.B.; Turkeltaub, P.E. Subjective Experience of Inner Speech in Aphasia: Preliminary Behavioral Relationships and Neural Correlates. Brain Lang. 2017, 164, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Nickels, L. Therapy for Naming Disorders: Revisiting, Revising, and Reviewing. Aphasiology 2002, 16, 935–979. [Google Scholar] [CrossRef]
- Conroy, P.; Sage, K.; Lambon Ralph, M.A. Towards Theory-driven Therapies for Aphasic Verb Impairments: A Review of Current Theory and Practice. Aphasiology 2006, 20, 1159–1185. [Google Scholar] [CrossRef]
- d’Honincthun, P.; Pillon, A. Why Verbs Could Be More Demanding of Executive Resources than Nouns: Insight from a Case Study of a Fv-FTD Patient. Brain Lang. 2005, 95, 36–37. [Google Scholar] [CrossRef]
- Laws, K.R.; Adlington, R.L.; Gale, T.M.; Moreno-Martínez, F.J.; Sartori, G. A Meta-Analytic Review of Category Naming in Alzheimer’s Disease. Neuropsychologia 2007, 45, 2674–2682. [Google Scholar] [CrossRef] [PubMed]
- Vigliocco, G.; Vinson, D.P.; Druks, J.; Barber, H.; Cappa, S.F. Nouns and Verbs in the Brain: A Review of Behavioural, Electrophysiological, Neuropsychological and Imaging Studies. Neurosci. Biobehav. Rev. 2011, 35, 407–426. [Google Scholar] [CrossRef] [PubMed]
- Rispoli, M. The Acquisition of Verb Subcategorization in a Functionalist Framework. First Lang. 1991, 11, 41–63. [Google Scholar] [CrossRef]
- Goodglass, H.; Klein, B.; Carey, P.; Jones, K. Specific Semantic Word Categories in Aphasia. Cortex 1966, 2, 74–89. [Google Scholar] [CrossRef]
- Miceli, G.; Silveri, M.C.; Nocentini, U.; Caramazza, A. Patterns of Dissociation in Comprehension and Production of Nouns and Verbs. Aphasiology 1988, 2, 351–358. [Google Scholar] [CrossRef]
- Crepaldi, D.; Berlingeri, M.; Cattinelli, I.; Borghese, N.A.; Luzzatti, C.; Paulesu, E. Clustering the Lexicon in the Brain: A Meta-Analysis of the Neurofunctional Evidence on Noun and Verb Processing. Front. Hum. Neurosci. 2013, 7, 303. [Google Scholar] [CrossRef]
- Druks, J. Verbs and nounsÐa Review of the Literature. J. Neurolinguist. 2002, 15, 289–315. [Google Scholar] [CrossRef]
- Damasio, A.R.; Tranel, D. Nouns and Verbs Are Retrieved with Differently Distributed Neural Systems. Proc. Natl. Acad. Sci. USA 1993, 90, 4957–4960. [Google Scholar] [CrossRef] [PubMed]
- Aggujaro, S.; Crepaldi, D.; Pistarini, C.; Taricco, M.; Luzzatti, C. Neuro-Anatomical Correlates of Impaired Retrieval of Verbs and Nouns: Interaction of Grammatical Class, Imageability and Actionality. J. Neurolinguist. 2006, 19, 175–194. [Google Scholar] [CrossRef]
- Berlingeri, M.; Crepaldi, D.; Roberti, R.; Scialfa, G.; Luzzatti, C.; Paulesu, E. Nouns and Verbs in the Brain: Grammatical Class and Task Specific Effects as Revealed by fMRI. Cogn. Neuropsychol. 2008, 25, 528–558. [Google Scholar] [CrossRef] [PubMed]
- Liljeström, M.; Tarkiainen, A.; Parviainen, T.; Kujala, J.; Numminen, J.; Hiltunen, J.; Laine, M.; Salmelin, R. Perceiving and Naming Actions and Objects. NeuroImage 2008, 41, 1132–1141. [Google Scholar] [CrossRef] [PubMed]
- Momenian, M.; Nilipour, R.; Samar, R.G.; Oghabian, M.A.; Cappa, S. Neural Correlates of Verb and Noun Processing: An fMRI Study of Persian. J. Neurolinguist. 2016, 37, 12–21. [Google Scholar] [CrossRef]
- Tranel, D.; Martin, C.; Damasio, H.; Grabowski, T.; Hichwa, R. Effects of Noun?Verb Homonymy on the Neural Correlates of Naming Concrete Entities and Actions. Brain Lang. 2005, 92, 288–299. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Bi, Y.; Han, Z.; Zhu, C.; Law, S.-P. Neural Correlates of Comprehension and Production of Nouns and Verbs in Chinese. Brain Lang. 2012, 122, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Lubrano, V.; Filleron, T.; Démonet, J.-F.; Roux, F.-E. Anatomical Correlates for Category-Specific Naming of Objects and Actions: A Brain Stimulation Mapping Study: Object and Action Naming. Hum. Brain Mapp. 2014, 35, 429–443. [Google Scholar] [CrossRef] [PubMed]
