Neuronal Mechanisms of Reading Informational Texts in People with Different Levels of Mental Resilience
Abstract
:1. Introduction
- -
- -
- there is a significant positive correlation between an individual’s level of resilience and the thickness of the cortex in the right hemisphere (comprising the lateral occipital cortex, the fusiform gyrus, the inferior parietal cortex, as well as the medial and inferior temporal cortex [25,26]), i.e., reduced resilience is associated with reduced cortical thickness in the areas that are involved in processing of emotional visual stimuli [25];
- -
- -
- adaptation of neural network efficacy and engagement of additional brain areas may provide mechanisms for coping with increased pathological load, both socio-emotional and cognitive [29,30,31,32], which is consistent with the cognitive reserve hypothesis, which assumes that cognitive function is preserved through functional adaptations of large-scale networks.
2. Materials and Methods
2.1. Research Group
2.2. Test Procedure
- Persistence and determination in action;
- Openness to new experiences and a sense of humor;
- Personal coping competence and tolerance of negative emotions;
- Tolerance of failure and treating life as a challenge;
- An optimistic attitude to life and an ability to motivate oneself in difficult situations [1].
- -
- objectivity—the facts are conveyed, and the author’s emotions and opinions are not uncovered;
- -
- reliability of sources—true information that does not lead the recipient into confusion or error;
- -
- written in a simple manner, understandable to any reader;
- -
- containing short, concise messages, providing complete information [46].
3. Results
3.1. Analysis of Behavioral Data
3.2. Analysis of Functional Near-Infrared Spectroscopy (fNIRS) Neuroimaging Data
- (a)
- in the high-resilience group: in channel 12 (t = 2.125; df = 27; p = 0.430);
- (b)
- in the medium-resilience group: in channels 61 (t = −2.133; df = 18; p = 0.47) and 68 (t = −2.472; df = 18; p = 0.24);
- (c)
- in the low-resilience group: in channels 2 (t = −2.51; df = 15; p = 0.24), 16 (t = −2.123; df = 15; t = 0.50) and 52 (t = −2.763; df = 15; p = 0.14).
- (a)
- in the high-resilience group: in channels 54 (t = 2.087; df = 27; p = 0.023) and 56 (t = 2.193; df = 27; p = 0.019);
- (b)
- in the medium-resilience group: in channels 32 (t = −2.426; df = 18; p = 0.026), 40 (t = −2.962; df = 18; p = 0.004) and 50 (t = −2.187; df = 18; p = 0.042);
- (c)
- in the low-resilience group: in channel 56 (t = −2.775; df = 15; p = 0.014).
4. Discussion
5. Conclusions
- -
- the left prefrontal area (BA 10), responsible for understanding sentence syntax and inference while reading;
- -
- the left lower frontal gyrus (BA 44), involved in tasks requiring language fluency or sentence comprehension skills and lexical word variation;
- -
- the right prefrontal area (BA 10), which plays a key role in activities involving working memory, spatial memory and divided attention;
- -
- the right inferior frontal gyrus (BA 43,44,45,46), which—in addition to tasks similar to the area described above—is activated when the person is exposed to unintelligible speech and when the activity requires semantic and phonological processing, word generation, categorization or strategy formation [52,53].
6. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rutten, B.P.; Hammels, C.; Geschwind, N.; Menne-Lothmann, C.; Pishva, E.; Schruers, K.; van den Hove, D.; Kenis, G.; van Os, J.; Wichers, M. Resilience in mental health: Linking psychological and neurobiological perspectives. Acta Psychiatr. Scand. 2013, 128, 3–20. [Google Scholar] [CrossRef] [PubMed]
- Luthar, S.S.; Cicchetti, D. The construct of resilience: Implications for interventions and social policies. Dev. Psychopathol. 2000, 12, 857–885. [Google Scholar] [CrossRef]
- Bennett, J.M.; Rohleder, N.; Sturmberg, J.P. Biopsychosocial approach to understanding resilience: Stress habituation and where to intervene. J. Eval. Clin. Pract. 2018, 24, 1339–1346. [Google Scholar] [CrossRef] [PubMed]
- Card, A.J. The biopsychosociotechnical model: A systems-based framework for human-centered health improvement. Health Syst. 2022, 12, 387–407. [Google Scholar] [CrossRef] [PubMed]
- Ozbay, F.; Johnson, D.C.; Dimoulas, E.; Morgan, C.A.; Charney, D.; Southwick, S. Social support and resilience to stress: From neurobiology to clinical practice. Psychiatry 2007, 4, 35–40. [Google Scholar] [PubMed]
- Tugade, M.M.; Fredrickson, B.L. Resilient Individuals Use Positive Emo-tionsto Bounce Back From Negative Emotional Experiences. J. Personal. Soc. Psychol. 2004, 86, 320–333. [Google Scholar] [CrossRef]
- Letzring, T.D.; Block, J.; Funder, D.C. Ego-control and ego-resiliency: Generalization of self-report scales based on personality descriptions from acquaintances, clinicians, and the self. J. Res. Personal. 2005, 39, 395–422. [Google Scholar] [CrossRef]
- Haft, S.L.; Myers, C.A.; Hoeft, F. Socio-emotional and cognitive resilience inchildren with reading disabilities. Curr. Opin. Behav. Sci. 2016, 10, 133–141. [Google Scholar] [CrossRef]
- Marks, R.A.; Norton, R.T.; Mesite, L.; Fox, A.B.; Christodoulou, J.A. Risk and resilience correlates of reading among adolescents with language-based learning disabilities during COVID-19. Read. Writ. 2023, 36, 401–428. [Google Scholar] [CrossRef]
- Douglas, K.; Barnett, T.; Poletti, A.; Seaboyer, J.; Kennedy, R. Building reading resilience: Re-thinking reading for the literary studies classroom. High. Educ. Res. Dev. 2015, 35, 254–266. [Google Scholar] [CrossRef]
- Porion, A.; Aparicio, X.; Megalakaki, O.; Robert, A.; Baccino, T. The impact of paper-based versus computerized presentation on text comprehension and memorization. Comput. Hum. Behav. 2015, 54, 569–576. [Google Scholar] [CrossRef]
- Hou, J.; Wu, Y.; Harrell, E. Reading on Paper and Screen among Senior Adults: Cognitive Map and Technophobia. Front. Psychol. 2017, 8, 2225. [Google Scholar] [CrossRef] [PubMed]
- Delgado, P.; Vargas, C.; Ackerman, R.; Salmerón, L. Don’t throw away your printed books: A meta-analysis on the effects of reading media on reading comprehension. Educ. Res. Rev. 2018, 25, 23–38. [Google Scholar] [CrossRef]
- Ikeda, M.; Rech, G. Does the digital world open up an increasing divide in access to print books? PISA Focus 2022, 118. [Google Scholar] [CrossRef]
- Eaton, S.; Cornwell, H.; Hamilton-Giachritsis, C.; Fairchild, G. Resilience and young people’s brain structure, function and connectivity: A systematic review. Neurosci. Biobehav. Rev. 2022, 132, 936–956. [Google Scholar] [CrossRef]
- Hoenig, M.C.; Drzezga, A. Clear-headed into old age: Resilience and resistance against brain aging—A PET imaging perspective. J. Neurochem. 2023, 164, 325–345. [Google Scholar] [CrossRef]
- Hunter, R.G.; Gray, J.D.; McEwen, B.S. The Neuroscience of Resilience. J. Soc. Soc. Work Res. 2018, 9, 305–339. [Google Scholar] [CrossRef]
