Mechanisms Underlying Sex Differences in Temporomandibular Disorders and Their Comorbidity with Migraine
Abstract
:1. Introduction
1.1. Diagnostic Criteria for TMDs
1.2. The Genetic Basis of Chronic TMDs
1.3. Childhood Trauma’s Role in the Development of Chronic TMDs
1.4. Aim of the Review
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Data Extraction
2.4. Study Selection Process
3. Sex Differences in TMDs
3.1. Sexual Dimorphism of Craniofacial Anatomy and TMD Susceptibility
3.2. Hormonal Impact on Sex-Specific TMD Pain
3.3. The Opioid System and Sex Differences in TMDs
3.4. The Endocannabinoid System and Sex Differences in TMDs
3.5. TRP Ion Channels and Sex Differences in TMDs
4. TMDs and Comorbid Pain Conditions
4.1. The Link between TMDs and Migraines
4.2. Craniofacial Neuroanatomy and Clinical Connections in Comorbid Migraines and TMDs
4.3. Peripheral and Central Sensitizations in Comorbid Migraines and TMDs
4.4. Role of the Calcitonin Gene-Related Peptide (CGRP) in Comorbid Migraines and TMDs
4.5. Role of Trigeminal Dynorphin in Comorbid Migraines and TMDs
5. Conclusions and Future Directions
6. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Labanca, M.; Gianò, M.; Franco, C.; Rezzani, R. Orofacial pain and dentistry management: Guidelines for a more comprehensive evidence-based approach. Diagnostics 2023, 13, 2854. [Google Scholar] [CrossRef] [PubMed]
- Romero-Reyes, M.; Uyanik, J.M. Orofacial pain management: Current perspectives. J. Pain Res. 2014, 7, 99–115. [Google Scholar] [CrossRef] [PubMed]
- Ryan, J.; Akhter, R.; Hassan, N.; Hilton, G.; Wickham, J.; Ibaragi, S. Epidemiology of temporomandibular disorder in the general population: A systematic review. Adv. Dent. Oral Health 2019, 10, 1–13. [Google Scholar]
- Palmer, J.; Durham, J. Temporomandibular disorders. BJA Educ. 2021, 21, 44–50. [Google Scholar] [CrossRef]
- List, T.; Jensen, R.H. Temporomandibular disorders: Old ideas and new concepts. Cephalalgia 2017, 37, 692–704. [Google Scholar] [CrossRef]
- Iwata, K.; Takeda, M.; Oh, S.B.; Shinoda, M. Neurophysiology of orofacial pain. Contemp. Oral Med. Springer Int. Publ. 2017, 1–23. [Google Scholar]
- Okada, S.; Katagiri, A.; Saito, H.; Lee, J.; Ohara, K.; Iinuma, T.; Bereiter, D.A.; Iwata, K. Differential activation of ascending noxious pathways associated with trigeminal nerve injury. Pain 2019, 160, 1342–1360. [Google Scholar] [CrossRef] [PubMed]
- Bista, P.; Imlach, W.L. Pathological mechanisms and therapeutic targets for trigeminal neuropathic pain. Medicines 2019, 6, 91. [Google Scholar] [CrossRef] [PubMed]
- Lövgren, A.; Häggman-Henrikson, B.; Fjellman-Wiklund, A.; Begic, A.; Landgren, H.; Lundén, V.; Svensson, P.; Österlund, C. The impact of gender of the examiner on orofacial pain perception and pain reporting among healthy volunteers. Clin. Oral Investig. 2022, 26, 3033–3040. [Google Scholar] [CrossRef]
- Casale, R.; Atzeni, F.; Bazzichi, L.; Beretta, G.; Costantini, E.; Sacerdote, P.; Tassorelli, C. Pain in women: A perspective review on a relevant clinical issue that deserves prioritization. Pain Ther. 2021, 10, 287–314. [Google Scholar] [CrossRef]
- Yakkaphan, P.; Elias, L.-A.; Ravindranath, P.T.; Renton, T. Is painful temporomandibular disorder a real headache for many patients? Br. Dent. J. 2024, 236, 475–482. [Google Scholar] [CrossRef]
- Tchivileva, I.E.; Ohrbach, R.; Fillingim, R.B.; Greenspan, J.D.; Maixner, W.; Slade, G.D. Temporal change in headache and its contribution to the risk of developing first-onset temporomandibular disorder in the Orofacial Pain: Prospective Evaluation and Risk Assessment (OPPERA) study. Pain 2017, 158, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Schiffman, E.; Ohrbach, R.; Truelove, E.; Look, J.; Anderson, G.; Goulet, J.-P.; List, T.; Svensson, P.; Gonzalez, Y.; Lobbezoo, F.; et al. Diagnostic criteria for temporomandibular disorders (DC/TMD) for clinical and research applications: Recommendations of the International RDC/TMD Consortium Network and Orofacial Pain Special Interest Group. J. Oral Facial Pain Headache 2014, 28, 6–27. [Google Scholar] [CrossRef]
- Klasser, G.D.; Goulet, J.-P.; Moreno-Hay, I. Classification and Diagnosis of Temporomandibular Disorders and Temporomandibular Disorder Pain. Dent. Clin. 2023, 67, 211–225. [Google Scholar] [CrossRef] [PubMed]