- Antón-Méndez, I. The Role of Verbs in Sentence Production. Front. Psychol. 2020, 11, 189. [Google Scholar] [CrossRef] [PubMed]
- Edmonds, L.A. A Review of Verb Network Strengthening Treatment: Theory, Methods, Results, and Clinical Implications. Top. Lang. Disord. 2016, 36, 123–135. [Google Scholar] [CrossRef]
- Hickin, J.; Cruice, M.; Dipper, L. A Systematically Conducted Scoping Review of the Evidence and Fidelity of Treatments for Verb Deficits in Aphasia: Verb-in-Isolation Treatments. Am. J. Speech-Lang. Pathol. 2020, 29, 530–559. [Google Scholar] [CrossRef] [PubMed]
- Carragher, M.; Sage, K.; Conroy, P. The Effects of Verb Retrieval Therapy for People with Non-Fluent Aphasia: Evidence from Assessment Tasks and Conversation. Neuropsychol. Rehabil. 2013, 23, 846–887. [Google Scholar] [CrossRef] [PubMed]
- Schneider, S.; Thompson, C. Verb Production in Agrammatic Aphasia: The Influence of Semantic Class and Argument Structure Properties on Generalisation. Aphasiology 2003, 17, 213–241. [Google Scholar] [CrossRef] [PubMed]
- Wambaugh, J.L.; Ferguson, M. Application of Semantic Feature Analysis to Retrieval of Action Names in Aphasia. JRRD 2007, 44, 381. [Google Scholar] [CrossRef] [PubMed]
- Webster, J.; Whitworth, A. Treating Verbs in Aphasia: Exploring the Impact of Therapy at the Single Word and Sentence Levels. Int. J. Lang. Commun. Disord. 2012, 47, 619–636. [Google Scholar] [CrossRef] [PubMed]
- Bonifazi, S.; Tomaiuolo, F.; Altoè, G.; Ceravolo, M.G.; Provinciali, L.; Marangolo, P. Action Observation as a Useful Approach for Enhancing Recovery of Verb Production: New Evidence from Aphasia. Eur. J. Phys. Rehabil. Med. 2013, 49, 9. [Google Scholar]
- Routhier, S.; Bier, N.; Macoir, J. The Contrast between Cueing and/or Observation in Therapy for Verb Retrieval in Post-Stroke Aphasia. J. Commun. Disord. 2015, 54, 43–55. [Google Scholar] [CrossRef] [PubMed]
- Edwards, S.; Tucker, K. Verb Retrieval in Fluent Aphasia: A Clinical Study. Aphasiology 2006, 20, 644–675. [Google Scholar] [CrossRef]
- Cotelli, M.; Manenti, R.; Cappa, S.F.; Geroldi, C.; Zanetti, O.; Rossini, P.M.; Miniussi, C. Effect of Transcranial Magnetic Stimulation on Action Naming in Patients with Alzheimer Disease. Arch. Neurol. 2006, 63, 1602–1604. [Google Scholar] [CrossRef] [PubMed]
- Cotelli, M.; Manenti, R.; Alberici, A.; Brambilla, M.; Cosseddu, M.; Zanetti, O.; Miozzo, A.; Padovani, A.; Miniussi, C.; Borroni, B. Prefrontal Cortex rTMS Enhances Action Naming in Progressive Non-Fluent Aphasia. Eur. J. Neurol. 2012, 19, 1404–1412. [Google Scholar] [CrossRef] [PubMed]
- Klooster, D.C.W.; De Louw, A.J.A.; Aldenkamp, A.P.; Besseling, R.M.H.; Mestrom, R.M.C.; Carrette, S.; Zinger, S.; Bergmans, J.W.M.; Mess, W.H.; Vonck, K.; et al. Technical Aspects of Neurostimulation: Focus on Equipment, Electric Field Modeling, and Stimulation Protocols. Neurosci. Biobehav. Rev. 2016, 65, 113–141. [Google Scholar] [CrossRef] [PubMed]
- Barker, A.T.; Jalinous, R.; Freeston, I.L. Non-invasive magnetic stimulation of human motor cortex. Lancet 1985, 325, 1106–1107. [Google Scholar] [CrossRef] [PubMed]
