Transcutaneous Auricular Vagus Nerve Stimulation Modulating the Brain Topological Architecture of Functional Network in Major Depressive Disorder: An fMRI Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. TaVNS Treatment
2.3. Neuropsychological Scales
2.4. MRI Data Acquisition
2.5. Data Preprocessing
2.6. Functional Network Construction
2.7. Network Metrics Analysis
2.8. Statistical Analysis
2.8.1. NBS Analysis
2.8.2. Correlation Analysis
3. Results
3.1. Demographic and Neuropsychological Scores
3.2. Global Topological Properties
3.3. Nodal Topological Properties
3.4. NBS Analysis
3.5. Correlation Analysis
4. Discussion
4.1. TaVNS Treatment Efficiency
4.2. Global Topological Properties’ Alteration after taVNS Treatment
4.3. Nodal Topological Properties’ Alteration after taVNS Treatment
4.4. Functional Connectivity Alterations after taVNS Treatment
4.5. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marx, W.; Penninx, B.; Solmi, M.; Furukawa, T.A.; Firth, J.; Carvalho, A.F.; Berk, M. Major depressive disorder. Nat. Rev. Dis. Primers 2023, 9, 44. [Google Scholar] [CrossRef] [PubMed]
- Herrman, H.; Patel, V.; Kieling, C.; Berk, M.; Buchweitz, C.; Cuijpers, P.; Furukawa, T.A.; Kessler, R.C.; Kohrt, B.A.; Maj, M.; et al. Time for united action on depression: A Lancet-World Psychiatric Association Commission. Lancet 2022, 399, 957–1022. [Google Scholar] [CrossRef] [PubMed]
- Yi, S.; Wang, Z.; Yang, W.; Huang, C.; Liu, P.; Chen, Y.; Zhang, H.; Zhao, G.; Li, W.; Fang, J.; et al. Neural activity changes in first-episode, drug-naive patients with major depressive disorder after transcutaneous auricular vagus nerve stimulation treatment: A resting-state fMRI study. Front. Neurosci. 2022, 16, 1018387. [Google Scholar] [CrossRef] [PubMed]
- van Rooij, S.J.H.; Arulpragasam, A.R.; McDonald, W.M.; Philip, N.S. Accelerated TMS—Moving quickly into the future of depression treatment. Neuropsychopharmacology 2024, 49, 128–137. [Google Scholar] [CrossRef]
- Burkhardt, G.; Kumpf, U.; Crispin, A.; Goerigk, S.; Andre, E.; Plewnia, C.; Brendel, B.; Fallgatter, A.; Langguth, B.; Abdelnaim, M.; et al. Transcranial direct current stimulation as an additional treatment to selective serotonin reuptake inhibitors in adults with major depressive disorder in Germany (DepressionDC): A triple-blind, randomised, sham-controlled, multicentre trial. Lancet 2023, 402, 545–554. [Google Scholar] [CrossRef]
- Johnson, K.A.; Okun, M.S.; Scangos, K.W.; Mayberg, H.S.; de Hemptinne, C. Deep brain stimulation for refractory major depressive disorder: A comprehensive review. Mol. Psychiatry 2024, 29, 1075–1087. [Google Scholar] [CrossRef]
- Guo, Q.; Wang, Y.; Guo, L.; Li, X.; Ma, X.; He, X.; Li, J.; Zhang, X.; Shang, S. Long-term cognitive effects of electroconvulsive therapy in major depressive disorder: A systematic review and meta-analysis. Psychiatry Res. 2024, 331, 115611. [Google Scholar] [CrossRef]
- Sun, J.; Guo, C.; Ma, Y.; Gao, S.; Luo, Y.; Chen, Q.; Hong, Y.; Hou, X.; Xiao, X.; Yu, X.; et al. Immediate modulatory effects of transcutaneous auricular vagus nerve stimulation on the resting state of major depressive disorder. J. Affect. Disord. 2023, 325, 513–521. [Google Scholar] [CrossRef]
- Kong, J.; Fang, J.; Park, J.; Li, S.; Rong, P. Treating Depression with Transcutaneous Auricular Vagus Nerve Stimulation: State of the Art and Future Perspectives. Front. Psychiatry 2018, 9, 20. [Google Scholar] [CrossRef]