- Altinok, D.C.A.; Rajkumar, R.; Nießen, D.; Sbaihat, H.; Kersey, M.; Shah, N.J.; Veselinović, T.; Neuner, I. Common neurobiological correlates of resilience and personality traits within the triple resting-state brain networks assessed by 7-Tesla ultra-high field MRI. Sci. Rep. 2021, 11, 11564. [Google Scholar] [CrossRef]
- Hang, Y.H.; Yang, M.H.; Yao, Z.F.; Tsai, M.C.; Hsieh, S. The Mediating Role of Brain Structural Imaging Markers in Connecting Adverse Childhood Experiences and Psychological Resilience. Children 2023, 10, 365. [Google Scholar] [CrossRef]
- Dhungana, S.; Koirala, R.; Ojha, S.P.; Thapa, S.B. Association of childhood trauma, and resilience, with quality of life in patients seeking treatment at a psychiatry outpatient: A cross-sectional study from Nepal. PLoS ONE 2022, 17, e0275637. [Google Scholar] [CrossRef]
- Van der Werff, S.J.A.; Van den Berg, S.M.; Pannekoek, J.N.; Elzinga, B.M.; Van der Wee, N.J.A. Neuroimaging resilience to stress: A review. Front. Behav. Neurosci. 2013, 7, 39. [Google Scholar] [CrossRef] [PubMed]
- Abu Hasan, R.; Yusoff, M.S.B.; Tang, T.B.; Hafeez, Y.; Mustafa, M.C.; Dzainudin, M.; Bacotang, J.; Al-Saggaf, U.M.; Ali, S.S.A. Resilience-Building for Mental Health among Early Childhood Educators: A Systematic Review and Pilot-Study towards an EEG-VR Resilience Building Intervention. Int. J. Environ. Res. Public Health 2022, 19, 4413. [Google Scholar] [CrossRef] [PubMed]
- Gee, D.G.; Humphreys, K.L.; Flannery, J.; Goff, B.; Telzer, E.H.; Shapiro, M.; Hare, T.A.; Bookheimer, S.Y.; Tottenham, N. A developmental shift from positive to negative connectivity in human amygdala-prefrontal circuitry. J. Neurosci. 2013, 33, 4584–4593. [Google Scholar] [CrossRef] [PubMed]
- Hackman, D.A.; Farah, M.J.; Meaney, M.J. Socioeconomic status and the brain: Mechanistic insights from human and animal research. Nat. Rev. Neurosci. 2010, 11, 651–659. [Google Scholar] [CrossRef]
- Kahl, M.; Wagner, G.; de la Cruz, F.; Köhler, S.; Schultz, C.C. Resilience and cortical thickness: A MRI study. Eur. Arch. Psychiatry Clin. Neurosci. 2020, 270, 533–539. [Google Scholar] [CrossRef]
- Shikimoto, R.; Noda, Y.; Kida, H.; Nakajima, S.; Tsugawa, S.; Mimura, Y.; Ochi, R.; Takayama, M.; Niimura, H.; Mimura, M. Association between resilience and cortical thickness in the posterior cingulate cortex and the temporal pole in Japanese older people: A population-based cross-sectional study. J. Psychiatr. Res. 2021, 142, 89–100. [Google Scholar] [CrossRef]
- Teicher, M.H.; Samson, J.A.; Anderson, C.M.; Ohashi, K. The effects of childhood maltreatment on brain structure, function and connectivity. Nat. Rev. Neurosci. 2016, 17, 652–666. [Google Scholar] [CrossRef]
- Pruessner, J.C.; Baldwin, M.W.; Dedovic, K.; Renwick, R.M.; Mahani, N.K.; Lord, C.; Meaney, M.; Lupien, S. Self-esteem, locus of control, hippocampal volume, and cortisol regulation in young and old adulthood. Neuroimage 2005, 28, 815–826. [Google Scholar] [CrossRef] [PubMed]
- Yoo, S.W.; Han, C.E.; Shin, J.S.; Seo, S.W.; Na, D.L.; Kaiser, M.; Jeong, Y.; Seong, J.K. A network flow-based analysis of cognitive reserve in normal ageing and Alzheimer’s disease. Sci. Rep. 2015, 5, 10057. [Google Scholar] [CrossRef]
- Stern, Y.; Gazes, Y.; Razlighi, Q.; Steffener, J.; Habeck, C. A task-invariant cognitive reserve network. Neuroimage 2018, 178, 36–45. [Google Scholar] [CrossRef]