- Breining, B.L.; Sebastian, R. Neuromodulation in Post-Stroke Aphasia Treatment. Curr. Phys. Med. Rehabil. Rep. 2020, 8, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Maeda, F.; Keenan, J.P.; Tormos, J.M.; Topka, H.; Pascual-Leone, A. Interindividual Variability of the Modulatory Effects of Repetitive Transcranial Magnetic Stimulation on Cortical Excitability. Exp. Brain Res. 2000, 133, 425–430. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, M.; Pascual-Leone, A. Transcranial Magnetic Stimulation in Neurology. Lancet Neurol. 2003, 2, 145–156. [Google Scholar] [CrossRef] [PubMed]
- Arheix-Parras, S.; Barrios, C.; Python, G.; Cogné, M.; Sibon, I.; Engelhardt, M.; Dehail, P.; Cassoudesalle, H.; Moucheboeuf, G.; Glize, B. A Systematic Review of Repetitive Transcranial Magnetic Stimulation in Aphasia Rehabilitation: Leads for Future Studies. Neurosci. Biobehav. Rev. 2021, 127, 212–241. [Google Scholar] [CrossRef]
- Klaus, J.; Schutter, D.J.L.G. Non-Invasive Brain Stimulation to Investigate Language Production in Healthy Speakers: A Meta-Analysis. Brain Cogn. 2018, 123, 10–22. [Google Scholar] [CrossRef] [PubMed]
- Griffis, J.C.; Nenert, R.; Allendorfer, J.B.; Szaflarski, J.P. Interhemispheric Plasticity Following Intermittent Theta Burst Stimulation in Chronic Poststroke Aphasia. Neural Plast. 2016, 2016, 4796906. [Google Scholar] [CrossRef] [PubMed]
- Szaflarski, J.P.; Griffis, J.; Vannest, J.; Allendorfer, J.B.; Nenert, R.; Amara, A.W.; Sung, V.; Walker, H.C.; Martin, A.N.; Mark, V.W.; et al. A Feasibility Study of Combined Intermittent Theta Burst Stimulation and Modified Constraint-Induced Aphasia Therapy in Chronic Post-Stroke Aphasia. Restor. Neurol. Neurosci. 2018, 36, 503–518. [Google Scholar] [CrossRef] [PubMed]
- Szaflarski, J.P.; Vannest, J.; Wu, S.W.; DiFrancesco, M.W.; Banks, C.; Gilbert, D.L. Excitatory Repetitive Transcranial Magnetic Stimulation Induces Improvements in Chronic Post-Stroke Aphasia. Med. Sci. Monit. 2011, 17, CR132–CR139. [Google Scholar] [CrossRef] [PubMed]
- Versace, V.; Schwenker, K.; Langthaler, P.B.; Golaszewski, S.; Sebastianelli, L.; Brigo, F.; Pucks-Faes, E.; Saltuari, L.; Nardone, R. Facilitation of Auditory Comprehension after Theta Burst Stimulation of Wernicke’s Area in Stroke Patients: A Pilot Study. Front. Neurol. 2019, 10, 1319. [Google Scholar] [CrossRef] [PubMed]
- Vuksanović, J.; Jelić, M.B.; Milanović, S.D.; Kačar, K.; Konstantinović, L.; Filipović, S.R. Improvement of Language Functions in a Chronic Non-Fluent Post-Stroke Aphasic Patient Following Bilateral Sequential Theta Burst Magnetic Stimulation. Neurocase 2015, 21, 244–250. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Zhao, H.; Shen, C.; Liu, F.; Qiu, L.; Fu, L. Low-Frequency Repetitive Transcranial Magnetic Stimulation in Patients with Poststroke Aphasia: Systematic Review and Meta-Analysis of Its Effect Upon Communication. J. Speech Lang. Hear. Res. 2020, 63, 3801–3815. [Google Scholar] [CrossRef]
- Prinsen, C.A.C.; Mokkink, L.B.; Bouter, L.M.; Alonso, J.; Patrick, D.L.; De Vet, H.C.W.; Terwee, C.B. COSMIN Guideline for Systematic Reviews of Patient-Reported Outcome Measures. Qual. Life Res. 2018, 27, 1147–1157. [Google Scholar] [CrossRef] [PubMed]
- Cochrane Effective Practice and Organisation of Care (EPOC). Data collection form. EPOC Resources for review authors, 2017. Available online: https://epoc.cochrane.org/resources/epoc-resources-review-authors(accessed on 25 February 2024).
- Thomas, B.H.; Ciliska, D.; Dobbins, M.; Micucci, S. A Process for Systematically Reviewing the Literature: Providing the Research Evidence for Public Health Nursing Interventions. Worldviews Evid. Based Nurs. 2004, 1, 176–184. [Google Scholar] [CrossRef] [PubMed]
- Rohatgi, A. WebPlotDigitizer User Manual Version 4.6 2022. Available online: https://automeris.io/WebPlotDigitizer (accessed on 5 March 2024).