- Wang, Y.; Li, S.Y.; Wang, D.; Wu, M.Z.; He, J.K.; Zhang, J.L.; Zhao, B.; Hou, L.W.; Wang, J.Y.; Wang, L.; et al. Transcutaneous Auricular Vagus Nerve Stimulation: From Concept to Application. Neurosci. Bull. 2021, 37, 853–862. [Google Scholar] [CrossRef]
- Rong, P.; Liu, J.; Wang, L.; Liu, R.; Fang, J.; Zhao, J.; Zhao, Y.; Wang, H.; Vangel, M.; Sun, S.; et al. Effect of transcutaneous auricular vagus nerve stimulation on major depressive disorder: A nonrandomized controlled pilot study. J. Affect. Disord. 2016, 195, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Hein, E.; Nowak, M.; Kiess, O.; Biermann, T.; Bayerlein, K.; Kornhuber, J.; Kraus, T. Auricular transcutaneous electrical nerve stimulation in depressed patients: A randomized controlled pilot study. J. Neural Transm. (Vienna) 2013, 120, 821–827. [Google Scholar] [CrossRef] [PubMed]
- Ventureyra, E.C. Transcutaneous vagus nerve stimulation for partial onset seizure therapy. A new concept. Childs Nerv. Syst. 2000, 16, 101–102. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Shi, W.; Fan, J.; Wang, X.; Song, Y.; Lian, Y.; Shan, W.; Wang, Q. Transcutaneous Auricular Vagus Nerve Stimulation (ta-VNS) for Treatment of Drug-Resistant Epilepsy: A Randomized, Double-Blind Clinical Trial. Neurotherapeutics 2023, 20, 870–880. [Google Scholar] [CrossRef]
- Mao, Y.; Chen, C.; Falahpour, M.; MacNiven, K.H.; Heit, G.; Sharma, V.; Alataris, K.; Liu, T.T. Effects of Sub-threshold Transcutaneous Auricular Vagus Nerve Stimulation on Cingulate Cortex and Insula Resting-state Functional Connectivity. Front. Hum. Neurosci. 2022, 16, 862443. [Google Scholar] [CrossRef]
- Fang, J.; Rong, P.; Hong, Y.; Fan, Y.; Liu, J.; Wang, H.; Zhang, G.; Chen, X.; Shi, S.; Wang, L.; et al. Transcutaneous Vagus Nerve Stimulation Modulates Default Mode Network in Major Depressive Disorder. Biol. Psychiatry 2016, 79, 266–273. [Google Scholar] [CrossRef]
- van Midden, V.M.; Pirtosek, Z.; Kojovic, M. The Effect of taVNS on the Cerebello-Thalamo-Cortical Pathway: A TMS Study. Cerebellum 2024, 23, 1013–1019. [Google Scholar] [CrossRef]
- Philip, N.S.; Barredo, J.; van ’t Wout-Frank, M.; Tyrka, A.R.; Price, L.H.; Carpenter, L.L. Network Mechanisms of Clinical Response to Transcranial Magnetic Stimulation in Posttraumatic Stress Disorder and Major Depressive Disorder. Biol. Psychiatry 2018, 83, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Trevizol, A.P.; Shiozawa, P.; Taiar, I.; Soares, A.; Gomes, J.S.; Barros, M.D.; Liquidato, B.M.; Cordeiro, Q. Transcutaneous Vagus Nerve Stimulation (taVNS) for Major Depressive Disorder: An Open Label Proof-of-Concept Trial. Brain Stimul. 2016, 9, 453–454. [Google Scholar] [CrossRef]
- Chellappa, S.L.; Aeschbach, D. Sleep and anxiety: From mechanisms to interventions. Sleep. Med. Rev. 2022, 61, 101583. [Google Scholar] [CrossRef]
- Kang, S.G.; Cho, S.E. Neuroimaging Biomarkers for Predicting Treatment Response and Recurrence of Major Depressive Disorder. Int. J. Mol. Sci. 2020, 21, 2148. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, Y.; Wei, Q.; Bai, T.; Wang, K.; Wang, J.; Tian, Y. Mapping intrinsic functional network topological architecture in major depression disorder after electroconvulsive therapy. J. Affect. Disord. 2022, 311, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Korhonen, O.; Zanin, M.; Papo, D. Principles and open questions in functional brain network reconstruction. Hum. Brain Mapp. 2021, 42, 3680–3711. [Google Scholar] [CrossRef] [PubMed]