- Rongo, R.; Ekberg, E.; Nilsson, I.M.; Al-Khotani, A.; Alstergren, P.; Conti, P.C.R.; Durham, J.; Goulet, J.P.; Hirsch, C.; Kalaykova, S.I.; et al. Diagnostic criteria for temporomandibular disorders (DC/TMD) for children and adolescents: An international Delphi study—Part 1-Development of Axis I. J. Oral Rehabil. 2021, 48, 836–845. [Google Scholar] [CrossRef] [PubMed]
- Peck, C.C.; Goulet, J.P.; Lobbezoo, F.; Schiffman, E.L.; Alstergren, P.; Anderson, G.C.; de Leeuw, R.; Jensen, R.; Michelotti, A.; Ohrbach, R.; et al. Expanding the taxonomy of the diagnostic criteria for temporomandibular disorders. J. Oral Rehabil. 2014, 41, 2–23. [Google Scholar] [CrossRef]
- Saini, R.S.; Ibrahim, M.; Khader, M.A.; Kanji, M.A.; Mosaddad, S.A.; Heboyan, A. The role of physiotherapy interventions in the management of temporomandibular joint ankylosis: A systematic review and meta-analysis: Running title: Physiotherapy in TMJ ankylosis. Head Face Med. 2024, 20, 15. [Google Scholar] [CrossRef]
- Beaumont, S.; Garg, K.; Gokhale, A.; Heaphy, N. Temporomandibular disorder: A practical guide for dental practitioners in diagnosis and management. Aust. Dent. J. 2020, 65, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Qayyum, A.; Zai, C.C.; Hirata, Y.; Tiwari, A.K.; Cheema, S.; Nowrouzi, B.; Beitchman, J.H.; Kennedy, L. The role of the catechol-o-methyltransferase (COMT) GeneVal158Met in aggressive behavior, a review of genetic studies. Curr. Neuropharmacol. 2015, 13, 802–814. [Google Scholar] [CrossRef]
- Shuba, Y.M. Beyond neuronal heat sensing: Diversity of TRPV1 heat-capsaicin receptor-channel functions. Front. Cell. Neurosci. 2021, 14, 612480. [Google Scholar] [CrossRef]
- Alshahrani, A.A.; Saini, R.S.; Okshah, A.; Alhadidi, A.A.F.; Kanji, M.A.; Vyas, R.; Binduhayyim, R.I.H.; Ahmed, N.; Mosaddad, S.A.; Heboyan, A. The Association Between Genetic Factors and Temporomandibular Disorders: A Systematic Literature Review. Arch. Oral Biol. 2024, 106032. [Google Scholar] [CrossRef] [PubMed]
- Jang, D.-i.; Lee, A.-H.; Shin, H.-Y.; Song, H.-R.; Park, J.-H.; Kang, T.-B.; Lee, S.-R.; Yang, S.-H. The role of tumor necrosis factor alpha (TNF-α) in autoimmune disease and current TNF-α inhibitors in therapeutics. Int. J. Mol. Sci. 2021, 22, 2719. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb. Perspect. Biol. 2014, 6, a016295. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, P.; Jiang, P.; Lv, Y.; Dong, C.; Dai, X.; Tan, L.; Wang, Z. Upregulation of lncRNA HOTAIR contributes to IL-1β-induced MMP overexpression and chondrocytes apoptosis in temporomandibular joint osteoarthritis. Gene 2016, 586, 248–253. [Google Scholar] [CrossRef]
- Hattori, T.; Ogura, N.; Akutsu, M.; Kawashima, M.; Watanabe, S.; Ito, K.; Kondoh, T. Gene expression profiling of IL-17A-treated synovial fibroblasts from the human Temporomandibular joint. Mediat. Inflamm. 2015, 2015, 436067. [Google Scholar] [CrossRef]
- Bonato, L.L.; Quinelato, V.; Pinheiro, A.d.R.; Amaral, M.V.G.; de Souza, F.N.; Lobo, J.C.; Aguiar, D.P.; Augusto, L.M.M.; Vieira, A.R.; Salles, J.I.; et al. ESRRB polymorphisms are associated with comorbidity of temporomandibular disorders and rotator cuff disease. Int. J. Oral Maxillofac. Surg. 2016, 45, 323–331. [Google Scholar] [CrossRef]
- Chung, K.; Richards, T.; Nicot, R.; Vieira, A.R.; Cruz, C.V.; Raoul, G.; Ferri, J.; Sciote, J.J. ENPP1 and ESR1 genotypes associated with subclassifications of craniofacial asymmetry and severity of temporomandibular disorders. Am. J. Orthod. Dentofac. Orthop. 2017, 152, 631–645. [Google Scholar] [CrossRef] [PubMed]
- Tabeian, H.; Bakker, A.D.; Betti, B.F.; Lobbezoo, F.; Everts, V.; De Vries, T.J. Cyclic tensile strain reduces TNF-α induced expression of MMP-13 by condylar temporomandibular joint cells. J. Cell. Physiol. 2017, 232, 1287–1294. [Google Scholar] [CrossRef] [PubMed]
- Scariot, R.; Corso, P.F.C.L.; Sebastiani, A.M.; Vieira, A.R. The many faces of genetic contributions to temporomandibular joint disorder: An updated review. Orthod. Craniofacial Res. 2018, 21, 186–201. [Google Scholar] [CrossRef]
- Wang, M.; Li, S.; Xie, W.; Shen, J.; Im, H.; Holz, J.; Diekwisch, T.; Chen, D. Activation Of B-Catenin Signalling Leads To Temporomandibular Joint Defects. Eur. Cells Mater. 2014, 28, 223. [Google Scholar] [CrossRef]