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef]
- Heikkinen, P.H.; Pulvermüller, F.; Mäkelä, J.P.; Ilmoniemi, R.J.; Lioumis, P.; Kujala, T.; Manninen, R.-L.; Ahvenainen, A.; Klippi, A. Combining rTMS with Intensive Language-Action Therapy in Chronic Aphasia: A Randomized Controlled Trial. Front. Neurosci. 2019, 12, 1036. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-P.; Hsieh, C.-Y.; Tsai, P.-Y.; Wang, C.-T.; Lin, F.-G.; Chan, R.-C. Efficacy of Synchronous Verbal Training During Repetitive Transcranial Magnetic Stimulation in Patients with Chronic Aphasia. Stroke 2014, 45, 3656–3662. [Google Scholar] [CrossRef]
- Barwood, C.; Murdoch, B.; Whelan, B.; Lloyd, D.; Riek, S.; O’Sullivan, J.; Coulthard, A.; Wong, A.; Aitken, P.; Hall, G. The Effects of Low Frequency Repetitive Transcranial Magnetic Stimulation (rTMS) and Sham Condition rTMS on Behavioural Language in Chronic Non-Fluent Aphasia: Short Term Outcomes. NeuroRehabilitation 2011, 28, 113–128. [Google Scholar] [CrossRef] [PubMed]
- Barwood, C.H.S.; Murdoch, B.E.; Whelan, B.-M.; Lloyd, D.; Riek, S.; O’ Sullivan, J.D.; Coulthard, A.; Wong, A. Improved Language Performance Subsequent to Low-Frequency rTMS in Patients with Chronic Non-Fluent Aphasia Post-Stroke. Eur. J. Neurol. 2011, 18, 935–943. [Google Scholar] [CrossRef] [PubMed]
- Barwood, C.H.S.; Murdoch, B.E.; Whelan, B.-M.; Lloyd, D.; Riek, S.; O’Sullivan, J.D.; Coulthard, A.; Wong, A. Improved Receptive and Expressive Language Abilities in Nonfluent Aphasic Stroke Patients after Application of rTMS: An Open Protocol Case Series. Brain Stimul. 2012, 5, 274–286. [Google Scholar] [CrossRef] [PubMed]
- Barwood, C.H.S.; Murdoch, B.E.; Riek, S.; O’Sullivan, J.D.; Wong, A.; Lloyd, D.; Coulthard, A. Long Term Language Recovery Subsequent to Low Frequency rTMS in Chronic Non-Fluent Aphasia. NRE 2013, 32, 915–928. [Google Scholar] [CrossRef] [PubMed]
- Garcia, G.; Norise, C.; Faseyitan, O.; Naeser, M.A.; Hamilton, R.H. Utilizing Repetitive Transcranial Magnetic Stimulation to Improve Language Function in Stroke Patients with Chronic Non-Fluent Aphasia. J. Vis. Exp. 2013, 77, e50228. [Google Scholar]
- Hamilton, R.H.; Sanders, L.; Benson, J.; Faseyitan, O.; Norise, C.; Naeser, M.; Martin, P.; Coslett, H.B. Stimulating Conversation: Enhancement of Elicited Propositional Speech in a Patient with Chronic Non-Fluent Aphasia Following Transcranial Magnetic Stimulation. Brain Lang. 2010, 113, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Martin, P.I.; Treglia, E.; Naeser, M.A.; Ho, M.D.; Baker, E.H.; Martin, E.G.; Bashir, S.; Pascual-Leone, A. Language Improvements after TMS plus Modified CILT: Pilot, Open-Protocol Study with Two, Chronic Nonfluent Aphasia Cases. Restor. Neurol. Neurosci. 2014, 32, 483–505. [Google Scholar] [CrossRef] [PubMed]
- Naeser, M.A.; Martin, P.I.; Lundgren, K.; Klein, R.; Kaplan, J.; Treglia, E.; Ho, M.; Nicholas, M.; Alonso, M.; Pascual-Leone, A. Improved Language in a Chronic Nonfluent Aphasia Patient after Treatment with CPAP and TMS. Cogn. Behav. Neurol. 2010, 23, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Goodglass, H.; Kaplan, E.; Weintraub, S. BDAE: The Boston Diagnostic Aphasia Examination; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2001; ISBN 0-683-30559-X. [Google Scholar]
- Obler, L.; Albert, M. Action Naming Test (Experimental Version). Boston: VA Medical Center 1979, unpublished. [Google Scholar]
- Szekely, A.; Jacobsen, T.; D’Amico, S.; Devescovi, A.; Andonova, E.; Herron, D.; Lu, C.C.; Pechmann, T.; Pléh, C.; Wicha, N.; et al. A New On-Line Resource for Psycholinguistic Studies. J. Mem. Lang. 2004, 51, 247–250. [Google Scholar] [CrossRef] [PubMed]
- Difrancesco, S.; Pulvermüller, F.; Mohr, B. Intensive Language-Action Therapy (ILAT): The Methods. Aphasiology 2012, 26, 1317–1351. [Google Scholar] [CrossRef]
- Pulvermüller, F.; Berthier, M.L. Aphasia Therapy on a Neuroscience Basis. Aphasiology 2008, 22, 563–599. [Google Scholar] [CrossRef] [PubMed]
