Digital Image Analysis of Vertebral Body S1 and Its Ossification Center in the Human Fetus
Abstract
:1. Introduction
- To quantitatively analyze the body of the first sacral vertebra and its ossification center with respect to their linear, planar, and volumetric parameters, aiming to establish reference values for specific gestational ages.
- To examine potential differences between sexes concerning the analyzed parameters.
- To calculate the growth dynamics of the analyzed parameters, including the identification of best-fitting mathematical models.
2. Materials and Methods
2.1. Examined Sample
2.2. Morphometric Measurements and Assessment of Ossification Centers
- Body height—the maximum distance between the superior and inferior edges of the vertebral body in the sagittal plane (Figure 2);
- Transverse diameter of the vertebral body—the maximum distance between the lateral edges of the vertebral body in the transverse plane (Figure 2);
- Transverse diameter of the body ossification center—the maximum distance between the lateral edges of the ossification center in the transverse plane (Figure 2);
- Sagittal diameter of the vertebral body—the maximum distance between the anterior and posterior edges of the vertebral body in the sagittal plane (Figure 2);
- Sagittal diameter of the body ossification center—the maximum distance between the anterior and posterior edges of the ossification center in the sagittal plane (Figure 2);
- Cross-sectional area of the vertebral body—based on the determined contour of the vertebral body in the transverse plane (Figure 2);
- Cross-sectional area of the body ossification center—based on the determined contour of the ossification center in the transverse plane (Figure 2).
- Volume of the ossification center, calculated using advanced diagnostic imaging tools for 3D reconstruction, taking into account the position and the absorption of radiation by bone (Figure 1F).
2.3. Statistical Analysis
3. Results
3.1. Morphometric Parameters of the S1 Vertebral Body
3.2. Morphometric Parameters of the S1 Ossification Center
4. Discussion
Limitations of the Study
5. Conclusions
- No sex differences were observed for any of the morphometric parameters of the body and ossification center of the S1 vertebra.
- The developmental dynamics of all studied parameters of the body and ossification center of the S1 vertebra demonstrated proportional growth with advancing gestational age, measured in weeks.
- The obtained morphometric data on the body and ossification center of the S1 vertebra can serve as age-specific reference ranges that can support the estimation of gestational age and enhance in the ultrasonographic diagnosis of congenital abnormalities. Further research into the growth patterns and morphometric characteristics of the S1 vertebra’s body and ossification center is necessary to deepen our understanding of their development and potential clinical relevance.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De Biasio, P.; Ginocchio, G.; Vignolo, M.; Ravera, G.; Venturini, P.L.; Aicardi, G. Spine length measurement in the first trimester of pregnancy. Prenat. Diagn. 2002, 22, 818–822. [Google Scholar] [CrossRef] [PubMed]