- Matsumoto, T.; Tojyo, I.; Kiga, N.; Hiraishi, Y.; Fujita, S. Expression of ADAMTS-5 in deformed human temporomandibular joint discs. Histol. Histopathol. 2008, 23, 1485–1493. [Google Scholar] [CrossRef]
- Milosevic, N.; Nikolic, N.; Djordjevic, I.; Todorovic, A.; Lazic, V.; Milasin, J. Association of Functional Polymorphisms in Matrix Metalloproteinase-9 and Glutathione S-Transferase T1 Genes with Temporomandibular Disorders. J. Oral Facial Pain Headache 2015, 29, 279. [Google Scholar] [CrossRef]
- A Frankola, K.; H Greig, N.; Luo, W.; Tweedie, D. Targeting TNF-alpha to elucidate and ameliorate neuroinflammation in neurodegenerative diseases. CNS Neurol. Disord.-Drug Targets 2011, 10, 391–403. [Google Scholar] [CrossRef] [PubMed]
- Spiller, L.R. Orofacial manifestations of child maltreatment: A review. Dent. Traumatol. 2024, 40, 10–17. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Responding to Child Maltreatment: A Clinical Handbook for Health Professionals; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Korkmaz, Y.N.; Buyuk, S.K.; Becet, N. Does childhood maltreatment play a role in temporomandibular disorders? Br. J. Oral Maxillofac. Surg. 2023, 61, 691–695. [Google Scholar] [CrossRef] [PubMed]
- Al-Khudhairy, M.W.; Al-Mutairi, A.; Al Mazyad, B.; Al Yousef, S.; Alanazi, S.H. The association between post-traumatic stress disorder and temporomandibular disorders: A systematic review. Cureus 2022, 14, e31896. [Google Scholar] [CrossRef]
- Minervini, G.; Franco, R.; Marrapodi, M.M.; Ronsivalle, V.; Shapira, I.; Cicciù, M. Prevalence of temporomandibular disorders in subjects affected by Parkinson disease: A systematic review and metanalysis. J. Oral Rehabil. 2023, 50, 877–885. [Google Scholar] [CrossRef]
- De La Torre Canales, G.; Câmara-Souza, M.B.; Muñoz Lora, V.R.M.; Guarda-Nardini, L.; Conti, P.C.R.; Rodrigues Garcia, R.M.; Del Bel Cury, A.A.; Manfredini, D. Prevalence of psychosocial impairment in temporomandibular disorder patients: A systematic review. J. Oral Rehabil. 2018, 45, 881–889. [Google Scholar] [CrossRef]
- Reis, P.H.F.; Laxe, L.A.C.; Lacerda-Santos, R.; Münchow, E.A. Distribution of anxiety and depression among different subtypes of temporomandibular disorder: A systematic review and meta-analysis. J. Oral Rehabil. 2022, 49, 754–767. [Google Scholar] [CrossRef]
- Tsur, N. Chronic pain personification following child abuse: The imprinted experience of child abuse in later chronic pain. J. Interpers. Violence 2022, 37, NP2516–NP2537. [Google Scholar] [CrossRef]
- Bagis, B.; Ayaz, E.A.; Turgut, S.; Durkan, R.; Özcan, M. Gender difference in prevalence of signs and symptoms of temporomandibular joint disorders: A retrospective study on 243 consecutive patients. Int. J. Med. Sci. 2012, 9, 539. [Google Scholar] [CrossRef] [PubMed]
- Rauch, A.; Nitschke, I.; Hahnel, S.; Weber, S.; Zenthöfer, A.; Schierz, O. Prevalence of temporomandibular disorders and bruxism in seniors. J. Oral Rehabil. 2023, 50, 531–536. [Google Scholar] [CrossRef] [PubMed]
- Segù, M.; Manfredini, D. Temporomandibular joint disorders in the elderly. In Oral Rehabilitation for Compromised and Elderly Patients; Springer: Berlin/Heidelberg, Germany, 2019; pp. 63–79. [Google Scholar]
- Seweryn, P.; Orzeszek, S.M.; Waliszewska-Prosół, M.; Jenča, A.; Osiewicz, M.; Paradowska-Stolarz, A.; Winocur-Arias, O.; Ziętek, M.; Bombała, W.; Więckiewicz, M. Relationship between pain severity, satisfaction with life and the quality of sleep in Polish adults with temporomandibular disorders. Dent. Med. Probl. 2023, 60, 609–617. [Google Scholar] [PubMed]
- De Leeuw, R.; Klasser, G.D. Orofacial Pain: Guidelines for Assessment, Diagnosis, and Management; Quintessence Publishing Company: Hanover Park, IL, USA, 2018. [Google Scholar]
- Nicholas, M.; Vlaeyen, J.W.; Rief, W.; Barke, A.; Aziz, Q.; Benoliel, R.; Cohen, M.; Evers, S.; Giamberardino, M.A.; Goebel, A.; et al. The IASP classification of chronic pain for ICD-11: Chronic primary pain. Pain 2019, 160, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Benoliel, R.; Svensson, P.; Evers, S.; Wang, S.-J.; Barke, A.; Korwisi, B.; Rief, W.; Treede, R.-D.; IASP Taskforce for the Classification of Chronic Pain. The IASP classification of chronic pain for ICD-11: Chronic secondary headache or orofacial pain. Pain 2019, 160, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Treede, R.-D.; Rief, W.; Barke, A.; Aziz, Q.; Bennett, M.I.; Benoliel, R.; Cohen, M.; Evers, S.; Finnerup, N.B.; First, M.B. A classification of chronic pain for ICD-11. Pain 2015, 156, 1003–1007. [Google Scholar] [CrossRef]
