Frontoparietal Response to Working Memory Load Mediates the Association between Sleep Duration and Cognitive Function in Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Sleep Assessments
2.3. Cognitive Function
2.4. Emotional n-Back Task
2.5. Neuroimaging Data
2.6. Statistical Analyses
3. Results
3.1. Association between Sleep Assessments and Cognitive Function
3.2. Association between Sleep Duration and EN-Back Neural Activity
3.3. Association between EN-Back Neural Activity and Cognitive Function
3.4. Mediation Analysis
3.5. Network-Level Response
3.6. Sex Effects
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dutil, C.; Walsh, J.J.; Featherstone, R.B.; Gunnell, K.E.; Tremblay, M.S.; Gruber, R.; Weiss, S.K.; Cote, K.A.; Sampson, M.; Chaput, J.P. Influence of sleep on developing brain functions and structures in children and adolescents: A systematic review. Sleep Med. Rev. 2018, 42, 184–201. [Google Scholar] [CrossRef] [PubMed]
- de Bruin, E.J.; van Run, C.; Staaks, J.; Meijer, A.M. Effects of sleep manipulation on cognitive functioning of adolescents: A systematic review. Sleep Med. Rev. 2017, 32, 45–57. [Google Scholar] [CrossRef]
- Tarokh, L.; Saletin, J.M.; Carskadon, M.A. Sleep in adolescence: Physiology, cognition and mental health. Neurosci. Biobehav. Rev. 2016, 70, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Bao, R.; Qin, H.; Memon, A.R.; Chen, S.; Lopez-Gil, J.F.; Liu, S.; Zou, L.; Cai, Y. Is adherence to the 24-h movement guidelines associated with greater academic-related outcomes in children and adolescents? A systematic review and meta-analysis. Eur. J. Pediatr. 2024, 183, 2003–2014. [Google Scholar] [CrossRef] [PubMed]
- Astill, R.G.; Van der Heijden, K.B.; Van Ijzendoorn, M.H.; Van Someren, E.J. Sleep, cognition, and behavioral problems in school-age children: A century of research meta-analyzed. Psychol. Bull. 2012, 138, 1109–1138. [Google Scholar] [CrossRef] [PubMed]
- Short, M.A.; Blunden, S.; Rigney, G.; Matricciani, L.; Coussens, S.; Reynolds, C.M.; Galland, B. Cognition and objectively measured sleep duration in children: A systematic review and meta-analysis. Sleep Health 2018, 4, 292–300. [Google Scholar] [CrossRef] [PubMed]
- Gruber, R.; Laviolette, R.; Deluca, P.; Monson, E.; Cornish, K.; Carrier, J. Short sleep duration is associated with poor performance on IQ measures in healthy school-age children. Sleep Med. 2010, 11, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.; Rolls, E.; Gong, W.; Du, J.; Zhang, J.; Zhang, X.Y.; Li, F.; Feng, J. Sleep duration, brain structure, and psychiatric and cognitive problems in children. Mol. Psychiatr. 2021, 26, 3992–4003. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.N.; Xie, W.; Wang, Z. Effects of sleep duration on neurocognitive development in early adolescents in the USA: A propensity score matched, longitudinal, observational study. Lancet Child. Adolesc. Health 2022, 6, 705–712. [Google Scholar] [CrossRef]
- Finn, E.S.; Poldrack, R.A.; Shine, J.M. Functional neuroimaging as a catalyst for integrated neuroscience. Nature 2023, 623, 263–273. [Google Scholar] [CrossRef]
- Zhao, W.; Makowski, C.; Hagler, D.J.; Garavan, H.P.; Thompson, W.K.; Greene, D.J.; Jernigan, T.L.; Dale, A.M. Task fMRI paradigms may capture more behaviorally relevant information than resting-state functional connectivity. Neuroimage 2023, 270, 119946. [Google Scholar] [CrossRef] [PubMed]