- De Biasio, P.; Ginocchio, G.; Aicardi, G.; Ravera, G.; Venturini, P.L.; Vignolo, M. Ossification timing of sacra vertebrae by ultrasound in the mid-second trimester of pregnancy. Prenat. Diagn. 2003, 23, 1056–1059. [Google Scholar] [CrossRef] [PubMed]
- Skórzewska, A.; Grzymisławska, M.; Bruska, M.; Łupicka, J.; Woźniak, W. Ossification of the vertebral column in human foetuses: Histological and computed tomography studies. Folia Morphol. 2013, 72, 230–238. [Google Scholar] [CrossRef]
- Mărginean, O.M.; Mîndrilă, I.; Damian, C.M.; Mărginean, C.M.; Melinte, P.R.; Căpitănescu, B. Contributions on the morphometric study of the newborn and fetus spine. Rom. J. Funct. Clin. Macro-Microsc. 2011, 10, 423. [Google Scholar]
- Tekani, D.J.; Udutha, S.; Kulshreshtha, S. Ultrasonographic evaluation of fetal sacral length measurement as a new parameter for assessment of gestational age. Int. Med. J. 2015, 2, 277–284. [Google Scholar]
- Karabulut, K.A.; Koyluoglu, B.; Uysal, I. Human foetal sacral length measurement for the assessment of foetal growth and development by ultrasonograpy and dissection. Anat. Histol. Embryol. 2001, 10, 141–146. [Google Scholar] [CrossRef]
- Elkafrawy, M.E.; Ahmed, A.A.M. Role of Fetal Sacral Length in Assessment of Gestational Age by Ultrasound. AIMJ 2021, 2, 59–64. [Google Scholar] [CrossRef]
- Quader, S.A.; Islam, M.S.; Islam, M.M.; Hossain, M.Z. Ultrasonographic evaluation of fetal sacral length and correlation with gestational age. Updat. Dent. Coll. 2016, 6, 8–14. [Google Scholar] [CrossRef]
- Qi, B.Q.; Beasley, S.W.; Arsic, D. Abnormalities of the vertebral column and ribs associated with anorectal malformations. Pediatr. Surg. Int. 2004, 20, 529–533. [Google Scholar] [CrossRef]
- Baumgart, M.; Szpinda, M.; Szpinda, A. New anatomical data on the growing C4 vertebra and its three ossification centers in human fetuses. Surg. Radiol. Anat. 2013, 35, 191–203. [Google Scholar] [CrossRef]
- Szpinda, M.; Baumgart, M.; Szpinda, A.; Woźniak, A.; Małkowski, B.; Wiśniewski, M.; Mila-Kierzenkowska, C.; Króliczewski, D. Cross-sectional study of the ossification center of the C1–S5 vertebral bodies. Surg. Radiol. Anat. 2013, 35, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Szpinda, M.; Baumgart, M.; Szpinda, A.; Woźniak, A.; Mila-Kierzenkowska, C.; Dombek, M.; Kosiński, A.; Grzybiak, M. Morphometric study of the T6 vertebra and its three ossification centers in the human fetus. Surg. Radiol. Anat. 2013, 35, 901–916. [Google Scholar] [CrossRef] [PubMed]
- Chano, T.; Matsumoto, K.; Ishizawa, M.; Morimoto, S.; Hukuda, S.; Okabe, H.; Kato, H.; Fujino, S. Analysis of the presence of osteocalcin, S-100 protein, and proliferating cell nuclear antigen in cells of various types of osteosarcomas. Eur. J. Histochem. 1996, 40, 189–198. [Google Scholar] [PubMed]
- Duarte, W.R.; Shibata, T.; Takenaga, K.; Takahashi, E.; Kubota, K.; Ohya, K.; Ishikawa, I.; Yamauchi, M.; Kasugai, S. S100A4: A novel negative regulator of mineralization and osteoblast differentiation. J. Bone Miner. Res. 2003, 18, 493–501. [Google Scholar] [CrossRef]
- Parvin, S.S.; Khatun, M.; Banu, S.; Mohiuddin, A.S.; Ahmed, A.U. Ultrasonographic Evaluation of Fetal Sacral Length: Correlation with Gestational Age. Sch. Int. J. Obstet. Gynec. 2022, 5, 169–173. [Google Scholar]