- Alarcón, J.A.; Bastir, M.; Rosas, A. Variation of mandibular sexual dimorphism across human facial patterns. Homo 2016, 67, 188–202. [Google Scholar] [CrossRef] [PubMed]
- Spradley, M.K.; Jantz, R.L. Sex estimation in forensic anthropology: Skull versus postcranial elements. J. Forensic Sci. 2011, 56, 289–296. [Google Scholar] [CrossRef] [PubMed]
- She, X.; Sun, S.; Damon, B.J.; Hill, C.N.; Coombs, M.C.; Wei, F.; Lecholop, M.K.; Steed, M.B.; Bacro, T.H.; Slate, E.H. Sexual dimorphisms in three-dimensional masticatory muscle attachment morphometry regulates temporomandibular joint mechanics. J. Biomech. 2021, 126, 110623. [Google Scholar] [CrossRef]
- Buikstra, J.E. (Ed.) Ortner’s Identification of Pathological Conditions in Human Skeletal Remains; Academic Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Gallo, L.M.; Iwasaki, L.R.; Gonzalez, Y.M.; Liu, H.; Marx, D.B.; Nickel, J.C. Diagnostic group differences in temporomandibular joint energy densities. Orthod. Craniofacial Res. 2015, 18, 164–169. [Google Scholar] [CrossRef]
- Koolstra, J.; Van Eijden, T. Combined finite-element and rigid-body analysis of human jaw joint dynamics. J. Biomech. 2005, 38, 2431–2439. [Google Scholar] [CrossRef] [PubMed]
- Jedynak, B.; Jaworska-Zaremba, M.; Grzechocińska, B.; Chmurska, M.; Janicka, J.; Kostrzewa-Janicka, J. TMD in females with menstrual disorders. Int. J. Environ. Res. Public Health 2021, 18, 7263. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.R.; Yadav, N.; Mousa, M.A.; Alzwiri, A.; Kassab, M.; Sahu, R.; Chuggani, S. Role of female reproductive hormones estrogen and progesterone in temporomandibular disorder in female patients. J. Oral Res. Rev. 2015, 7, 41–43. [Google Scholar] [CrossRef]
- Robinson, J.L.; Johnson, P.M.; Kister, K.; Yin, M.T.; Chen, J.; Wadhwa, S. Estrogen signaling impacts temporomandibular joint and periodontal disease pathology. Odontology 2020, 108, 153–165. [Google Scholar] [CrossRef] [PubMed]
- Bugge, N.S.; Grøtta Vetvik, K.; Alstadhaug, K.B.; Braaten, T. Cumulative exposure to estrogen may increase the risk of migraine in women. Cephalalgia 2024, 44, 03331024231225972. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, N.; Silveyra, P. Estrogen receptor signaling mechanisms. Adv. Protein Chem. Struct. Biol. 2019, 116, 135–170. [Google Scholar]
- Yoh, K.; Ikeda, K.; Horie, K.; Inoue, S. Roles of estrogen, estrogen receptors, and estrogen-related receptors in skeletal muscle: Regulation of mitochondrial function. Int. J. Mol. Sci. 2023, 24, 1853. [Google Scholar] [CrossRef] [PubMed]
- Dalewski, B.; Kamińska, A.; Białkowska, K.; Jakubowska, A.; Sobolewska, E. Association of estrogen receptor 1 and tumor necrosis factor α polymorphisms with temporomandibular joint anterior disc displacement without reduction. Dis. Markers 2020, 2020, 6351817. [Google Scholar] [CrossRef]
- Bereiter, D.A.; Thompson, R.; Rahman, M. Sex differences in estradiol secretion by trigeminal brainstem neurons. Front. Integr. Neurosci. 2019, 13, 3. [Google Scholar] [CrossRef]
- Liu, S.; Kramer, P.; Tao, F. Editorial: Mechanisms of orofacial pain and sex differences. Front. Integr. Neurosci. 2021, 15, 599580. [Google Scholar] [CrossRef]
- Berger, M.; Szalewski, L.; Bakalczuk, M.; Bakalczuk, G.; Bakalczuk, S.; Szkutnik, J. Association between estrogen levels and temporomandibular disorders: A systematic literature review. Menopause Rev./Przegląd Menopauzalny 2015, 14, 260–270. [Google Scholar] [CrossRef] [PubMed]
- Flake, N.M.; Bonebreak, D.B.; Gold, M.S. Estrogen and inflammation increase the excitability of rat temporomandibular joint afferent neurons. J. Neurophysiol. 2005, 93, 1585–1597. [Google Scholar] [CrossRef] [PubMed]
- LeResche, L.; Mancl, L.; Sherman, J.J.; Gandara, B.; Dworkin, S.F. Changes in temporomandibular pain and other symptoms across the menstrual cycle. Pain 2003, 106, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Mayoral, V.A.; Espinosa, I.A.; Montiel, Á.J. Association between signs and symptoms of temporomandibular disorders and pregnancy (case control study). Acta Odontol. Latinoam. 2013, 26, 3–7. [Google Scholar] [PubMed]