- Yun, J.Y.; Kim, Y.K. Graph theory approach for the structural-functional brain connectome of depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 2021, 111, 110401. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhu, Y.; Ye, H.; Jiang, W.; Zhang, Y.; Kong, Y.; Yuan, Y.; Consortium, R.E.-m.-M. Abnormal changes of dynamic topological characteristics in patients with major depressive disorder. J. Affect. Disord. 2024, 345, 349–357. [Google Scholar] [CrossRef]
- Li, Y.; Chu, T.; Che, K.; Dong, F.; Shi, Y.; Ma, H.; Zhao, F.; Mao, N.; Xie, H. Altered gray matter structural covariance networks in postpartum depression: A graph theoretical analysis. J. Affect. Disord. 2021, 293, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Kranz, G.S.; Zou, W.; Deng, Y.; Huang, X.; Lin, K.; Lee, T.M.C. Rumination network dysfunction in major depression: A brain connectome study. Prog. Neuropsychopharmacol. Biol. Psychiatry 2020, 98, 109819. [Google Scholar] [CrossRef]
- Jacob, Y.; Morris, L.S.; Huang, K.H.; Schneider, M.; Rutter, S.; Verma, G.; Murrough, J.W.; Balchandani, P. Neural correlates of rumination in major depressive disorder: A brain network analysis. Neuroimage Clin. 2020, 25, 102142. [Google Scholar] [CrossRef]
- Dai, Y.R.; Wu, Y.K.; Chen, X.; Zeng, Y.W.; Li, K.; Li, J.T.; Su, Y.A.; Zhu, L.L.; Yan, C.G.; Si, T.M. Eight-week antidepressant treatment changes intrinsic functional brain topology in first-episode drug-naive patients with major depressive disorder. J. Affect. Disord. 2023, 329, 225–234. [Google Scholar] [CrossRef]
- Wu, Y.; Ji, Y.; Bai, T.; Wei, Q.; Zu, M.; Guo, Y.; Lv, H.; Zhang, A.; Qiu, B.; Wang, K.; et al. Nodal degree changes induced by electroconvulsive therapy in major depressive disorder: Evidence in two independent cohorts. J. Affect. Disord. 2022, 307, 46–52. [Google Scholar] [CrossRef]
- Croarkin, P.E.; Elmaadawi, A.Z.; Aaronson, S.T.; Schrodt, G.R., Jr.; Holbert, R.C.; Verdoliva, S.; Heart, K.L.; Demitrack, M.A.; Strawn, J.R. Left prefrontal transcranial magnetic stimulation for treatment-resistant depression in adolescents: A double-blind, randomized, sham-controlled trial. Neuropsychopharmacology 2021, 46, 462–469. [Google Scholar] [CrossRef] [PubMed]
- Thompson, E. Hamilton Rating Scale for Anxiety (HAM-A). Occup. Med. (Lond.) 2015, 65, 601. [Google Scholar] [CrossRef] [PubMed]
- Shi, D.; Li, Z.; Li, Y.; Jiang, Q. Variables associated with self-reported anxiety and depression symptoms in patients with chronic myeloid leukemia receiving tyrosine kinase inhibitor therapy. Leuk. Lymphoma 2021, 62, 640–648. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, X.; Xia, M.; Liao, X.; Evans, A.; He, Y. GRETNA: A graph theoretical network analysis toolbox for imaging connectomics. Front. Hum. Neurosci. 2015, 9, 386. [Google Scholar] [CrossRef]
- Dosenbach, N.U.; Nardos, B.; Cohen, A.L.; Fair, D.A.; Power, J.D.; Church, J.A.; Nelson, S.M.; Wig, G.S.; Vogel, A.C.; Lessov-Schlaggar, C.N.; et al. Prediction of individual brain maturity using fMRI. Science 2010, 329, 1358–1361. [Google Scholar] [CrossRef] [PubMed]
- Amiri, S.; Arbabi, M.; Kazemi, K.; Parvaresh-Rizi, M.; Mirbagheri, M.M. Characterization of brain functional connectivity in treatment-resistant depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 2021, 111, 110346. [Google Scholar] [CrossRef]