- Niendam, T.A.; Laird, A.R.; Ray, K.L.; Dean, Y.M.; Glahn, D.C.; Carter, C.S. Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions. Cogn. Affect. Behav. Neurosci. 2012, 12, 241–268. [Google Scholar] [CrossRef] [PubMed]
- Jung, R.E.; Haier, R.J. The Parieto-Frontal Integration Theory (P-FIT) of intelligence: Converging neuroimaging evidence. Behav. Brain Sci. 2007, 30, 135–154; discussion 154–187. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Libertus, M.E. Identifying the Neural Bases of Math Competence Based on Structural and Functional Properties of the Human Brain. J. Cogn. Neurosci. 2023, 35, 1212–1228. [Google Scholar] [CrossRef] [PubMed]
- Luckmann, H.C.; Jacobs, H.I.; Sack, A.T. The cross-functional role of frontoparietal regions in cognition: Internal attention as the overarching mechanism. Prog. Neurobiol. 2014, 116, 66–86. [Google Scholar] [CrossRef]
- Chai, W.J.; Abd, H.A.; Abdullah, J.M. Working Memory From the Psychological and Neurosciences Perspectives: A Review. Front. Psychol. 2018, 9, 401. [Google Scholar] [CrossRef] [PubMed]
- Cowan, N. Working Memory Underpins Cognitive Development, Learning, and Education. Educ. Psychol. Rev. 2014, 26, 197–223. [Google Scholar] [CrossRef] [PubMed]
- Brehmer, Y.; Li, S.C.; Muller, V.; von Oertzen, T.; Lindenberger, U. Memory plasticity across the life span: Uncovering children’s latent potential. Dev. Psychol. 2007, 43, 465–478. [Google Scholar] [CrossRef] [PubMed]
- Fuhrmann, D.; Knoll, L.J.; Blakemore, S.J. Adolescence as a Sensitive Period of Brain Development. Trends Cogn. Sci. 2015, 19, 558–566. [Google Scholar] [CrossRef]
- Ikeda, Y.; Kita, Y.; Oi, Y.; Okuzumi, H.; Lanfranchi, S.; Pulina, F.; Mammarella, I.C.; Allen, K.; Giofre, D. The Structure of Working Memory and Its Relationship with Intelligence in Japanese Children. J. Intell. 2023, 11, 167. [Google Scholar] [CrossRef]
- Ger, E.; Roebers, C.M. The Relationship between Executive Functions, Working Memory, and Intelligence in Kindergarten Children. J. Intell. 2023, 11, 64. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, M.D.; Martinez, S.A.; Rapuano, K.M.; Conley, M.I.; Cohen, A.O.; Cornejo, M.D.; Hagler, D.J.; Meredith, W.J.; Anderson, K.M.; Wager, T.D.; et al. Behavioral and Neural Signatures of Working Memory in Childhood. J. Neurosci. 2020, 40, 5090–5104. [Google Scholar] [CrossRef]
- Pat, N.; Wang, Y.; Anney, R.; Riglin, L.; Thapar, A.; Stringaris, A. Longitudinally stable, brain-based predictive models mediate the relationships between childhood cognition and socio-demographic, psychological and genetic factors. Hum. Brain Mapp. 2022, 43, 5520–5542. [Google Scholar] [CrossRef] [PubMed]
- Chee, M.W.; Chuah, L.Y. Functional neuroimaging insights into how sleep and sleep deprivation affect memory and cognition. Curr. Opin. Neurol. 2008, 21, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Ma, N.; Dinges, D.F.; Basner, M.; Rao, H. How acute total sleep loss affects the attending brain: A meta-analysis of neuroimaging studies. Sleep 2015, 38, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Wang, Y.; Gao, Y.; Gao, H.; Guo, X. The role of the fronto-parietal network in modulating sustained attention under sleep deprivation: An functional magnetic resonance imaging study. Front. Psychiatry 2023, 14, 1289300. [Google Scholar] [CrossRef] [PubMed]
- Chee, M.W.; Chuah, L.Y.; Venkatraman, V.; Chan, W.Y.; Philip, P.; Dinges, D.F. Functional imaging of working memory following normal sleep and after 24 and 35 h of sleep deprivation: Correlations of fronto-parietal activation with performance. Neuroimage 2006, 31, 419–428. [Google Scholar] [CrossRef] [PubMed]