- Weiler, M.; Casseb, R.F.; de Campos, B.M.; de Ligo Teixeira, C.V.; Carletti-Cassani, A.F.M.K.; Vicentini, J.E.; Magalhães, T.N.C.; de Almeira, D.Q.; Talib, L.L.; Forlenza, O.V.; et al. Cognitive reserve relates to functional network efficiency in Alzheimer’s disease. Front. Aging Neurosci. 2018, 10, 255. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.H.; Lee, P.; Seo, S.W.; Roh, J.H.; Oh, M.; Oh, J.S.; Oh, S.J.; Kim, J.S.; Jeong, Y. Neural substrates of cognitive reserve in Alzheimer’s disease spectrum and normal aging. Neuroimage 2019, 186, 690–702. [Google Scholar] [CrossRef] [PubMed]
- Preston, A.R.; Eichenbaum, H. Interplay of hippocampus and prefrontal cortex in memory. Curr. Biol. 2013, 23, R764–R773. [Google Scholar] [CrossRef]
- Kearns, D.M.; Hancock, R.; Hoeft, F.; Pugh, K.R.; Frost, S.J. The Neurobiology of Dyslexia. Teach. Except. Child. 2019, 51, 175–188. [Google Scholar] [CrossRef]
- Perdue, M.V.; Mahaffy, K.; Vlahcevic, K.; Wolfman, E.; Erbeli, F.; Richlan, F.; Landi, N. Reading intervention and neuroplasticity: A system atic review and meta-analysis of brain changes associated with reading intervention. Neurosci. Biobehav. Rev. 2022, 132, 465–494. [Google Scholar] [CrossRef] [PubMed]
- Kong, F.; Wang, X.; Hu, S.; Liu, J. Neural correlates of psychological resilience and their relation to life satisfaction in a sample of healthy young adults. Neuroimage 2015, 123, 165–172. [Google Scholar] [CrossRef]
- Mangen, A.; Walgermo, B.R.; Brønnick, K. Reading linear texts on paper versus computer screen: Effects on reading comprehension. Int. J. Educ. Res. 2013, 58, 61–69. [Google Scholar] [CrossRef]
- Clinton, V. Reading from paper compared to screens: A systematic review and meta-analysis. J. Res. Read. 2019, 42, 288–325. [Google Scholar] [CrossRef]
- Dymecka, J.; Gerymski, R.; Bidzan, M. Selected psychometric aspects of the Polish version of the Liverpool Self-efficacy Scale. Curr. Issues Personal. Psychol. 2020, 8, 339–351. [Google Scholar] [CrossRef]
- Dima Safi, D.; Lassonde, M.; Nguyen, D.K.; Phetsamone, W.; Tremblay, J.; Florea, O.; Morin-Moncet, O.; Lefrançois, M.; Beland, R. Functional near-infrared spectroscopy for the assessment ofovert reading. Brain Behav. 2012, 2, 707–843. [Google Scholar]
- Martin, C.O.; Pontbriand-Drolet, S.; Daoust, V.; Yamga, E.; Amiri, M.; Hübner, L.; Ska, B. Narrative Discourse in Young and Older Adults: Behavioral and NIRS Analyses. Front. Aging Neurosci. 2018, 10, 69. [Google Scholar] [CrossRef] [PubMed]
- Wan, N.; Hancock, A.S.; Moon, T.K.; Gillam, R.B. A functional near-infrared spectroscopic investigation of speech production during reading. Hum. Brain Mapp. 2018, 39, 1428–1437. [Google Scholar] [CrossRef] [PubMed]
- Martin, A.; Schurz, M.; Kronbichler, M.; Richlan, F. Reading in the brain of children and adults: A meta-analysis of 40 functional magnetic resonance imaging studies. Hum. Brain Mapp. 2015, 36, 1963–1981. [Google Scholar] [CrossRef] [PubMed]
- Bendall, R.C.; Eachus, P.; Thompson, C. A Brief Review of Research Using Near-Infrared Spectroscopy to Measure Activation of the Prefrontal Cortex during Emotional Processing: The Importance of Experimental Design. Front. Hum. Neurosci. 2016, 10, 529. [Google Scholar] [CrossRef]
- Kindall, H.D.; Penner-Williams, J. Effect of Increased Exposure to Informational Text on Teacher Attitude in the Elementary Classroom. J. Balanc. Lit. Res. Instr. 2013, 1, 6. [Google Scholar]
- Vorobyev, V.A.; Alho, K.; Medvedev, S.V.; Pakhomov, S.V.; Roudas, M.S.; Rutkovskaya, J.M.; Tervaniemi, M.; Van Zuijen, T.L.; Näätänen, R. Linguistic processing in visual and modality-nonspecific brain areas: PET recordings during selective attention. Cogn. Brain Res. 2004, 20, 309–322. [Google Scholar] [CrossRef]