- Harvey, D.Y.; Mass, J.A.; Shah-Basak, P.P.; Wurzman, R.; Faseyitan, O.; Sacchetti, D.L.; DeLoretta, L.; Hamilton, R.H. Continuous Theta Burst Stimulation over Right Pars Triangularis Facilitates Naming Abilities in Chronic Post-Stroke Aphasia by Enhancing Phonological Access. Brain Lang. 2019, 192, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Ilkhani, M.; Shojaie Baghini, H.; Kiamarzi, G.; Meysamie, A.; Ebrahimi, P. The Effect of Low-Frequency Repetitive Transcranial Magnetic Stimulation (rTMS) on the Treatment of Aphasia Caused by Cerebrovascular Accident (CVA). Med. J. Islam. Repub. Iran 2017, 31, 903–907. [Google Scholar] [CrossRef] [PubMed]
- Dammekens, E.; Vanneste, S.; Ost, J.; de Ridder, D. Neural Correlates of High Frequency Repetitive Transcranial Magnetic Stimulation Improvement in Post-Stroke Non-Fluent Aphasia: A Case Study. Neurocase 2014, 20, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Harvey, D.Y.; Podell, J.; Turkeltaub, P.E.; Faseyitan, O.; Coslett, H.B.; Hamilton, R.H. Functional Reorganization of Right Prefrontal Cortex Underlies Sustained Naming Improvements in Chronic Aphasia via Repetitive Transcranial Magnetic Stimulation. Cogn. Behav. Neurol. 2017, 30, 133–144. [Google Scholar] [CrossRef] [PubMed]
- Rossetti, A.; Malfitano, C.; Malloggi, C.; Banco, E.; Rota, V.; Tesio, L. Phonemic Fluency Improved after Inhibitory Transcranial Magnetic Stimulation in a Case of Chronic Aphasia. Int. J. Rehabil. Res. 2019, 42, 92–95. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Chen, Y.; Hu, R.; Yang, L.; Wang, M.; Zhang, J.; Lu, H.; Wu, Y.; Du, X. rTMS Treatments Combined with Speech Training for a Conduction Aphasia Patient: A Case Report with MRI Study. Medicine 2017, 96, e7399. [Google Scholar] [CrossRef] [PubMed]
- Bucur, M.; Papagno, C. Are Transcranial Brain Stimulation Effects Long-Lasting in Post-Stroke Aphasia? A Comparative Systematic Review and Meta-Analysis on Naming Performance. Neurosci. Biobehav. Rev. 2019, 102, 264–289. [Google Scholar] [CrossRef] [PubMed]
- Weiduschat, N.; Thiel, A.; Rubi-Fessen, I.; Hartmann, A.; Kessler, J.; Merl, P.; Kracht, L.; Rommel, T.; Heiss, W.D. Effects of Repetitive Transcranial Magnetic Stimulation in Aphasic Stroke: A Randomized Controlled Pilot Study. Stroke 2011, 42, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Heiss, W.-D.; Hartmann, A.; Rubi-Fessen, I.; Anglade, C.; Kracht, L.; Kessler, J.; Weiduschat, N.; Rommel, T.; Thiel, A. Noninvasive Brain Stimulation for Treatment of Right- and Left-Handed Poststroke Aphasics. Cerebrovasc. Dis. 2013, 36, 363–372. [Google Scholar] [CrossRef] [PubMed]
- Thiel, A.; Hartmann, A.; Rubi-Fessen, I.; Anglade, C.; Kracht, L.; Weiduschat, N.; Kessler, J.; Rommel, T.; Heiss, W.-D. Effects of Noninvasive Brain Stimulation on Language Networks and Recovery in Early Poststroke Aphasia. Stroke 2013, 44, 2240–2246. [Google Scholar] [CrossRef] [PubMed]
- Dresang, H.C.; Harvey, D.Y.; Xie, S.X.; Shah-Basak, P.P.; DeLoretta, L.; Wurzman, R.; Parchure, S.Y.; Sacchetti, D.; Faseyitan, O.; Lohoff, F.W.; et al. Genetic and Neurophysiological Biomarkers of Neuroplasticity Inform Post-Stroke Language Recovery. Neurorehabilit. Neural Repair 2022, 36, 371–380. [Google Scholar] [CrossRef] [PubMed]
- Ren, C.-L.; Zhang, G.-F.; Xia, N.; Jin, C.-H.; Zhang, X.-H.; Hao, J.-F.; Guan, H.-B.; Tang, H.; Li, J.-A.; Cai, D.-L. Effect of Low-Frequency rTMS on Aphasia in Stroke Patients: A Meta-Analysis of Randomized Controlled Trials. PLoS ONE 2014, 9, e102557. [Google Scholar] [CrossRef]
- Ren, C.; Zhang, G.; Xu, X.; Hao, J.; Fang, H.; Chen, P.; Li, Z.; Ji, Y.; Cai, Q.; Gao, F. The Effect of rTMS over the Different Targets on Language Recovery in Stroke Patients with Global Aphasia: A Randomized Sham-Controlled Study. BioMed Res. Int. 2019, 2019, 4589056. [Google Scholar] [CrossRef]
- Gerstenecker, A.; Lazar, R.M. Language Recovery Following Stroke. Clin. Neuropsychol. 2019, 33, 928–947. [Google Scholar] [CrossRef] [PubMed]