- Rezaii, T.; Hirschberg, A.L.; Carlström, K.; Ernberg, M. The influence of menstrual phases on pain modulation in healthy women. J. Pain 2012, 13, 646–655. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chao, Y.; Wan, Q.; Zhu, Z. The possible role of estrogen in the incidence of temporomandibular disorders. Med. Hypotheses 2008, 71, 564–567. [Google Scholar] [CrossRef] [PubMed]
- Stinson, C.; Bellinger, L.L.; Puri, J.; Ahuja, N.; Bender, S.D.; Kramer, P.R. Estrogenic effects on temporomandibular disorder and pain. J. Appl. Biobehav. Res. 2019, 24, e12164. [Google Scholar] [CrossRef]
- Yamada, K.; Nozawa-Inoue, K.; Kawano, Y.; Kohno, S.; Amizuka, N.; Iwanaga, T.; Maeda, T. Expression of estrogen receptor α (ERα) in the rat temporomandibular joint. Anat. Rec. Part A Discov. Mol. Cell. Evol. Biol. Off. Publ. Am. Assoc. Anat. 2003, 274, 934–941. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.-G.; Kim, T.-W.; Kang, S.-C.; Kim, S.T. Estrogen receptor gene polymorphism and craniofacial morphology in female TMJ osteoarthritis patients. Int. J. Oral Maxillofac. Surg. 2006, 35, 165–169. [Google Scholar] [CrossRef]
- Tashiro, A.; Bereiter, D.A. The effects of estrogen on temporomandibular joint pain as influenced by trigeminal caudalis neurons. J. Oral Sci. 2020, 62, 150–155. [Google Scholar] [CrossRef]
- Bereiter, D.A.; Cioffi, J.L.; Bereiter, D.F. Oestrogen receptor-immunoreactive neurons in the trigeminal sensory system of male and cycling female rats. Arch. Oral Biol. 2005, 50, 971–979. [Google Scholar] [CrossRef] [PubMed]
- Puri, V.; Cui, L.; Liverman, C.S.; Roby, K.F.; Klein, R.M.; Welch, K.M.A.; Berman, N.E. Ovarian steroids regulate neuropeptides in the trigeminal ganglion. Neuropeptides 2005, 39, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Fan, W.; He, H.; Huang, F. The role of peripheral opioid receptors in orofacial pain. Oral Dis. 2021, 27, 1106–1114. [Google Scholar] [CrossRef] [PubMed]
- Sharp, J.L.; Pearson, T.; Smith, M.A. Sex differences in opioid receptor mediated effects: Role of androgens. Neurosci. Biobehav. Rev. 2022, 134, 104522. [Google Scholar] [CrossRef] [PubMed]
- Cox, B.M.; Christie, M.J.; Devi, L.; Toll, L.; Traynor, J.R. Challenges for opioid receptor nomenclature: IUPHAR Review 9. Br. J. Pharmacol. 2015, 172, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Machelska, H.; Celik, M.Ö. Opioid receptors in immune and glial cells—Implications for pain control. Front. Immunol. 2020, 11, 300. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Zhang, X.; Li, Y.; Lu, L.; Li, B.; He, X. Sex differences in peripheral mu-opioid receptor mediated analgesia in rat orofacial persistent pain model. PLoS ONE 2015, 10, e0122924. [Google Scholar] [CrossRef] [PubMed]
- Fiatcoski, F.; Jesus, C.H.A.; de Melo Turnes, J.; Chichorro, J.G.; Kopruszinski, C.M. Sex differences in descending control of nociception (DCN) responses after chronic orofacial pain induction in rats and the contribution of kappa opioid receptors. Behav. Brain Res. 2024, 459, 114789. [Google Scholar] [CrossRef] [PubMed]
- Saloman, J.L.; Niu, K.Y.; Ro, J.Y. Activation of peripheral delta-opioid receptors leads to anti-hyperalgesic responses in the masseter muscle of male and female rats. Neuroscience 2011, 190, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Niu, K.; Saloman, J.L.; Zhang, Y.; Ro, J.Y. Sex differences in the contribution of ATP-sensitive K+ channels in trigeminal ganglia under an acute muscle pain condition. Neuroscience 2011, 180, 344–352. [Google Scholar] [CrossRef]
- Zou, S.; Kumar, U. Cannabinoid receptors and the endocannabinoid system: Signaling and function in the central nervous system. Int. J. Mol. Sci. 2018, 19, 833. [Google Scholar] [CrossRef] [PubMed]
- Weerathataphan, S.; Kunasarapun, P.; Tengrungsun, T.; Mitrirattanakul, S. Cannabinoids and Orofacial Pain Management: A Review. Int. J. Dentistry Oral Sci. 2021, 8, 5123–5132. [Google Scholar]
- Bie, B.; Wu, J.; Foss, J.F.; Naguib, M. An overview of the cannabinoid type 2 receptor system and its therapeutic potential. Curr. Opin. Anesthesiol. 2018, 31, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Sorge, R.E.; Totsch, S.K. Sex differences in pain. J. Neurosci. Res. 2017, 95, 1271–1281. [Google Scholar] [CrossRef] [PubMed]