- Alsameen, M.; DiFrancesco, M.W.; Drummond, S.; Franzen, P.L.; Beebe, D.W. Neuronal activation and performance changes in working memory induced by chronic sleep restriction in adolescents. J. Sleep Res. 2021, 30, e13304. [Google Scholar] [CrossRef] [PubMed]
- Casey, B.J.; Cannonier, T.; Conley, M.I.; Cohen, A.O.; Barch, D.M.; Heitzeg, M.M.; Soules, M.E.; Teslovich, T.; Dellarco, D.V.; Garavan, H.; et al. The Adolescent Brain Cognitive Development (ABCD) study: Imaging acquisition across 21 sites. Dev. Cogn. Neurosci. 2018, 32, 43–54. [Google Scholar] [CrossRef]
- Garavan, H.; Bartsch, H.; Conway, K.; Decastro, A.; Goldstein, R.Z.; Heeringa, S.; Jernigan, T.; Potter, A.; Thompson, W.; Zahs, D. Recruiting the ABCD sample: Design considerations and procedures. Dev. Cogn. Neurosci. 2018, 32, 16–22. [Google Scholar] [CrossRef]
- Kwon, Y.H.; Yoo, K.; Nguyen, H.; Jeong, Y.; Chun, M.M. Predicting multilingual effects on executive function and individual connectomes in children: An ABCD study. Proc. Natl. Acad. Sci. USA 2021, 118, e2110811118. [Google Scholar] [CrossRef] [PubMed]
- Hirshkowitz, M.; Whiton, K.; Albert, S.M.; Alessi, C.; Bruni, O.; DonCarlos, L.; Hazen, N.; Herman, J.; Katz, E.S.; Kheirandish-Gozal, L.; et al. National Sleep Foundation’s sleep time duration recommendations: Methodology and results summary. Sleep Health 2015, 1, 40–43. [Google Scholar] [CrossRef] [PubMed]
- Bruni, O.; Ottaviano, S.; Guidetti, V.; Romoli, M.; Innocenzi, M.; Cortesi, F.; Giannotti, F. The Sleep Disturbance Scale for Children (SDSC) Construction and validation of an instrument to evaluate sleep disturbances in childhood and adolescence. J. Sleep Res. 1996, 5, 251–261. [Google Scholar] [CrossRef] [PubMed]
- Luciana, M.; Bjork, J.M.; Nagel, B.J.; Barch, D.M.; Gonzalez, R.; Nixon, S.J.; Banich, M.T. Adolescent neurocognitive development and impacts of substance use: Overview of the adolescent brain cognitive development (ABCD) baseline neurocognition battery. Dev. Cogn. Neurosci. 2018, 32, 67–79. [Google Scholar] [CrossRef]
- Akshoomoff, N.; Beaumont, J.L.; Bauer, P.J.; Dikmen, S.S.; Gershon, R.C.; Mungas, D.; Slotkin, J.; Tulsky, D.; Weintraub, S.; Zelazo, P.D.; et al. NIH Toolbox Cognition Battery (CB): Composite scores of crystallized, fluid, and overall cognition. Monogr. Soc. Res. Child Dev. 2013, 78, 119–132. [Google Scholar] [CrossRef]
- Barch, D.M.; Burgess, G.C.; Harms, M.P.; Petersen, S.E.; Schlaggar, B.L.; Corbetta, M.; Glasser, M.F.; Curtiss, S.; Dixit, S.; Feldt, C.; et al. Function in the human connectome: Task-fMRI and individual differences in behavior. Neuroimage 2013, 80, 169–189. [Google Scholar] [CrossRef]
- Chaarani, B.; Hahn, S.; Allgaier, N.; Adise, S.; Owens, M.M.; Juliano, A.C.; Yuan, D.K.; Loso, H.; Ivanciu, A.; Albaugh, M.D.; et al. Baseline brain function in the preadolescents of the ABCD Study. Nat. Neurosci. 2021, 24, 1176–1186. [Google Scholar] [CrossRef]
- Hagler, D.J.; Hatton, S.; Cornejo, M.D.; Makowski, C.; Fair, D.A.; Dick, A.S.; Sutherland, M.T.; Casey, B.J.; Barch, D.M.; Harms, M.P.; et al. Image processing and analysis methods for the Adolescent Brain Cognitive Development Study. Neuroimage 2019, 202, 116091. [Google Scholar] [CrossRef]
- Kennedy, J.T.; Harms, M.P.; Korucuoglu, O.; Astafiev, S.V.; Barch, D.M.; Thompson, W.K.; Bjork, J.M.; Anokhin, A.P. Reliability and stability challenges in ABCD task fMRI data. Neuroimage 2022, 252, 119046. [Google Scholar] [CrossRef]