- Mina, D.; Durand, É.; Saidi, L.G.; Ansaldo, A.I. Neuroplasticité induite par la thérapie du langage dans les cas d’aphasie: Mieux comprendre le fonctionnement cérébral pour une intervention plus efficace. Rev. Neuropsychol. 2015, 7, 33–40. [Google Scholar] [CrossRef]
- Kimura, Y.; Otobe, Y.; Suzuki, M.; Masuda, H.; Kojima, I.; Tanaka, S.; Kusumi, H.; Yamamoto, S.; Saegusa, H.; Yoshimura, T.; et al. The Effects of Rehabilitation Therapy Duration on Functional Recovery of Patients with Subacute Stroke Stratified by Individual’s Age: A Retrospective Multicenter Study. Eur J Phys Rehabil Med 2022, 58. [Google Scholar] [CrossRef] [PubMed]
- Liuzzi, A.G.; Ubaldi, S.; Fairhall, S.L. Representations of Conceptual Information during Automatic and Active Semantic Access. Neuropsychologia 2021, 160, 107953. [Google Scholar] [CrossRef] [PubMed]
- Tyler, L.K.; Russel, R.; Fadili, J.; Moss, H. The Neural Representation of Nouns and Verbs: PET Studies. Brain 2001, 124, 1619–1634. [Google Scholar] [CrossRef] [PubMed]
- Acharya, A.B.; Wroten, M. Wernicke Aphasia. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- de Almeida, R.G.; Mobayyen, F.; Antal, C.; Kehayia, E.; Nair, V.P.; Schwartz, G. Category-Specific Verb-Semantic Deficits in Alzheimer’s Disease: Evidence from Static and Dynamic Action Naming. Cogn. Neuropsychol. 2021, 38, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Spigarelli, M.; Wilson, M.A. T-DAV: Test de dénomination d’actions par visionnement de vidéos. Développement, validation et normalization. Gériatrie Psychol. Neuropsychiatr. Vieil. 2022, 20, 261–270. [Google Scholar] [CrossRef]
- Versace, R.; Brouillet, D.; Vallet, G. Cognition Incarnée: Une Cognition Située et Projetée; Mardaga Supérieur: Bruxelles, Belgium, 2018; ISBN 978-2-8047-0593-0. [Google Scholar]
Study | Design | Participants | Stimulation Procedure | Sessions | Control Condition | Speech Training | Outcome Measures | Critical Appraisal | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Selection Bias | Study Design | Confounders | Blinding | Data Collection Methods | Withdrawals and Drop-Outs | Global Evaluation | ||||||||
Barwood et al., 2011A [54] | Randomized controlled trial | 12 | rTMS at 1 Hz on R IFG (pars triangularis) for 20 min | 10 | Sham coil | N/A | BDAE | 1 | 1 | 3 | 1 | 1 | 3 | 3 |
Barwood et al., 2011B [55] | Randomized controlled trial | 12 | rTMS at 1 Hz on R IFG (pars triangularis) for 20 min | 10 | Sham coil | N/A | BDAE | 1 | 1 | 3 | 1 | 1 | 3 | 3 |
Barwood et al., 2012 [56] | Cohort study | 7 | rTMS at 1 Hz on R IFG (pars triangularis) for 20 min | 10 | N/A | N/A | BDAE | 2 | 1 | 3 | 3 | 1 | 3 | 3 |
Barwood et al., 2013 [57] | Randomized controlled trial | 12 | rTMS at 1 Hz on R IFG (pars triangularis) for 20 min | 10 | Sham coil | N/A | BDAE | 2 | 1 | 1 | 1 | 1 | 3 | 2 |
Garcia et al., 2013 [58] | Non-randomized study | 9 | rTMS at 1 Hz on R IFG (pars triangularis) for 20 min | 10 | Sham coil | N/A | BDAE | 3 | 1 | 3 | 2 | 1 | 3 | 3 |
Hamilton et al., 2010 [59] | Case-control study | 1 | rTMS at 1 Hz on R IFG (pars triangularis) for 20 min | 10 | N/A | N/A | BDAE | 3 | 2 | N/A | 3 | 1 | N/A | 3 |
Heikkinen et al., 2019 [52] | Randomized controlled trial | 17 | rTMS at 1 Hz on R IFG (pars triangularis) for 20 min | 20 | Sham coil | Intensive Language-Action Therapy: 3 h of intensive (total of 30 h) | ANT | 2 | 1 | 1 | 2 | 1 | 1 | 1 |
Martin et al., 2014 [60] | Case study | 2 | rTMS at 1 Hz on R IFG (pars triangularis) for 20 min | 10 | N/A | Massed Constraint-Induced Language Therapy (mCILT): 3 h of intensive | BDAE | 3 | 2 | 3 | 3 | 1 | N/A | 3 |
Naeser et al., 2010 [61] | Case study | 1 | rTMS at 1 Hz on R IFG (pars triangularis) for 20 min | 10 | N/A | N/A | BDAE | 3 | 2 | N/A | 3 | 1 | 3 | 3 |
Wang et al., 2014 [53] | Randomized controlled trial | 45 | rTMS at 1 Hz on R IFG (pars triangularis) for 20 min | 10 | Sham coil | Speech training twice a week + online or offline naming training | International Picture Naming Database | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Study | Mean Age (Years) (SD) | Age Range (Years) | TPO (Years) (SD) | Educational Level (Years) (SD) | Men:Women | Country | Lesion Location | Aphasia Type |