- Korgaonkar, M.S.; Fornito, A.; Williams, L.M.; Grieve, S.M. Abnormal structural networks characterize major depressive disorder: A connectome analysis. Biol. Psychiatry 2014, 76, 567–574. [Google Scholar] [CrossRef]
- Li, L.; Su, Y.A.; Wu, Y.K.; Castellanos, F.X.; Li, K.; Li, J.T.; Si, T.M.; Yan, C.G. Eight-week antidepressant treatment reduces functional connectivity in first-episode drug-naive patients with major depressive disorder. Hum. Brain Mapp. 2021, 42, 2593–2605. [Google Scholar] [CrossRef]
- Liu, J.; Fang, J.; Wang, Z.; Rong, P.; Hong, Y.; Fan, Y.; Wang, X.; Park, J.; Jin, Y.; Liu, C.; et al. Transcutaneous vagus nerve stimulation modulates amygdala functional connectivity in patients with depression. J. Affect. Disord. 2016, 205, 319–326. [Google Scholar] [CrossRef]
- Wang, X.; Xia, Y.; Yan, R.; Wang, H.; Sun, H.; Huang, Y.; Hua, L.; Tang, H.; Yao, Z.; Lu, Q. The relationship between disrupted anhedonia-related circuitry and suicidal ideation in major depressive disorder: A network-based analysis. Neuroimage Clin. 2023, 40, 103512. [Google Scholar] [CrossRef]
- Yang, H.; Chen, X.; Chen, Z.B.; Li, L.; Li, X.Y.; Castellanos, F.X.; Bai, T.J.; Bo, Q.J.; Cao, J.; Chang, Z.K.; et al. Disrupted intrinsic functional brain topology in patients with major depressive disorder. Mol. Psychiatry 2021, 26, 7363–7371. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.; Lu, F.; Zhang, J.; Chen, H.; Zhang, L.; Wang, X.; Fan, Y.; Fang, J.; Hong, L.; Wang, J.; et al. Effects of TIP treatment on brain network topology of frontolimbic circuit in first-episode, treatment-naive major depressive disorder. J. Affect. Disord. 2021, 279, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Daws, R.E.; Timmermann, C.; Giribaldi, B.; Sexton, J.D.; Wall, M.B.; Erritzoe, D.; Roseman, L.; Nutt, D.; Carhart-Harris, R. Increased global integration in the brain after psilocybin therapy for depression. Nat. Med. 2022, 28, 844–851. [Google Scholar] [CrossRef]
- He, M.; Shen, Z.; Ping, L.; Zhou, C.; Cheng, Y.; Xu, X. Age-related heterogeneity revealed by disruption of white matter structural networks in patients with first-episode untreated major depressive disorder: WM Network In OA-MDD. J. Affect. Disord. 2022, 303, 286–296. [Google Scholar] [CrossRef] [PubMed]
- Manelis, A.; Almeida, J.R.; Stiffler, R.; Lockovich, J.C.; Aslam, H.A.; Phillips, M.L. Anticipation-related brain connectivity in bipolar and unipolar depression: A graph theory approach. Brain 2016, 139, 2554–2566. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Hou, Z.; Yin, Y.; Xie, C.; Zhang, H.; Zhang, H.; Kong, Y.; Gao, S.; Zhang, Z.; et al. Global topology alteration of the brain functional network affects the 8-week antidepressant response in major depressive disorder. J. Affect. Disord. 2021, 294, 491–496. [Google Scholar] [CrossRef] [PubMed]
- Ghanbari, M.; Soussia, M.; Jiang, W.; Wei, D.; Yap, P.T.; Shen, D.; Zhang, H. Alterations of dynamic redundancy of functional brain subnetworks in Alzheimer’s disease and major depression disorders. Neuroimage Clin. 2022, 33, 102917. [Google Scholar] [CrossRef] [PubMed]
- Jacob, Y.; Morris, L.S.; Verma, G.; Rutter, S.B.; Balchandani, P.; Murrough, J.W. Altered hippocampus and amygdala subregion connectome hierarchy in major depressive disorder. Transl. Psychiatry 2022, 12, 209. [Google Scholar] [CrossRef]