- Blanton, H.L.; Barnes, R.C.; McHann, M.C.; Bilbrey, J.A.; Wilkerson, J.L.; Guindon, J. Sex differences and the endocannabinoid system in pain. Pharmacol. Biochem. Behav. 2021, 202, 173107. [Google Scholar] [CrossRef] [PubMed]
- Niu, K.Y.; Zhang, Y.; Ro, J.Y. Effects of gonadal hormones on the peripheral cannabinoid receptor 1 (CB1R) system under a myositis condition in rats. PAIN 2012, 153, 2283–2291. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Asgar, J.; Zhang, Y.; Chung, M.-K.; Ro, J. The role of androgen receptor in transcriptional modulation of cannabinoid receptor type 1 gene in rat trigeminal ganglia. Neuroscience 2013, 254, 395–403. [Google Scholar] [CrossRef] [PubMed]
- González-Ramírez, R.; Chen, Y.; Liedtke, W.B.; Morales-Lázaro, S.L. TRP channels and pain. In Neurobiology of TRP Channels, 2nd ed.; Emir, T.L.R., Ed.; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2017; pp. 125–147. [Google Scholar]
- Moore, C.; Gupta, R.; Jordt, S.-E.; Chen, Y.; Liedtke, W.B. Regulation of pain and itch by TRP channels. Neurosci. Bull. 2018, 34, 120–142. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Zhang, Q.; Dias, F.C.; Suttle, A.; Dong, X.; Chen, Y. TMEM100, a regulator of TRPV1-TRPA1 interaction, contributes to temporomandibular disorder pain. Front. Mol. Neurosci. 2023, 16, 1160206. [Google Scholar] [CrossRef]
- Luo, Y.; Suttle, A.; Zhang, Q.; Wang, P.; Chen, Y. Transient receptor potential (TRP) ion channels in orofacial pain. Mol. Neurobiol. 2021, 58, 2836–2850. [Google Scholar] [CrossRef]
- Wu, Y.-W.; Hao, T.; Kou, X.-X.; Gan, Y.-H.; Ma, X.-C. Synovial TRPV1 is upregulated by 17-β-estradiol and involved in allodynia of inflamed temporomandibular joints in female rats. Arch. Oral Biol. 2015, 60, 1310–1318. [Google Scholar] [CrossRef] [PubMed]
- Valderas, J.M.; Starfield, B.; Sibbald, B.; Salisbury, C.; Roland, M. Defining comorbidity: Implications for understanding health and health services. Ann. Fam. Med. 2009, 7, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Policy, B.o.H.S.; Research, C.o.A.P. Care. In Relieving Pain in America: A Blueprint for Transforming Prevention, Care, Education, and Research; National Academies Press: Washington, DC, USA, 2011. [Google Scholar]
- Maixner, W.; Fillingim, R.B.; Williams, D.A.; Smith, S.B.; Slade, G.D. Overlapping chronic pain conditions: Implications for diagnosis and classification. J. Pain 2016, 17, T93–T107. [Google Scholar] [CrossRef] [PubMed]
- Thomas, D.C.; Khan, J.; Manfredini, D.; Ailani, J. Temporomandibular joint disorder comorbidities. Dent. Clin. N. Am. 2023, 67, 379–392. [Google Scholar] [CrossRef] [PubMed]
- Slade, G.D.; Greenspan, J.D.; Fillingim, R.B.; Maixner, W.; Sharma, S.; Ohrbach, R. Overlap of five chronic pain conditions: Temporomandibular disorders, headache, back pain, irritable bowel syndrome, and fibromyalgia. J. Oral Facial Pain Headache 2020, 34, s15. [Google Scholar] [CrossRef] [PubMed]
- Woolf, C.J. Central sensitization: Implications for the diagnosis and treatment of pain. Pain 2011, 152, S2–S15. [Google Scholar] [CrossRef] [PubMed]
- Harper, D.; Schrepf, A.; Clauw, D. Pain mechanisms and centralized pain in temporomandibular disorders. J. Dent. Res. 2016, 95, 1102–1108. [Google Scholar] [CrossRef] [PubMed]
- Franco, A.L.; Gonçalves, D.A.G.; Castanharo, S.M.; Speciali, J.G.; Bigal, M.E.; Camparis, C.M. Migraine is the most prevalent primary headache in individuals with temporomandibular disorders. J. Orofac. Pain 2010, 24, 287–292. [Google Scholar] [PubMed]
- Do, T.P.; Hougaard, A.; Dussor, G.; Brennan, K.C.; Amin, F.M. Migraine attacks are of peripheral origin: The debate goes on. J. Headache Pain 2023, 24, 3. [Google Scholar] [CrossRef]
- Straburzyński, M.; Waliszewska-Prosół, M.; Nowaczewska, M.; Czapinska-Ciepiela, E.K.; Gryglas-Dworak, A.; Budrewicz, S. Prevalence of cranial autonomic symptoms in frequent episodic tension-type headache: A post hoc analysis of the cross-sectional Migraine in Poland study. Dent. Med. Probl. 2024; Online ahead of print. [Google Scholar]