- Gottlieb, A.G.; Galan, H.L. Nontraditional sonographic pearls in estimating gestational age. Semin. Perinatol. 2008, 32, 154–160. [Google Scholar] [CrossRef]
- Wldjaja, E.; Whitby, E.H.; Paley, M.N.; Griffiths, P.D. Normal fetal lumbar spine on postmortem imaging. AJNR Am. J. Neuroradiol. 2006, 27, 553–559. [Google Scholar]
- Sherer, D.M.; Abramowicz, J.S.; Plessinger, M.A.; Woods, J.R., Jr. Foetal sacral length in the ultrasonographic assessment of gestational age. AM J. Obstet. Gynecol. 1993, 168, 626–633. [Google Scholar] [CrossRef]
- Ozat, M.; Kanat-Pektas, M.; Gungor, T.; Gurlek, B.; Caglar, M. The significance of fetal sacral length in the ultrasonographic assessment of gestational age. Arch. Gynecol. Obstet. 2011, 283, 999–1004. [Google Scholar] [CrossRef] [PubMed]
- Caughey, A.B.; Nicholson, J.M.; Washington, A.E. First versus second trimester ultrasound: The effect on pregnancy dating and perinatal outcomes. Am. J. Obstet. Gynecol. 2008, 198, 703. [Google Scholar] [CrossRef]
- Moradi, B.; Ghanbari, A.; Rahmani, M.; Kazemi, M.A.; Tahmasebpour, A.R.; Shakiba, M. Evaluation of Bi-Iliac Distance and Timing of Ossification of Sacrum by Sonography in the Second Trimester of Pregnancy. Iran. J. Radiol. 2019, 16, e79940. [Google Scholar] [CrossRef]
- Vignolo, M.; Ginocchio, G.; Parodi, A.; Torrisi, C.; Pistorio, A.; Venturini, P.L.; Aicardi, G.; De Biasio, P. Fetal spine ossification: The gender and individual differences illustrated by ultrasonography. Ultrasound Med. Biol. 2005, 31, 733–738. [Google Scholar] [CrossRef]
- Bareggi, R.; Grill, V.; Zweyer, M.; Narducci, P.; Forabosco, A. A quantitative study on the spatial and temporal ossification patterns of vertebral centra and neural arches and their relationship to the fetal age. Ann. Anat. 1994, 176, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Kędzia, A.; Kędzia, W.; Muszer, K.; Mikusek, K.; Wiśniewski, M.; Dudek, K. Morphometry of the Dorsal Surface of the Sacrum in the Prenatal Period. Adv. Clin. Exp. Med. 2009, 18, 425–436. [Google Scholar]
- Misra, P.; Mehe, A.; Agrawalla, D.K.; Panigrahi, S. A Study on Ultrasonographic Evaluation of Fetal Sacral Length as a Parameter for Assessment of Gestational Age in a Tertiary Care Center. J. Cardiovasc. Dis. Res. 2022, 13, 645–652. [Google Scholar]
- Patinharayil, G.; Han, C.W.; Marthya, A.; Meethall, K.C.; Surendran, S.; Rudrappa, G.H. Butterfly vertebra: An uncommon congenital spinal anomaly. Spine 2008, 15, 926–928. [Google Scholar] [CrossRef]
- Varras, M.; Akrivis, C. Prenatal diagnosis of fetal hemivertebra at 20 weeks’ gestation with literature review. Int. J. Gen. Med. 2010, 3, 197–201. [Google Scholar] [CrossRef]
- Kumar, A.; Tubbs, R.S. Spina bifida: A diagnostic dilemma in paleopathology. Clin. Anat. 2011, 24, 19–33. [Google Scholar] [CrossRef]
- Ulla, M.; Aiello, H.; Cobos, M.P.; Orioli, I.; García-Mónaco, R.; Etchegaray, A.; Igarzábal, M.L.; Otaño, L. Prenatal diagnosis of skeletal dysplasias: Contribution of three-dimensional computed tomography. Fetal Diagn. Ther. 2011, 29, 238–247. [Google Scholar] [CrossRef]
- Taner, M.Z.; Kurdoglu, M.; Taskiran, C.; Onan, M.A.; Gunaydin, G.; Himmetoglu, O. Prenatal diagnosis of achondrogenesis type I: A case report. Cases J. 2008, 1, 406. [Google Scholar] [CrossRef]