- Zhang, A.; Qiao, D.; Wang, Y.; Yang, C.; Wang, Y.; Sun, N.; Hu, X.; Liu, Z.; Zhang, K. Distinguishing between bipolar depression and unipolar depression based on the reward circuit activities and clinical characteristics: A machine learning analysis. J. Affect. Disord. 2023, 327, 46–53. [Google Scholar] [CrossRef]
- Li, X.; Steffens, D.C.; Potter, G.G.; Guo, H.; Song, S.; Wang, L. Decreased between-hemisphere connectivity strength and network efficiency in geriatric depression. Hum. Brain Mapp. 2017, 38, 53–67. [Google Scholar] [CrossRef]
- Mo, Y.; Wei, Q.; Bai, T.; Zhang, T.; Lv, H.; Zhang, L.; Ji, G.; Yu, F.; Tian, Y.; Wang, K. Bifrontal electroconvulsive therapy changed regional homogeneity and functional connectivity of left angular gyrus in major depressive disorder. Psychiatry Res. 2020, 294, 113461. [Google Scholar] [CrossRef] [PubMed]
- Tan, W.; Ouyang, X.; Huang, D.; Wu, Z.; Liu, Z.; He, Z.; Long, Y.; Consortium, R.E.-m.-M. Disrupted intrinsic functional brain network in patients with late-life depression: Evidence from a multi-site dataset. J. Affect. Disord. 2023, 323, 631–639. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Xu, X.; Zhu, C.; Luo, L.; Wang, Q.; Xiao, B.; Feng, B.; Hu, L.; Liu, L. Disrupted Structural Brain Network Organization Behind Depressive Symptoms in Major Depressive Disorder. Front. Psychiatry 2020, 11, 565890. [Google Scholar] [CrossRef] [PubMed]
- Brakowski, J.; Spinelli, S.; Dorig, N.; Bosch, O.G.; Manoliu, A.; Holtforth, M.G.; Seifritz, E. Resting state brain network function in major depression—Depression symptomatology, antidepressant treatment effects, future research. J. Psychiatr. Res. 2017, 92, 147–159. [Google Scholar] [CrossRef]
- Ye, M.; Qing, P.; Zhang, K.; Liu, G. Altered network efficiency in major depressive disorder. BMC Psychiatry 2016, 16, 450. [Google Scholar] [CrossRef] [PubMed]
- Lu, F.; Chen, Y.; Cui, Q.; Guo, Y.; Pang, Y.; Luo, W.; Yu, Y.; Chen, J.; Gao, J.; Sheng, W.; et al. Shared and distinct patterns of dynamic functional connectivity variability of thalamo-cortical circuit in bipolar depression and major depressive disorder. Cereb. Cortex 2023, 33, 6681–6692. [Google Scholar] [CrossRef]
- Zanto, T.P.; Gazzaley, A. Fronto-parietal network: Flexible hub of cognitive control. Trends Cogn. Sci. 2013, 17, 602–603. [Google Scholar] [CrossRef]
- Kaiser, R.H.; Andrews-Hanna, J.R.; Wager, T.D.; Pizzagalli, D.A. Large-Scale Network Dysfunction in Major Depressive Disorder: A Meta-analysis of Resting-State Functional Connectivity. JAMA Psychiatry 2015, 72, 603–611. [Google Scholar] [CrossRef]
- Rubin-Falcone, H.; Weber, J.; Kishon, R.; Ochsner, K.; Delaparte, L.; Dore, B.; Raman, S.; Denny, B.T.; Oquendo, M.A.; Mann, J.J.; et al. Neural predictors and effects of cognitive behavioral therapy for depression: The role of emotional reactivity and regulation. Psychol. Med. 2020, 50, 146–160. [Google Scholar] [CrossRef]
- Yan, C.G.; Chen, X.; Li, L.; Castellanos, F.X.; Bai, T.J.; Bo, Q.J.; Cao, J.; Chen, G.M.; Chen, N.X.; Chen, W.; et al. Reduced default mode network functional connectivity in patients with recurrent major depressive disorder. Proc. Natl. Acad. Sci. USA 2019, 116, 9078–9083. [Google Scholar] [CrossRef]