- Steiner, T.J.; Stovner, L.J. Global epidemiology of migraine and its implications for public health and health policy. Nat. Rev. Neurol. 2023, 19, 109–117. [Google Scholar] [CrossRef]
- Storm, C.; Wänman, A. Temporomandibular disorders, headaches, and cervical pain among females in a Sami population. Acta Odontol. Scand. 2006, 64, 319–325. [Google Scholar] [CrossRef]
- Shu, H.; Liu, S.; Crawford, J.; Tao, F. A female-specific role for trigeminal dynorphin in orofacial pain comorbidity. Pain 2023, 164, 2801–2811. [Google Scholar] [CrossRef] [PubMed]
- Peng, K.-P.; Benoliel, R.; May, A. A Review of Current Perspectives on Facial Presentations of Primary Headaches. J. Pain Res. 2022, 15, 1613–1621. [Google Scholar] [CrossRef]
- Byun, S.-H.; Min, C.; Yoo, D.-M.; Yang, B.-E.; Choi, H.-G. Increased risk of migraine in patients with temporomandibular disorder: A longitudinal follow-up study using a national health screening cohort. Diagnostics 2020, 10, 724. [Google Scholar] [CrossRef]
- Orofacial, T. International classification of orofacial pain, (ICOP). Cephalalgia 2020, 40, 129–221. [Google Scholar]
- Speciali, J.G.; Dach, F. Temporomandibular dysfunction and headache disorder. Headache J. Head Face Pain 2015, 55, 72–83. [Google Scholar] [CrossRef]
- Memmedova, F.; Emre, U.; Yalın, O.Ö.; Doğan, O.C. Evaluation of temporomandibular joint disorder in headache patients. Neurol. Sci. 2021, 42, 4503–4509. [Google Scholar] [CrossRef] [PubMed]
- Vale Braido, G.V.d.; Svensson, P.; dos Santos Proença, J.; Mercante, F.G.; Fernandes, G.; de Godoi Gonçalves, D.A. Are central sensitization symptoms and psychosocial alterations interfering in the association between painful TMD, migraine, and headache attributed to TMD? Clin. Oral Investig. 2023, 27, 681–690. [Google Scholar] [CrossRef]
- Chichorro, J.G.; Porreca, F.; Sessle, B. Mechanisms of craniofacial pain. Cephalalgia 2017, 37, 613–626. [Google Scholar] [CrossRef] [PubMed]
- Sessle, B.J. Peripheral and central mechanisms of orofacial inflammatory pain. Int. Rev. Neurobiol. 2011, 97, 179–206. [Google Scholar]
- Yoon, M.-S.; Mueller, D.; Hansen, N.; Poitz, F.; Slomke, M.; Dommes, P.; Diener, H.; Katsarava, Z.; Obermann, M. Prevalence of facial pain in migraine: A population-based study. Cephalalgia 2010, 30, 92–96. [Google Scholar] [CrossRef]
- Akerman, S.; Romero-Reyes, M. Preclinical studies investigating the neural mechanisms involved in the co-morbidity of migraine and temporomandibular disorders: The role of CGRP. Br. J. Pharmacol. 2020, 177, 5555–5568. [Google Scholar] [CrossRef] [PubMed]
- Sato, J.; Segami, N.; Kaneyama, K.; Yoshimura, H.; Fujimura, K.; Yoshitake, Y. Relationship of calcitonin gene-related peptide in synovial tissues and temporomandibular joint pain in humans. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontology 2004, 98, 533–540. [Google Scholar] [CrossRef] [PubMed]
- Ferré, G.; Czaplicki, G.; Demange, P.; Milon, A. Structure and dynamics of dynorphin peptide and its receptor. In Vitamins and Hormones; Elsevier: Amsterdam, The Netherlands, 2019; Volume 111, pp. 17–47. [Google Scholar]
- Rosén, A.; Lund, I.; Lundeberg, T.; Nylander, I. Antinociceptive effects of sensory stimulation involve dynorphin B supraspinally in rats. Acupunct. Relat. Ther. 2013, 1, 35–41. [Google Scholar] [CrossRef]
- Lai, J.; Luo, M.-C.; Chen, Q.; Ma, S.; Gardell, L.R.; Ossipov, M.H.; Porreca, F. Dynorphin A activates bradykinin receptors to maintain neuropathic pain. Nat. Neurosci. 2006, 9, 1534–1540. [Google Scholar] [CrossRef] [PubMed]
- Podvin, S.; Yaksh, T.; Hook, V. The emerging role of spinal dynorphin in chronic pain: A therapeutic perspective. Annu. Rev. Pharmacol. Toxicol. 2016, 56, 511–533. [Google Scholar] [CrossRef]
- Luiz, A.; Schroeder, S.; Rae, G.; Calixto, J.; Chichorro, J. Contribution and interaction of kinin receptors and dynorphin A in a model of trigeminal neuropathic pain in mice. Neuroscience 2015, 300, 189–200. [Google Scholar] [CrossRef]
- Shu, H.; Liu, S.; Tang, Y.; Schmidt, B.L.; Dolan, J.C.; Bellinger, L.L.; Kramer, P.R.; Bender, S.D.; Tao, F. A Pre-Existing Myogenic Temporomandibular Disorder Increases Trigeminal Calcitonin Gene-Related Peptide and Enhances Nitroglycerin-Induced Hypersensitivity in Mice. Int. J. Mol. Sci. 2020, 21, 4049. [Google Scholar] [CrossRef]
Mechanisms | Findings | Sex Differences | Clinical Implications | References |