- Mangen, A.; Olivier, G.; Velay, J.L. Comparing Comprehension of a Long Text Read in Print Book and on Kindle: Where in the Text and When in the Story? Front. Psychol. 2019, 10, 38. [Google Scholar] [CrossRef] [PubMed]
- Manchia, M.; Gathier, A.W.; Yapici-Eser, H.; Schmidt, M.V.; de Quervain, D.; van Amelsvoort, T.; Bisson, J.I.; Cryan, J.F.; Howes, O.D.; Pinto, L.; et al. The impact of the prolonged COVID-19 pandemic on stress resilience and mental health: A critical review across waves. Eur. Neuropsychopharmacol. 2022, 55, 22–83. [Google Scholar] [CrossRef]
- DeYong, N.R.; Jansen, J.F.A.; Van Boxtel, M.P.J.; Schram, M.T.; Stehouwer, C.D.A.; Dagnelie, P.C.; Van der Kallen, C.J.H.; Kroon, A.A.; Wesselius, A.; Koster, A.; et al. Cognitive resilience depends on white matter connectivity: The Maastricht Study. Alzheimer’s Assoc. 2023, 19, 1164–1174. [Google Scholar]
- Anuardi, M.N.A.M.; Yamazaki, A.K.; Sato, I. The effects of tablet and printed media on brain activation during a short-memory task. Procedia Comput. Sci. 2020, 176, 1358–1365. [Google Scholar] [CrossRef]
- Poldrack, R.A.; Packard, M.G. Competition among multiple memory systems: Converging evidence from animal and human brain studies. Neuropsychologia 2003, 41, 145. [Google Scholar] [CrossRef] [PubMed]
- Judaš, M.; Cepanec, M.; Sedmak, G. Brodmann’s map of the hu`man cerebral cortex—Or Brodmann’s maps? Transl. Neurosci. 2012, 3, 67–74. [Google Scholar] [CrossRef]
- Šimic, G.; Hof, P.R. In search of the definitive Brodmann’s map of Cortical areas in human. J. Comp. Neurol. 2015, 523, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Henik, A.; Salo, R. Schizophrenia and the stroop effect. Behav. Cogn. Neurosci. Rev. 2004, 3, 42–59. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Xu, M.; Li, W.G. Segregating memories: Targeting microenvironment of neuronal ensembles. Signal Transduct. Target. Ther. 2022, 7, 363. [Google Scholar] [CrossRef]
- Lokshina, Y.; Nickelsen, T.; Liberzon, I. Reward Processing and Circuit Dysregulation in Posttraumatic Stress Disorder. Front. Psychiatry 2021, 12, 559401. [Google Scholar] [CrossRef]
Number of Correct Answers | Number of Participants | Percentage of Participants among the Whole Sample |
---|---|---|
0 | 1 | 0.74 |
1 | 4 | 2.96 |
2 | 22 | 16.29 |
3 | 29 | 21.48 |
4 | 34 | 24.44 |
5 | 33 | 24.21 |
7 | 12 | 9.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chojak, M.; Gawron, A.; Czechowska-Bieluga, M.; Różański, A.; Sarzyńska-Mazurek, E.; Stachyra-Sokulska, A. Neuronal Mechanisms of Reading Informational Texts in People with Different Levels of Mental Resilience. Brain Sci. 2024, 14, 944. https://doi.org/10.3390/brainsci14090944
Chojak M, Gawron A, Czechowska-Bieluga M, Różański A, Sarzyńska-Mazurek E, Stachyra-Sokulska A. Neuronal Mechanisms of Reading Informational Texts in People with Different Levels of Mental Resilience. Brain Sciences. 2024; 14(9):944. https://doi.org/10.3390/brainsci14090944
Chicago/Turabian StyleChojak, Małgorzata, Anna Gawron, Marta Czechowska-Bieluga, Andrzej Różański, Ewa Sarzyńska-Mazurek, and Anna Stachyra-Sokulska. 2024. "Neuronal Mechanisms of Reading Informational Texts in People with Different Levels of Mental Resilience" Brain Sciences 14, no. 9: 944. https://doi.org/10.3390/brainsci14090944
APA StyleChojak, M., Gawron, A., Czechowska-Bieluga, M., Różański, A., Sarzyńska-Mazurek, E., & Stachyra-Sokulska, A. (2024). Neuronal Mechanisms of Reading Informational Texts in People with Different Levels of Mental Resilience. Brain Sciences, 14(9), 944. https://doi.org/10.3390/brainsci14090944