- Nikolic, D.; Cvjeticanin, S.; Petronic, I.; Jekic, B.; Brdar, R.; Damnjanovic, T.; Bunjevacki, V.; Maksimovic, N. Degree of genetic homozygosity and distribution of AB0 blood types amongpatients with spina bifida occulta and spina bifida aperta. Arch. Med. Sci. 2010, 6, 854–859. [Google Scholar] [CrossRef]
- Szpinda, M.; Baumgart, M.; Szpinda, A.; Woźniak, A.; Mila-Kierzenkowska, C. New patterns of the growing L3 vertebra and its 3 ossification centers in human fetuses–a CT, digital, and statistical study. Med. Sci. Monit. Basic Res. 2013, 19, 169–180. [Google Scholar] [CrossRef]
- Macé, G.; Sonigo, P.; Cormier-Daire, V.; Aubry, M.C.; Martinovic, J.; Elie, C.; Gonzales, M.; Carbonne, B.; Dumzes, Y.; Le Merrier, M.; et al. Three-dimensional helical computed tomography in prenatal diagnosis of fetal skeletal dysplasia. Ultrasound Obstet. Gynecol. 2013, 42, 161–168. [Google Scholar] [CrossRef]
- Victoria, T.; Epelman, M.; Coleman, B.G.; Horii, S.; Oliver, E.R.; Mahboubi, S.; Khalek, N.; Kasperski, S.; Edgar, J.C.; Jaramillo, D. Low-dose fetal CT in the prenatal evaluation of skeletal dysplasias and other severe skeletal abnormalities. Am. J. Radiol. 2013, 200, 989–1000. [Google Scholar] [CrossRef]
- Baumgart, M.; Grzonkowska, M.; Kułakowski, M. Digital image analysis of vertebral body L4 and its ossification center in the human fetus. Folia Morphol. 2024. [Google Scholar] [CrossRef] [PubMed]
Gestational Age | Crown–Rump Length (mm) | Number of Fetuses | Sex | ||||
---|---|---|---|---|---|---|---|
Weeks (Hbd-Life) | Mean | SD | Min. | Max. | ♂ | ♀ | |
18 | 133.33 | 5.77 | 130.00 | 140.00 | 3 | 1 | 2 |
19 | 149.50 | 3.82 | 143.00 | 154.00 | 8 | 3 | 5 |
20 | 161.00 | 2.71 | 159.00 | 165.00 | 4 | 2 | 2 |
21 | 174.75 | 2.87 | 171.00 | 178.00 | 4 | 3 | 1 |
22 | 185.00 | 1.41 | 183.00 | 186.00 | 4 | 1 | 3 |
23 | 197.60 | 2.61 | 195.00 | 202.00 | 5 | 2 | 3 |
24 | 208.67 | 3.81 | 204.00 | 213.00 | 9 | 5 | 4 |
25 | 214.00 | 214.00 | 214.00 | 1 | 0 | 1 | |
26 | 229.00 | 5.66 | 225.00 | 233.00 | 2 | 1 | 1 |
27 | 237.50 | 3.33 | 233.00 | 241.00 | 6 | 3 | 3 |
28 | 249.50 | 0.71 | 249.00 | 250.00 | 2 | 1 | 1 |
29 | 253.00 | 0.00 | 253.00 | 253.00 | 2 | 1 | 1 |
30 | 263.25 | 1.26 | 262.00 | 265.00 | 4 | 3 | 1 |
Total | 54 | 26 | 28 |
Parameter of the Body of Vertebra S1 | ICC |
Height | 0.993 * |
Transverse diameter | 0.998 * |
Sagittal diameter | 0.996 * |
Cross-sectional area | 0.995 * |
Parameter of the Body Ossification Center of Vertebra S1 | |
Transverse diameter | 0.997 * |
Sagittal diameter | 0.996 * |
Cross-sectional area | 0.990 * |
Volume | 0.993 * |
Month | GA (Weeks) | N | Vertebral Body S1 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Height (mm) | Transverse Diameter (mm) | Sagittal Diameter (mm) | Cross-Sectional Area (mm2) | |||||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | |||
V | 18 | 3 | 2.89 | 0.03 | 2.61 | 0.23 | 2.20 | 0.07 | 5.08 | 0.82 |
19 | 8 | 3.21 | 0.09 | 3.16 | 0.10 | 2.72 | 0.37 | 6.98 | 0.80 | |
20 | 4 | 3.42 | 0.12 | 3.81 | 0.15 | 3.22 | 0.02 | 10.25 | 2.60 | |
VI | 21 | 4 | 3.76 | 0.04 | 4.32 | 0.14 | 3.47 | 0.13 | 13.29 | 0.28 |
22 | 5 | 3.89 | 0.08 | 4.69 | 0.15 | 3.84 | 0.13 | 14.26 | 0.61 | |
23 | 5 | 4.21 | 0.07 | 5.11 | 0.16 | 4.21 | 0.03 | 16.22 | 0.92 | |
24 | 9 | 4.52 | 0.16 | 5.42 | 0.10 | 4.43 | 0.13 | 19.61 | 1.51 | |