---|---|---|---|---|
Craniofacial Anatomy | Men have larger craniofacial sizes and mandibles compared to women. | Male mandibles are longer, broader, and taller; female mandibles have more obtuse angles. | These differences affect bite force and masticatory biomechanics, possibly predisposing females to TMDs. | [50,51,52,53,54,55] |
Hormonal Impact | Estrogens play a significant role in TMDs, influencing pain and inflammation in peripheral and central nervous systems. | Higher prevalence of TMDs in women, especially during reproductive years; pain intensity varies with the menstrual cycle. | Estrogen-based therapies may be effective; hormonal regulation could reduce TMD pain. | [56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76] |
Opioid System | Opioid receptors mediate analgesia, with sex-specific differences in endogenous opioid peptides and receptor responses. | Females may have reduced descending control of nociception and require higher doses of certain opioid agonists. | Sex-specific opioid receptor targeting and KOR inhibition may improve pain management in females. | [77,78,79,80,81,82,83,84] |
Endocannabinoid System | CB1 and CB2 receptors modulate pain and inflammation, with sex-specific responses to cannabinoids. | Females are more susceptible to THC effects; CB1 receptor modulation is testosterone-dependent in males. | Personalized cannabinoid-based therapies considering sex differences may enhance efficacy. | [85,86,87,88,89,90,91] |
TRP Ion Channels | TRPA1 and TRPV1 are crucial for TMD pain; estradiol may upregulate TRPV1 expression in TMJ synovium. | TRPV1 upregulation in females is influenced by estradiol; TRPA1-TRPV1 complex regulation differs by sex. | Considering hormonal influences, targeting TRPV1 and TRPA1 channels may reduce TMD pain in females. | [92,93,94,95,96] |
Mechanisms | Description | References |
---|---|---|
Craniofacial Neuroanatomy | The trigeminal nerve branches (V1, V2, and V3) play a crucial role, with nociceptive signals converging at the spinal trigeminal nuclei, leading to shared pain pathways for TMDs and migraines. | [110,111,112,113,114] |
Peripheral Sensitization | Increased nociceptor excitability due to inflammation or injury, involving mediators like glutamate and serotonin, contributes to TMD and migraine overlapping pain. | [115,116,117] |
Central Sensitization | Persistent peripheral pain input leads to central sensitization, making central pain pathways more excitable, common in both TMDs and migraines. | [11,118] |
Myofascial Trigger Points | Trigger points in masticatory muscles can provoke migraine episodes and vice versa, through central-to-peripheral and peripheral-to-central mechanisms. | [11] |
Trigeminal Ganglion Cross-Excitation | Cross-excitation between trigeminal nerve branches (V1, V2, and V3) allows pain in one branch to provoke pain in another, contributing to overlapping pain in TMDs and migraines. | [11] |
Role of CGRP | CGRP released from trigeminal nerve fibers plays a key role in neurogenic inflammation. Elevated CGRP levels in TMDs can lead to migraines, and vice versa. | [119,120] |
Role of Trigeminal Dynorphin | Increased dynorphin expression in the trigeminal nucleus caudalis, specifically in females, is linked to TMD and migraine overlapping pain. Targeting dynorphin may offer therapeutic potential. | [109] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, A.; Liu, S.; Tao, F. Mechanisms Underlying Sex Differences in Temporomandibular Disorders and Their Comorbidity with Migraine. Brain Sci. 2024, 14, 707. https://doi.org/10.3390/brainsci14070707
Khan A, Liu S, Tao F. Mechanisms Underlying Sex Differences in Temporomandibular Disorders and Their Comorbidity with Migraine. Brain Sciences. 2024; 14(7):707. https://doi.org/10.3390/brainsci14070707
Chicago/Turabian StyleKhan, Adnan, Sufang Liu, and Feng Tao. 2024. "Mechanisms Underlying Sex Differences in Temporomandibular Disorders and Their Comorbidity with Migraine" Brain Sciences 14, no. 7: 707. https://doi.org/10.3390/brainsci14070707
APA StyleKhan, A., Liu, S., & Tao, F. (2024). Mechanisms Underlying Sex Differences in Temporomandibular Disorders and Their Comorbidity with Migraine. Brain Sciences, 14(7), 707. https://doi.org/10.3390/brainsci14070707