---|---|---|---|---|---|---|---|---|
Barwood et al., 2011A [54] | 60.83 (5.98) | 54–67 | 3.7 (1.26) | 13.3 (3.2) | 4:2 | Australia | Left MCA | Moderate to severe non-fluent |
Barwood et al., 2011B [55] | 60.83 (5.98) | 54–67 | 3.7 (1.26) | 13.3 (3.2) | 4:2 | Australia | Left MCA | Moderate to severe non-fluent |
Barwood et al., 2012 [56] | 59.85 (6.04) | 54–67 | 3.5 (1.25) | 13 (3.11) | 5:2 | Australia | Left MCA | Moderate to severe non-fluent |
Barwood et al., 2013 [57] | 60.83 (5.98) | 54–67 | 3.7 (1.26) | 13.3 (3.2) | 4:2 | Australia | Left MCA | Moderate to severe non-fluent |
Garcia et al., 2013 [58] | N/A | 18–75 | ≥0.5 | N/A | N/A | United States | Left hemisphere (spares SMA) | Mild to moderate non-fluent |
Hamilton et al., 2010 [59] | 61 | 61 | 7 | 18 | 1:0 | United States | Left MCA | Global aphasia: Mild non-fluent aphasia |
Heikkinen et al., 2019 [52] | 53.67 (9.83) | 37–72 | 2.89 (1.33) | 12 | 7:2 | Finland | All lesions were in the left hemisphere (temporoparietal, frontotemporoparietal, frontoparietal, basal ganglia, periventricular white matter, insula and internal capsule) | 7 ischemic and 2 hemorrhagic cases 3 anomic, 3 conduction, 2 Broca, 1 transcortical motor |
Martin et al., 2014 [60] | 55 (11.31) | 47–63 | 8.5 (5.37) | N/A | 1:1 | United States | Left MCA (P1), left intracerebral hemorrhage (P2) | Mild-moderate non-fluent (P1) and severe non-fluent (P2) |
Naeser et al., 2010 [61] | 43 | 43 | 1.5 | N/A | 1:0 | United States | Left MCA | N/A |
Wang et al., 2014 [53] | 61.7 (0.63) | N/A | 1.35 (0.06) | 11.85 (0.49) | 27:3 | China | Left MCA | 16 Broca’s aphasia, 11 transcortical motor’s aphasia, 3 mild-global’s aphasia |
Study | Outcome Measure | Sample | Time Point | Results |
---|---|---|---|---|
Barwood et al., 2011A [54] (n = 12, 6 with real rTMS and 6 with sham) | BDAE—action naming task (/12) | Mean score (SD) | Pre-test rTMS | 5.50 (4.72) |
1 week post rTMS | 7.5 * (5.43) | |||
Pre-test Sham | 6.66 (5.27) | |||
1 week post Sham | 6.17 (4.87) | |||
Barwood et al., 2011B [55] (n = 12, 6 with real rTMS and 6 with sham) | BDAE—action naming task (/12) | Participant 1—rTMS | Pre-test rTMS | 10 |
2 months post rTMS | 12 | |||
Participant 2—Sham | Pre-test Sham | 11 | ||
2 months post Sham | 11 | |||
Participant 3—rTMS | Pre-test rTMS | 11 | ||
2 months post rTMS | 11 | |||
Participant 4—rTMS | Pre-test rTMS | 6 | ||
2 months post rTMS | 12 | |||
Participant 5—Sham | Pre-test Sham | 11 | ||
2 months post Sham | 11 | |||
Participant 8—Sham | Pre-test Sham | 8 | ||
2 months post Sham | 7 | |||
Participant 9—rTMS | Pre-test rTMS | 0 | ||
2 months post rTMS | 3 | |||
Participant 10—rTMS | Pre-test rTMS | 0 | ||
2 months post rTMS | 0 | |||
Participant 11—Sham | Pre-test Sham | 10 | ||
2 months post Sham | 7 | |||
Participant 13—rTMS | Pre-test rTMS | 6 | ||
2 months post rTMS | 11 | |||
Participant 14—Sham | Pre-test Sham | 0 | ||
2 months post Sham | 0 | |||
Participant 15—Sham | Pre-test Sham | 0 | ||
2 months post Sham | 0 | |||
BDAE—action naming task (/12) | Mean score (SD) [calculated from raw scores] | Pre-test rTMS | 5.50 (4.72) | |
2 months post rTMS | 8.17 (5.27) ** | |||
Pre-test Sham | 6.66 (5.27) | |||
2 months post Sham | 6 (4.49) | |||
Barwood et al., 2012 [56] (n = 7) | BDAE—action naming task (/12) [data from figures] | Participant 1 | Baseline | 10 |
1 week post rTMS | 11 | |||
2 months post rTMS | 12 | |||
8 months post rTMS | 12 | |||
Participant 2 | Baseline | 11 | ||
1 week post rTMS | 11 | |||
2 months post rTMS | 11 | |||
8 months post rTMS | 11 | |||
Participant 3 | Baseline | 6 | ||
1 week post rTMS | 11 | |||
2 months post rTMS | 12 | |||
8 months post rTMS | 12 | |||
Participant 4 | Baseline | 8 | ||
1 week post rTMS | 10 | |||
2 months post rTMS | 11 | |||
8 months post rTMS | 11 | |||
Participant 5 | Baseline | 0 | ||
1 week post rTMS | 1 | |||
2 months post rTMS | 3 | |||
8 months post rTMS | 8 | |||
Participant 6 | Baseline | 0 | ||
1 week post rTMS | 0 | |||
2 months post rTMS | 0 | |||