- Yaple, Z.; Arsalidou, M. N-back Working Memory Task: Meta-analysis of Normative fMRI Studies With Children. Child Dev. 2018, 89, 2010–2022. [Google Scholar] [CrossRef]
- Yoav, B.; Yosef, H. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B (Methodol.) 1995, 1, 289–300. [Google Scholar]
- Xia, M.; Wang, J.; He, Y. BrainNet Viewer: A network visualization tool for human brain connectomics. PLoS ONE 2013, 8, e68910. [Google Scholar] [CrossRef] [PubMed]
- Tononi, G.; Cirelli, C. Sleep function and synaptic homeostasis. Sleep Med. Rev. 2006, 10, 49–62. [Google Scholar] [CrossRef] [PubMed]
- Tononi, G.; Cirelli, C. Sleep and the price of plasticity: From synaptic and cellular homeostasis to memory consolidation and integration. Neuron 2014, 81, 12–34. [Google Scholar] [CrossRef] [PubMed]
- Baglioni, C.; Spiegelhalder, K.; Lombardo, C.; Riemann, D. Sleep and emotions: A focus on insomnia. Sleep Med. Rev. 2010, 14, 227–238. [Google Scholar] [CrossRef] [PubMed]
- Schiel, J.E.; Tamm, S.; Holub, F.; Petri, R.; Dashti, H.S.; Domschke, K.; Feige, B.; Lane, J.M.; Riemann, D.; Rutter, M.K.; et al. Associations Between Sleep Health and Amygdala Reactivity to Negative Facial Expressions in the UK Biobank Cohort. Biol. Psychiatry 2022, 92, 693–700. [Google Scholar] [CrossRef]
- Muller, V.I.; Hohner, Y.; Eickhoff, S.B. Influence of task instructions and stimuli on the neural network of face processing: An ALE meta-analysis. Cortex 2018, 103, 240–255. [Google Scholar] [CrossRef] [PubMed]
- Sripada, C.; Angstadt, M.; Rutherford, S.; Taxali, A.; Shedden, K. Toward a “treadmill test” for cognition: Improved prediction of general cognitive ability from the task activated brain. Hum. Brain Mapp. 2020, 41, 3186–3197. [Google Scholar] [CrossRef] [PubMed]
- Bonuck, K.; Collins-Anderson, A.; Schechter, C.B.; Felt, B.T.; Chervin, R.D. Effects of a Sleep Health Education Program for Children and Parents on Child Sleep Duration and Difficulties: A Stepped-Wedge Cluster Randomized Clinical Trial. JAMA Netw. Open 2022, 5, e2223692. [Google Scholar] [CrossRef]
- Al, M.A.; Wu, J.; Mubin, O. A scoping review of mobile apps for sleep management: User needs and design considerations. Front. Psychiatry 2022, 13, 1037927. [Google Scholar]
- Hajali, V.; Andersen, M.L.; Negah, S.S.; Sheibani, V. Sex differences in sleep and sleep loss-induced cognitive deficits: The influence of gonadal hormones. Horm. Behav. 2019, 108, 50–61. [Google Scholar] [CrossRef]
- Rangtell, F.H.; Karamchedu, S.; Andersson, P.; Liethof, L.; Olaya, B.M.; Lampola, L.; Schioth, H.B.; Cedernaes, J.; Benedict, C. A single night of sleep loss impairs objective but not subjective working memory performance in a sex-dependent manner. J. Sleep Res. 2019, 28, e12651. [Google Scholar] [CrossRef] [PubMed]
- Saksvik, I.B.; Bjorvatn, B.; Hetland, H.; Sandal, G.M.; Pallesen, S. Individual differences in tolerance to shift work--a systematic review. Sleep Med. Rev. 2011, 15, 221–235. [Google Scholar] [CrossRef]
- Gur, R.E.; Gur, R.C. Sex differences in brain and behavior in adolescence: Findings from the Philadelphia Neurodevelopmental Cohort. Neurosci. Biobehav. Rev. 2016, 70, 159–170. [Google Scholar] [CrossRef]
- Wierenga, L.M.; Langen, M.; Oranje, B.; Durston, S. Unique developmental trajectories of cortical thickness and surface area. Neuroimage 2014, 87, 120–126. [Google Scholar] [CrossRef]