- Hawkey, E.J.; Tillman, R.; Luby, J.L.; Barch, D.M. Preschool Executive Function Predicts Childhood Resting-State Functional Connectivity and Attention-Deficit/Hyperactivity Disorder and Depression. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2018, 3, 927–936. [Google Scholar] [CrossRef] [PubMed]
- Shao, J.; Meng, C.; Tahmasian, M.; Brandl, F.; Yang, Q.; Luo, G.; Luo, C.; Yao, D.; Gao, L.; Riedl, V.; et al. Common and distinct changes of default mode and salience network in schizophrenia and major depression. Brain Imaging Behav. 2018, 12, 1708–1719. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Lin, P.; Yang, J.; Song, H.; Yang, R.; Yang, J. Dysfunction of the cingulo-opercular network in first-episode medication-naive patients with major depressive disorder. J. Affect. Disord. 2016, 200, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Argyelan, M.; Lencz, T.; Kaliora, S.; Sarpal, D.K.; Weissman, N.; Kingsley, P.B.; Malhotra, A.K.; Petrides, G. Subgenual cingulate cortical activity predicts the efficacy of electroconvulsive therapy. Transl. Psychiatry 2016, 6, e789. [Google Scholar] [CrossRef]
- Kang, J.I.; Lee, H.; Jhung, K.; Kim, K.R.; An, S.K.; Yoon, K.J.; Kim, S.I.; Namkoong, K.; Lee, E. Frontostriatal Connectivity Changes in Major Depressive Disorder After Repetitive Transcranial Magnetic Stimulation: A Randomized Sham-Controlled Study. J. Clin. Psychiatry 2016, 77, e1137–e1143. [Google Scholar] [CrossRef]
MDD (n = 19) | |
---|---|
Sex (male/female) | 13/6 |
Age (years) | 38.89 ± 14.48 |
HAMD | 29.11 ± 5.59 |
HAMA | 21.00 ± 7.10 |
SAS | 57.53 ± 9.01 |
SDS | 66.89 ± 10.70 |
Pre | Post | t | p | |
---|---|---|---|---|
HAMD | 29.11 ± 5.59 | 15.05 ± 4.47 | 9.692 | <0.001 |
HAMA | 21.00 ± 7.10 | 10.74 ± 4.04 | 7.446 | <0.001 |
SAS | 57.53 ± 9.01 | 42.89 ± 9.67 | 7.664 | <0.001 |
SDS | 66.89 ± 10.70 | 50.84 ± 11.78 | 7.160 | <0.001 |
Pre | Post | t | p | |
---|---|---|---|---|
Eglob | 0.269 ± 0.004 | 0.274 ± 0.004 | −4.537 | <0.001 |
Lp | 0.790 ± 0.025 | 0.760 ± 0.015 | 6.353 | <0.001 |
DC of left AG | 18.43 ± 5.72 | 25.34 ± 3.71 | −7.003 | <0.001 |
Ne of left AG | 0.274 ± 0.022 | 0.291 ± 0.025 | −2.123 | 0.048 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Z.-P.; Liao, D.; Chen, L.; Wang, C.; Qu, M.; Lv, X.-Y.; Fang, J.-L.; Liu, C.-H. Transcutaneous Auricular Vagus Nerve Stimulation Modulating the Brain Topological Architecture of Functional Network in Major Depressive Disorder: An fMRI Study. Brain Sci. 2024, 14, 945. https://doi.org/10.3390/brainsci14090945
Guo Z-P, Liao D, Chen L, Wang C, Qu M, Lv X-Y, Fang J-L, Liu C-H. Transcutaneous Auricular Vagus Nerve Stimulation Modulating the Brain Topological Architecture of Functional Network in Major Depressive Disorder: An fMRI Study. Brain Sciences. 2024; 14(9):945. https://doi.org/10.3390/brainsci14090945
Chicago/Turabian StyleGuo, Zhi-Peng, Dan Liao, Lei Chen, Cong Wang, Miao Qu, Xue-Yu Lv, Ji-Liang Fang, and Chun-Hong Liu. 2024. "Transcutaneous Auricular Vagus Nerve Stimulation Modulating the Brain Topological Architecture of Functional Network in Major Depressive Disorder: An fMRI Study" Brain Sciences 14, no. 9: 945. https://doi.org/10.3390/brainsci14090945
APA StyleGuo, Z. -P., Liao, D., Chen, L., Wang, C., Qu, M., Lv, X. -Y., Fang, J. -L., & Liu, C. -H. (2024). Transcutaneous Auricular Vagus Nerve Stimulation Modulating the Brain Topological Architecture of Functional Network in Major Depressive Disorder: An fMRI Study. Brain Sciences, 14(9), 945. https://doi.org/10.3390/brainsci14090945