8 months post rTMS | 2 | |||
Participant 7 | Baseline | 6 | ||
1 week post rTMS | 11 | |||
2 months post rTMS | 11 | |||
8 months post rTMS | 12 | |||
BDAE—action naming task (/12) | Mean score (SD) [calculated from raw scores] | Pre-test TMS | 5.85 (4.41) | |
1 week post rTMS | 7.85 (5.04) | |||
2 months post rTMS | 8.57 (4.92) | |||
8 months post rTMS | 9.71 (3.63) | |||
Barwood et al., 2013 [57] (n = 12) | Mean score | Baseline | [1,2,3] 5.47 | |
1 week post rTMS | 7.44 | |||
2 months post rTMS | 8.16 | |||
8 months post rTMS | 9.62 | |||
12 months post rTMS | 9.95 | |||
Garcia et al., 2013 [58] (n = 9) | BDAE—action naming task (proportion correct) | Mean score | Baseline | 0.41 |
2 months post Sham | 0.24 | |||
2 months post rTMS | 0.32 | |||
6 months post rTMS | 0.9 | |||
Hamilton et al., 2010 [59] (n = 1) | BDAE—action naming task (/12) | Participant 1 | Baseline | 5 |
2 months post rTMS | 6 | |||
6 months post rTMS | 10 * | |||
Chi-square test | (χ2 = 4.444; p = 0.035) | |||
Heikkinen et al., 2019 [52] (n = 17, 9 with real rTMS and 8 with sham) | Action Naming Test (/60) | Mean score | Baseline rTMS | 26 (4–49) (SD: 13.12) |
Baseline sham | 52 (5–54) (SD: 18.30) | |||
p-values between groups | 0.262 | |||
Main time effect across groups | F(1,15) = 10.436; p = 0.001, n2 = 0.410 | |||
Martin et al., 2014 [60] (n = 2) | BDAE—action naming task (/12) | Participant 1 | Baseline pre-rTMS mean | 3.33 (1.71) |
3 months post-rTMS alone | 4 | |||
6 months post-rTMS alone | 5 | |||
Baseline pre-rTMS + mCILT | 3.00 (0.58) | |||
2 months post-rTMS + mCILT | 3 | |||
16 months post-rTMS + mCILT | 3 | |||
Participant 2 | Baseline pre-rTMS mean | 3 | ||
2 months post-rTMS alone | 4 | |||
4 years 3 months post-rTMS | 3 | |||
Baseline pre-rTMS + mCILT | 4.33 (0.58) | |||
1 month post-rTMS + mCILT | 6 *** | |||
6 months post rTMS + mCILT | 7 *** | |||
Naeser et al., 2010 [61] (n = 1) | BDAE—action naming task (/12) | Participant 1 | Baseline 1 (14 months post-stroke) | 5 |
Baseline 2 (17 months post-stroke) | 4 | |||
Baseline 3 (17.5 months post-stroke) | 1 | |||
Pre-rTMS Entry Baseline mean (SD) | 3.33 (1.71) | |||
3 months post-rTMS | 4 | |||
6 months post-rTMS | 5 | |||
29 months post-rTMS | 2 | |||
29 months post-rTMS | 4 | |||
29 months post-rTMS | 3 | |||
Wang et al., 2014 [53] (n = 45) | 20 action pictures selected from the Picture Naming Database (% accuracy ± SD) | rTMS + synchronous naming training (rTMSsyn) | Baseline | 36.6 ± 18 |
After rTMS treatment | 46.6 ± 18.4 *† | |||
3 months post-treatment | 53.8 ± 14.5 *† | |||
rTMS + subsequent naming training (rTMSsub) | Baseline | 30.5 ± 18.2 | ||
After rTMS treatment | 33.8 ± 12.3 | |||
3 months post-treatment | 35.5 ± 14.7 | |||
sham rTMS + synchronous naming training (rTMSsham) | Baseline | 34.6 ± 16.1 | ||
After rTMS treatment | 32 ± 12.2 | |||
3 months post-treatment | 36.5 ± 12.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spigarelli, M.; Lalancette, A.; Massé-Alarie, H.; Wilson, M.A. Repetitive Transcranial Magnetic Stimulation for Action Naming in Aphasia Rehabilitation: A Systematic Review and Meta-Analysis. Brain Sci. 2024, 14, 665. https://doi.org/10.3390/brainsci14070665
Spigarelli M, Lalancette A, Massé-Alarie H, Wilson MA. Repetitive Transcranial Magnetic Stimulation for Action Naming in Aphasia Rehabilitation: A Systematic Review and Meta-Analysis. Brain Sciences. 2024; 14(7):665. https://doi.org/10.3390/brainsci14070665
Chicago/Turabian StyleSpigarelli, Manon, Audrey Lalancette, Hugo Massé-Alarie, and Maximiliano A. Wilson. 2024. "Repetitive Transcranial Magnetic Stimulation for Action Naming in Aphasia Rehabilitation: A Systematic Review and Meta-Analysis" Brain Sciences 14, no. 7: 665. https://doi.org/10.3390/brainsci14070665
APA StyleSpigarelli, M., Lalancette, A., Massé-Alarie, H., & Wilson, M. A. (2024). Repetitive Transcranial Magnetic Stimulation for Action Naming in Aphasia Rehabilitation: A Systematic Review and Meta-Analysis. Brain Sciences, 14(7), 665. https://doi.org/10.3390/brainsci14070665