- Cornblath, E.J.; Tang, E.; Baum, G.L.; Moore, T.M.; Adebimpe, A.; Roalf, D.R.; Gur, R.C.; Gur, R.E.; Pasqualetti, F.; Satterthwaite, T.D.; et al. Sex differences in network controllability as a predictor of executive function in youth. Neuroimage 2019, 188, 122–134. [Google Scholar] [CrossRef]
- Turan, O.; Garner, J.; Chang, L.; Isaiah, A. Accuracy of parent-reported sleep duration among adolescents assessed using accelerometry. Pediatr. Res. 2024, online ahead of print. [CrossRef] [PubMed]
- Taillard, J.; Sagaspe, P.; Philip, P.; Bioulac, S. Sleep timing, chronotype and social jetlag: Impact on cognitive abilities and psychiatric disorders. Biochem. Pharmacol. 2021, 191, 114438. [Google Scholar] [CrossRef] [PubMed]
- Strangman, G.; Thompson, J.H.; Strauss, M.M.; Marshburn, T.H.; Sutton, J.P. Functional brain imaging of a complex navigation task following one night of total sleep deprivation: A preliminary study. J. Sleep Res. 2005, 14, 369–375. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Tkachenko, O.; Gogel, H.; Kipman, M.; Preer, L.A.; Weber, M.; Divatia, S.C.; Demers, L.A.; Olson, E.A.; Buchholz, J.L.; et al. Microstructure of frontoparietal connections predicts individual resistance to sleep deprivation. Neuroimage 2015, 106, 123–133. [Google Scholar] [CrossRef]
- Zhang, Z.; Peng, P.; Eickhoff, S.B.; Lin, X.; Zhang, D.; Wang, Y. Neural substrates of the executive function construct, age-related changes, and task materials in adolescents and adults: ALE meta-analyses of 408 fMRI studies. Dev. Sci. 2021, 24, e13111. [Google Scholar] [CrossRef] [PubMed]
Variable | Mean (or N) | SD (or %) |
---|---|---|
Age (month) | 119.53 | 7.47 |
Sex | ||
Male | 2464 | 50.0 |
Female | 2466 | 50.0 |
Race/Ethnicity | ||
White | 2877 | 58.4 |
Black | 475 | 9.6 |
Hispanic | 945 | 19.2 |
Asian | 117 | 2.4 |
Other | 516 | 10.5 |
Pubertal development scale | 1.73 | 0.86 |
Highest parent education | 17.52 | 2.41 |
Scanner type | ||
GE | 1275 | 25.9 |
Philips | 533 | 10.8 |
Siemens | 3122 | 63.3 |
Average motion (mm) | 0.20 | 0.14 |
Two-back accuracy | 0.80 | 0.09 |
Sleep duration | ||
1: Less than 5 h | 5 | 0.1 |
2: 5–7 h | 109 | 2.2 |
3: 7–8 h | 484 | 9.8 |
4: 8–9 h | 1759 | 35.7 |
5: 9–11 h * | 2573 | 52.2 |
Cognition score | 50.00 | 10.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, J.; Bai, H.; Sun, Y.; Sun, X.; Hu, Z.; Liu, B.; He, C.; Zhang, X. Frontoparietal Response to Working Memory Load Mediates the Association between Sleep Duration and Cognitive Function in Children. Brain Sci. 2024, 14, 706. https://doi.org/10.3390/brainsci14070706
Yan J, Bai H, Sun Y, Sun X, Hu Z, Liu B, He C, Zhang X. Frontoparietal Response to Working Memory Load Mediates the Association between Sleep Duration and Cognitive Function in Children. Brain Sciences. 2024; 14(7):706. https://doi.org/10.3390/brainsci14070706
Chicago/Turabian StyleYan, Jie, Haolei Bai, Yuqing Sun, Xueqi Sun, Zhian Hu, Bing Liu, Chao He, and Xiaolong Zhang. 2024. "Frontoparietal Response to Working Memory Load Mediates the Association between Sleep Duration and Cognitive Function in Children" Brain Sciences 14, no. 7: 706. https://doi.org/10.3390/brainsci14070706
APA StyleYan, J., Bai, H., Sun, Y., Sun, X., Hu, Z., Liu, B., He, C., & Zhang, X. (2024). Frontoparietal Response to Working Memory Load Mediates the Association between Sleep Duration and Cognitive Function in Children. Brain Sciences, 14(7), 706. https://doi.org/10.3390/brainsci14070706