VII | 25 | 1 | 4.75 | 5.75 | 4.68 | 21.80 | ||||
26 | 2 | 4.79 | 0.04 | 5.77 | 0.02 | 4.82 | 0.03 | 23.95 | 0.21 | |
27 | 5 | 5.02 | 0.09 | 6.18 | 0.18 | 4.96 | 0.09 | 25.12 | 0.99 | |
28 | 2 | 5.19 | 0.02 | 6.37 | 0.08 | 5.23 | 0.01 | 26.85 | 0.21 | |
VIII | 29 | 2 | 5.36 | 0.08 | 7.18 | 0.04 | 5.25 | 0.01 | 28.30 | 0.00 |
30 | 4 | 6.10 | 0.92 | 7.68 | 0.51 | 5.78 | 0.36 | 35.38 | 7.22 |
Month | GA (Weeks) | N | Ossification Center of Vertebral Body S1 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Transverse Diameter (mm) | Sagittal Diameter (mm) | Cross-Sectional Area (mm2) | Volume (mm3) | |||||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | |||
V | 18 | 3 | 1.73 | 0.03 | 1.15 | 0.27 | 2.84 | 0.06 | 3.84 | 0.05 |
19 | 8 | 2.08 | 0.16 | 1.85 | 0.2 | 3.31 | 0.15 | 4.93 | 0.41 | |
20 | 4 | 2.61 | 0.16 | 2.35 | 0.02 | 5.42 | 1.18 | 6.98 | 1.23 | |
VI | 21 | 4 | 2.99 | 0.2 | 2.51 | 0.08 | 7.09 | 0.48 | 9.45 | 0.55 |
22 | 5 | 3.47 | 0.11 | 2.62 | 0.03 | 8.02 | 0.29 | 10.23 | 0.1 | |
23 | 5 | 3.83 | 0.07 | 2.88 | 0.12 | 8.8 | 0.16 | 10.74 | 0.25 | |
24 | 9 | 4.07 | 0.15 | 3.24 | 0.17 | 10.27 | 0.78 | 13.03 | 1.5 | |
VII | 25 | 1 | 4.38 | 3.68 | 12.9 | 15.8 | ||||
26 | 2 | 4.57 | 0.07 | 3.7 | 0.01 | 13.6 | 0.28 | 16.4 | 0.42 | |
27 | 5 | 5.03 | 0.15 | 3.9 | 0.07 | 14.16 | 0.19 | 18.98 | 0.18 | |
28 | 2 | 5.27 | 0.09 | 4.07 | 0.08 | 14.8 | 0.57 | 19.4 | 0.14 | |
VIII | 29 | 2 | 5.42 | 0.08 | 4.19 | 0.06 | 16.05 | 0.07 | 21.55 | 0.92 |
30 | 4 | 6.3 | 0.39 | 4.85 | 0.31 | 23.28 | 6.29 | 29.88 | 5.76 |
The Observed Ossification Center of the Sacral Bone During the Ultrasound Examination | GA (Weeks) | Authors |
---|---|---|
S1–S5 | 14 | Karabulut et al. [6] |
S1–S5 | 15 | Caughey et al. [20] |
S1–S5 | 15 | Tekani et al. [5] |
S1-S5 | 16 | Sherer et al. [18] |
S1–S5 | 16 | Ozat et al. [19] |
S1–S2 | 15–17 | Moradi et al. [21] |
S1 | 15 | De Biasio et al. [2] |
S2 | 17 | De Biasio et al. [2] |
S3 | 17 | Moradi et al. [21] |
S4 | 20 | Moradi et al. [21] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grzonkowska, M.; Bogacz, K.; Żytkowski, A.; Szkultecka-Dębek, M.; Kułakowski, M.; Janiak, M.; Rogalska, A.; Baumgart, M. Digital Image Analysis of Vertebral Body S1 and Its Ossification Center in the Human Fetus. Brain Sci. 2025, 15, 74. https://doi.org/10.3390/brainsci15010074
Grzonkowska M, Bogacz K, Żytkowski A, Szkultecka-Dębek M, Kułakowski M, Janiak M, Rogalska A, Baumgart M. Digital Image Analysis of Vertebral Body S1 and Its Ossification Center in the Human Fetus. Brain Sciences. 2025; 15(1):74. https://doi.org/10.3390/brainsci15010074
Chicago/Turabian StyleGrzonkowska, Magdalena, Katarzyna Bogacz, Andrzej Żytkowski, Monika Szkultecka-Dębek, Michał Kułakowski, Michał Janiak, Agnieszka Rogalska, and Mariusz Baumgart. 2025. "Digital Image Analysis of Vertebral Body S1 and Its Ossification Center in the Human Fetus" Brain Sciences 15, no. 1: 74. https://doi.org/10.3390/brainsci15010074
APA StyleGrzonkowska, M., Bogacz, K., Żytkowski, A., Szkultecka-Dębek, M., Kułakowski, M., Janiak, M., Rogalska, A., & Baumgart, M. (2025). Digital Image Analysis of Vertebral Body S1 and Its Ossification Center in the Human Fetus. Brain Sciences, 15(1), 74. https://doi.org/10.3390/brainsci15010074